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A phenomenological study is made of the weak N* production process by displaying the matrix element 
in terms of eight form factors. Simple functional dependences are adopted for these form factors, and ana
lytical expressions for the cross sections are given in detail. A numerical analysis is carried out to investigate 
the effectiveness of each form factor. Three models are proposed for this process: One assumes the domi
nance of a single form factor, another incorporates information obtained from N* photoproduction, and the 
third employs the SU(6) relations of Beg and Pais. All three models are compatible with the present experi
mental information, but the one derived from the SU(6) theory is the most encouraging. 

I. INTRODUCTION 

FIVE years have passed since Schwartz and Ponte-
corvo independently proposed using neutrinos from 

the decay of intense, well-collimated beams of high-
energy pions to probe the weak interactions.1 Since 
then, experiments at both Brookhaven2 and CERN3 

have provided much information about the weak inter
actions, to wit: The separate identities of the muon 
and electron neutrinos, j/M and ve; the absolute conserva
tion of leptons; the apparent absence of neutral lepton 
currents; and the nonexistence of intermediate bosons 
with mass less than 2 BeV. Even more information 
about the weak interactions will be gained when the 
antineutrino experiments now in progress at CERN 
are analyzed. 

Quite aside from the information gained about the 
weak interactions, it has recently become apparent 
that high-energy neutrinos also serve as a useful probe 
of the strong interactions. For example, on the basis of 
SU{3) unitary symmetry,4 one should expect to see in 
addition to the ordinary "elastic" process, 

vi+n-*p+l, 

the competing process 

PI+N- >N*+l 

(1.1) 

(1.2) 

involving the direct production of the 3-3 pion-nucleon 
isobar N*(1238). 

The most detailed information about reaction (1.2) 
at present comes from the CERN high-energy neutrino 
experiment and is supplied by the CERN heavy-liquid 
bubble-chamber group.5 They find that the number of 
elastic and inelastic neutrino events are comparable. 
Moreover, below 4 BeV, most of the inelastic events 

* Supported in part by the National Science Foundation. 
1 M. Schwartz, Phys. Rev. Letters 4,306 (1960); B. Pontecorvo, 

Zh. Eksperim. i Teor. Fiz. 37, 1751 (1959) [English transl.: Soviet 
Phys.—JETP 10, 1236 (I960)]. 

2 G. Danby et al., Phys. Rev. Letters 9, 36 (1962); G. Danby 
et al., ibid. 10, 260 (1963); R. Burns et al., ibid. 15, 42 (1965). 

3 M. M. Block et al., Phys. Letters 12, 281 (1964); J. K. Beinlein 
et al., ibid. 13, 80 (1964); G. Bernardini et al., ibid. 13, 86 (1964). 

4 M. Gell-Mann, California Institute of Technology Synchro
tron Laboratory Report CTSL-20, 1961 (unpublished); Y. 
Ne'eman, Nucl. Phys. 26, 222 (1961). 

5 Block et al., see Ref. 3. 

involve single-pion production, i.e., 

vi+N->l+N+w. (1.3) 

Their analysis of the invariant mass spectrum and the 
charge/neutral pion ratio demonstrated in fact that a 
large fraction of these single-pion events proceed via 
the production of an N* and its subsequent decay: 
N* —> N+w. Thus the importance of process (1.2) has 
been confirmed. 

According to the usual SU(3) assignments, process 
(1.1) represents an octet-octet transition, while process 
(1.2) represents an octet-decuplet transition. As such 
the two processes are not simply related. However, if 
one adopts the SU(6) symmetry scheme6 according to 
which the baryon | + octet and the baryon f+ decuplet 
are both members of the same SU(6) supermultiplet, 
56, the two reactions become intimately connected. 

As a probe of the strong interactions, the high-energy 
neutrinos are thus able to make some critical tests of 
the higher symmetry schemes recently proposed. In 
this respect, the neutrino experiments play much the 
same role as the high-energy electron-scattering 
experiments. Neutrinos have the added advantage, 
however, that they are able to probe the strong inter
actions via both the vector- and axial-vector-type 
couplings by virtue of the dual-parity nature of the 
weak interactions. 

In this paper, we present a detailed phenomenological 
study of the weak N* production process, (1.2), and its 
SU(3)-symmetric counterpart, 

Pi+N->Yf+l, (1.4) 

where the Fi*(1385) is the / = 1 member of the decuplet. 
The role of the neutrino as a probe of the strong inter
actions is exploited fully in that the transition matrix 
for (1.2) or (1.4) is written in terms of eight form 
factors which are functions only of the momentum-
transfer variable. The effectiveness of each of these 
form factors in contributing to the total cross section is 
then investigated. We also present the detailed pre
dictions for the N* and Y* production processes derived 

6 F . Giirsey and L. A. Radicati, Phys. Rev. Letters 13, 173 
(1964); A. Pais, ibid. 13, 175 (1964); B. Sakita, Phys. Rev. 136, 
B1756(1964). 
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from the elastic reaction on the basis of the SU(6) 
symmetry scheme. Although the experimental uncer
tainties are large, the theoretical results are encouraging. 
Some of the results obtained in our study were briefly 
reported in two letters.7*8 In another paper to be 
published,9 we shall report on the cross-section results 
derived from the relativistic generalizations of SU(6) 
and compare them with those found in this paper in 
the nonrelativistic SU (6) theory. 

Several authors10 have also made a phenomenological 
study of the N* process from a somewhat different 
point of view. Weaver el al. chose the simplified case 
with only one form factor present, while Zheleznykh 
singled out two form factors. Berman and Veltman, on 
the other hand, selected several of the form factors and 
fixed their strength according to the conserved-vector-
current and almost-conserved-axial-vector-current hy
potheses. Kim has also made an analysis similar to the 
latter two authors. 

Prior to the suggestion of the eightfold way4 by 
Gell-Mann and Ne'eman, it was natural to focus one's 
attention on process (1.3) instead of (1.2). The peri
pheral model with one-pion exchange or PF-meson 
exchange was considered by a number of authors for 
this single-pion production process.11 In this approach, 
the effect of the N* is inserted to enhance the appro
priate intermediate state in a dispersion-theoretical or 
static-model calculation. Since this analysis involves 
a number of invariant-scattering amplitudes which are 
functions of two variables, it is very complex and the 
interpretation somewhat uncertain. Their approach is 
to be contrasted with ours, where the N* is produced 
directly. 

The outline of our work is the following. The N-N* 
transition matrix element is written in terms of eight 
form factors in Sec. II, while III contains the differential 
cross section and its low-momentum-transfer limit. The 
effectiveness of the various form factors is investigated 
in Sec. IV for two different momentum-transfer depend
ences. Section V contains the predictions of 5(7(6) and 
the conserved-vector-current hypothesis, and VI sum
marizes the findings of our phenomenological approach. 
The rather lengthy formulas are recorded in the 
Appendices. 

7 C. H. Albright and L. S. Liu, Phys. Rev. Letters 13, 673 
(1964). 

8 C . H. Albright and L. S. Liu, Phys. Rev. Letters 14, 324: 
532(E) (1965). 

9 C. H. Albright and L. S. Liu, Phys. Rev. (to be published). 
10 D. L. Weaver, H. S. Song, C. L. Hammer, and R. H. Good, 

Jr., Nuovo Cimento 35, 150 (1965); I. M. Zheleznykh, Phys. 
Letters 11, 251 (1964); S. M. Berman and M. Veltman, Nuovo 
Cimento 38, 993 (1965); C. W. Kim, Nuovo Cimento 37, 142 
(1965). 

11 J. S. Bell and S. M. Berman, Nuovo Cimento 25, 404 (1962); 
N. Cabibbo and G. DaPrato, ibid. 25, 611 (1962); N. Dombey, 
Phys. Rev. 127, 653 (1962); P. Dennery, ibid. 127, 664 (1962); 
Nguyen Van-Hieu, Zh. Eksperim. i Teor. Fiz. 43, 1296 (1962) 
[English t ransl : Soviet Phys.—JETP 16, 920 (1963)]; A. Fujii 
and E. Celeghini, Nuovo Cimento 28, 90 (1963); G. R. Henry, 
J. L0vseth, and J. D. Walecka, ibid. 36, 509 (1965). 
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II. WEAK N* PRODUCTION MATRIX ELEMENT 

The generic weak N* production process, 

Vl+N->N*+l, (2.1) 

is illustrated in Fig. 1, where a point interaction is 
assumed for the leptons. We denote by &i(coi), pi(Ei), 
£2(^2), and p2(Ez) the four-momenta (energy) of the 
neutrino, nucleon of mass Mi, lepton of mass m^ and 
isobar of mass Mz, respectively.12 The invariants s and t 
are denned by the equations 

s=z-(p1+kly=-(p2+k2y, 
/=-(P2~^i)2=-(^i-*2)2=-(72. { ' } 

The spin-f isobar is described by a spinor-vectorial 
field rpftip-i) in the Rarita-Schwinger formalism13 with 
the subsidiary conditions 

and 
P^=0, (2.3) 

employed to project out the spin-| components. The 
four independent spin states are given by 

*,<*> = V I * w ) * f + V * e>Vu„, 

^/-*> = eM<-1^_, 
where 

* a ) - - - ( W , 0 ; 0 ) , 

«M(0) = ( 0 , 0 , ( £ 2 / M 2 ) ; i(p2/M2)), (2.5) 

%<- l >-- ( l , -* ,0 ;0) , 

v2 
are the polarization vectors of the vectorial field. The 
z axis has been selected as the quantization axis which 
is defined by the direction of the N* momentum. The 
Dirac spinors u+ and #_ with spin up and spin down, 
respectively, are normalized according to UiUj=hxi. The 
adjoints of the unit four-vectors eM

(X) = (e(X);ie0
(X)) are 

12 We use the Minkowski metric, and all 7 matrices are taken 
to be Hermitian. 

WW. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1940); S. 
Kusaka, ibid. 60, 61 (1940). 
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diagrams for N* 
production. 

(d) 

given by 
^(x )==(e(X)* ;^(X)) ) (2.6) 

where the asterisk indicates complex conjugation. For 
an arbitrary polarization state of N*, it is convenient 
to write 

$* = (4>#o) = g»u++ fnU-.^ h^u; (2.7) 

then the Pauli adjoint field is given by 

where the adjoint of h^ is denned in the same manner as 
that for eM

(X). With g-g+f'f=l, ^M is normalized to 
unity. 

The dynamics of the N* production process (2.1) is 
all contained in the N-N* transition vertex which can 
be described in terms of eight form factors under the 
assumption of a local V— A lepton current. In par
ticular, the production matrix element can be written as 

G 
3Ti= <ivVM |A>*7,( l+7 5K, (2.8) 

\ 5 

where the transition vertex is given by14 

(N*\Jfl\N)^xldXli(Fl
A+F1

vyb) 
+ipixy,(F2

A+F2
vy6)/(M1+M2) 

+pix(pi+p2\(Fz
A+Fd

vyb)/(M1+M2)
2 

+pix(pi~p2UF^+FJys)/(Ml+M2yiuN (2.9) 

for the Jp=%+ N* isobar. This form is convenient for 
calculation; an alternative form for the vector contri
bution is 

(N*\J^\N)^hD^iv+ipixy^v/(M1+M2) 
+ipi\<rlta(pi-p2)aHz

v/(M1+M2y 
+pi\(pi-p2)>HJ/(Mi+M2¥lysUN, (2.10) 

14 Note that here we have selected the mass M=Mi+M2 to 
render all the form factors dimensionless. In Refs. 7 and 8 we 
used M—Mi. The new choice seems to be a more natural one as 
will be seen in Sec. Ill, when we discuss the differential cross 
section at low-momentum transfer. 

where the two sets of vector form factors are related by 

FJ-HJ, 

F/=H2
v+l(M2-M1)/(M1+M2)2H^y) (2.11) 

Fzv=^Hz
v,Fj=HJ. 

The form factors are functions only of the momentum 
transfer t, and are all relatively real if time-reversal 
invariance holds.15 

In Fig. 2 we have singled out some Feynman diagrams 
which may make significant contributions to these form 
factors. A direct 4-fermion interaction is pictured in 
Fig. 2(a); representative particle exchange diagrams 
are shown in Figs. 2(b), (c), and (d) where the diagrams 
in (c) and (d) exhibit anomalous threshold behavior 
in the t channel. Table I spells out explicitly to which 
form factors Fiv>A the various diagrams of Fig. 2 
contribute. 

If one imposes the conserved-vector-current (CVC) 
hypothesis16 for this octet-decuplet transition, only 
three vector form factors are linearly independent, i.e., 

(M1+M2)2(^iy+i?2y) 
+ (M2*-M1

2)Fz
v-tFj=0. (2.12) 

However, we shall not impose this restriction at the 
outset. 

We conclude this section by elaborating the charge 
channels of process (2.1): 

pi+n-+N*++l-, (2.13a) 

vi+p-+N*+++l-. (2.13b) 

By analogy with the "elastic" process, vi+n—* p-{~l~, 
we denote the coupling constant for reaction (2.13a) 
simply by G, where GMP

2=1.02X10-5; for reaction 
(2.13b) the appropriate coupling constant is then *v3G 
under the assumption that the weak current transforms 
like an isospin vector operator. 

TABLE I. Form factors receiving contributions from the 
diagrams of Fig. 2 as indicated by an X. 

Feynman 
diagram Particle Form factor contributions 
of Fig. 2 exchanged Fx* Fiv F2

A F2
V FZ

A F%
v FA

A F4
y 

a 

b 

c 

d 

W 
p 

W 
p 
fr 

W 
P 

X 

X 

X 

X 
X 

X 

X 

X 

X 

X 
X 

X 
X 

X 

X 

X 

X 

X 

X 

X 
X 
X 

X 
X 

X 
X 

X 

X 

X 

X 

X 

X 

X 
X 

X 
X 

X 
X 

15 The analytic expressions derived allow complex form factors, 
but all are taken to be real in our later numerical work. 

18 S. Gerschtein and J. Zeldovich, Zh. Eksperim. i Teor. Fiz. 29, 
689 (1955) [English transl.: Soviet Phys.—JETP 2, 576 (1956)]; 
R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958). 
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The reactions corresponding to (2.13) for N* produc
tion by antineutrinos are: 

where 

(2.14a) 

(2.14b) 

Here the appropriate coupling constants are G and v3G, 
respectively, for (2.14a) and (2.14b). The matrix 
element for (2.14a) is then given by 

SfTC '*—<^ | / , * | ^7M( l+7*) f i , (2.15) 

in terms of the negative-energy Dirac spinors for the 
antileptons, where 

(2.16) 

and 7M is the Heisenberg current operator which raises 
the z component of isospin by one unit while 7M

+ lowers 
Iz by one unit. If we now invoke the A/= 1 rule, i.e., 

RJuR-i=-J*, (2.17) 

in terms of a rotation about the y axis by w radians, 
Eq. (2.15) can be rewritten as 

Wl'--(N*+\Jtl\n)v,yfl(l+yb)vl, (2.18) 

where here the N—N* transition vertex is just that 
given by Eq. (2.9). 

m . INVARIANT DIFFERENTIAL CROSS 
SECTION FOR N* PRODUCTION 

The invariant differential cross section17 for V* 
production is given by 

da 1 

where 
* 2TT (S-MI2)2 

(3.1) 

(3.2) 

and summation over the v, N, N*, and / spins are im
plied. In order to carry out the spin summations, it is 
convenient to sum first over the *>, N, and I spins and 
write 

*,N,l p,N,l 

= ~(^ i )~W M f f *>£,,, (3.3) 
17 The kinematics and the differential cross section in both 

center-of-mass and laboratory systems are elaborated in 
Appendix A. 

•Ltpv •L'lur + A*» > 
L{t<rS — k 2fik l < r + k ifjd2a~ k 1 • k2§M<r , 

and 
T * = > 

M„™ = ±G2 X> (N*<*> I /„ | N)(N*<*> | J, \ NY. 

Here the adjoint matrix element is found to be 

(N* | J A N)*=tlNl-8p<r(F1
A*-F1

v*y5) 
-ipiPy<r(F2A*+F2V*y5)/(M1+M2) 
-PiP(Pi+P2),(FsA*-Frys)/(Ml+M2y 
~piP(pi-p2)AFAA*-Fj*y5)/(Ml+M2n*P. (3.4) 

The summation over the N* spin states may then be 
carried out with the help of the spin-f projection 
operator 

E ^ ( X ) £ > ( X ) = 5MP+f 
x l mi 

p2fAp2P 

3TMTP 

i 1 —iy-p2~\~M2 
(y(ip2P-yPp2li) — • 

3M2 J 2M2 

(3.5) 

After the spin sums are performed, it is apparent 
that T can be expressed in the following form : 

where 

T=tf?3:Mt)Xi{s,t), (3.6) 

Xi=(pvk2)(pvki)+(prkd(pvk*)f 

X2=(p2-k2)(pvkl)-(p2'k1)(pVk2), 

X,= (p2'k2)(p2'k1), (3.7) 

X*= (pvk2)(pl'kl) , 

Xi=MxMt(kvkt). 

The Ri(t) are functions only of t and are listed in 
Appendix B, where the X% are also expressed explicitly 
in terms of s and t. 

From the above grouping of terms, it is clear that 
only X2 is antisymmetric under ki, k2 interchange; 
hence only R2{t) contains V-A interference terms which 
are generated by AfMer£M<r

x. The doubly-induced form 
factors Fzv'A and FAV,A, however, do not contribute 
to R% because of energy-momentum conservation and 
the presence of the antisymmetric tensor in L^A. 
Finally, we note that for the antineutrino processes 
(2.14), the V-A interference term reverses sign so R2X2 
should be replaced by its negative with the other RiXi 
left unchanged. 

Aside from the above general statements, little can 
be said about the behavior of the differential cross 
section until some assumptions are made for the func
tional t dependence of the eight form factors. However, 
for small four-momentum transfer, the invariant 
differential cross section depends only on the normaliza-
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TABLE II. High-energy cross-section behavior arising from each Fiy*A of Eq. (4.1) with » = 0 , 1, or 2. 
At large s, <r(s) - (C?/4ir) | f tF^(0) | f X (appropriate entry in table). 

Form 
factor ««0 

High-energy cross-section behavior 
» = 1 » = 2 

FiA 

F** 

Fzv 

S2 

1SM22 

S2 

I8M22 

lis8 

180M2
i(Mi+M2)

2 

1U3 

1S0M2
2(M1+M2)2 

J4 

OQMfiMi+M*)* 

<r4 

(iOWWfi+Jfi)4 

Wtj25* 

60if,*(ifi-r-ifj)4 

mps* 

60M2
2(Mi+M2y 

3jfcf2
2 W 

--0 
3M2

2 \bj 
2b2s 

9M2HM1+M2)2 

2b2s 

9M2
2{Mi-\-M2)

2 

W 

1&M22(M1+M2)i 

b2s2 

lSM2
2(Mi+M2)i 

mffis 

36M22(Mi+M2y 

m?b2s 

36M22(Mi+M2y 

b 

9M* 

b 

9M2
2 

•[(Mi+M2)2-B&] 

l(M2-M1)
2+ib2 

9M22(M: 

1+-
f i+ i f i ) i . 

Mi2+M2
2 (M2

2~Mi2)2' -Mi2)n 

b2 J 
¥ r i 

1+-
9M22(Mi+M2)2L 

Mf+M2
2 (M22-Mi2Y 

~b2 J 

- i n ! 
3Mf(Mi+M*)A \b, 

bA 

-In 
3M22(Mi+M2)* \b4 

mi2V 

I2M2KM1+M2YS 

12M2
2(ifl+^2)45 

tion of the form factors at / ~ 0 . In the limit / -
takes on the following form : 

—(0)~ ( \ 

• 0 - , i t 

dt 12ws 

-Mia 

-MK M2 

M2-M! 
X\ | / ^ | 2 + 2 Re(F1

AF2
A*+Fl

AFz
A*) 

M%+M2 

/M2-Mi\2 

\Mi+M 2/ 

+ 2 Re(FfWM-Fi F F*H] 
/M2-Mi\z 

+21 ) Re(F^F 3
F*+F 2^F 3n 

\Mi+M2J 
/M2-Mi\* } 

+ ( ) | F 3
F | 2 . (3.8) 

XMx+M 2/ J 
Terms involving [wz/(ikfi+M2)]2 have been dropped; 
hence FAV,A do not appear in the above equation since 
their coefficients are proportional to the lepton mass. 
The direct axial-vector term | FiA |2 appears to be the 
most effective one for this limiting differential cross 
section. The other form factor combinations fall into 
several groups18 according to powers of the mass 

18 This is a result of our selection of M=Mi+M2 to render all 
form factors dimensionless, see Ref. 14. 

difference, M2—Mi. It would thus seem that the next 
leading contribution should result from the interference 
of F2

A and FzA with F\A—at least at low-momentum 
transfer. 

IV. PHENOMENOLOGICAL FORM FACTORS 
AND NUMERICAL RESULTS 

We now turn our attention to a phenomenological 
study of the / dependence for the eight N—N* transition 
form factors. Cne salient feature for this study is that 
the high-energy behavior of the total cross section 
depends critically on the functional dependence of the 
Fiv*A(t). We shall use this as a guide for the selection 
of the phenomenological forms. 

To calculate the total cross section, we have con
sidered the following conventional t dependences: 

^ F ^ W = F / ^ ( - ^ ) = [F^^(0) ] / [ ( l - / / f t )» ] , (4.1) 

where «=0, 1, and 2. For w=0, the form factors are 
structureless; for » = 1 , they have a simple pole de
pendence; while for w=2, they are analogous to the 
empirical ones appearing in elastic electron scattering 
from nucleons.19 We have evaluated the asymptotic 
behavior of a(s) arising from the eight form factors 
individually with the above three / dependences of 
Eq. (4.1). The results are listed in Table II. 

19 See, e.g., R. Hofstadter, F. Bumiller, and M. R. Yearian, 
Rev. Mod. Phys. 30, 482 (1958). 
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The structureless case, w=0, results in a highly 
divergent cross section arising from each of the eight 
form factors. This is clearly unacceptable. For the 
simple pole dependence, the direct form factors Fiv>A 

are weakly divergent while the others are more strongly 
divergent. With a small damping effect at large momen
tum transfer, this behavior is barely acceptable for the 
direct factors but still unacceptable for the other 
contributions. On the other hand, the Hofstadter-type 
dependence yields an acceptable asymptotic cross 
section for all form factors provided only slight modi
fications are made for Fzv and F%A. The differential 
cross section has been integrated analytically for the 
latter two cases, and the total cross section formulas 
are listed in Appendix C. 

In Figs. 3 and 4, the numerical results are presented 
for the simple pole and Hofstadter cases, where the 
individual form factors have been taken one at a time. 
The cutoff parameter b is set equal to (0.850 BeV)2 

which is appropriate for the elastic reaction,19,20 and all 
form factors have been normalized to unity. With this 
normalization, it is evident from Fig. 3 and Eq. (3.8) 
that the relative contributions fall into several groups 
with F\A giving the leading one and in this sense being 
the most effective. One also notes that the asymptotic 
behavior of the total cross section given in Table II 
becomes apparent even for the moderate energy region 
included in Fig. 4. 

The current experimental information for the weak 
N* production process is supplied solely by the CERN 
heavy liquid bubble chamber group of Block et al? 
Their results consist of total cross section measurements 
up to 6 BeV which are plotted in Fig. 5; in addition, 
they estimated an invariant differential cross section 
at low-momentum transfer given by 

d<r/dq2= (0.5±0.2)X10~™ 
cm2/ (BeV/c)2 per nucleon (4.2) 

4 ^ in IO'39 cm2/(BeV/c)2 

dqZ 
(E„*2BeV) 

FTG. 3. Invariant 
differential cross sec
tion for the inelastic 
process p^-j-n -* iV*+ 

+/T" for each form 
factor taken one at a 
time and normalized 
to unity with \/b=850 
MeV. The dashed 
curves refer to » = 1 
and the solid curves to 
w = 2 inEq. (4.1). 

in 10' 

0.51 

0£>5H 

0J02 

0.0! 
0.2 0.4 

I2 in (Bev/c)2 

FIG. 4. Total cross 
section for ivf-» —• 
N*++tT correspond
ing to Fig. 3. 

0 1 2 3 4 5 6 
E„ (Lob) in BeV 

averaged over the momentum range 0<g2<0.2 
(BeVA)2 and energy range 1.0<E,<3.0 BeV. To obtain 
the cross sections for the particular charge channel 
Vr+n—*N*++vr7 one must divide their results per 
nucleon by a factor of two. 

Although the experimental uncertainties are rather 
large, several features are revealing. The information 
provided by the differential cross-section measurement 
at low-momentum transfer is valuable since it is 
independent of the q2 structure of the individual form 
factors and depends only on their normalizations. The 
direct axial vector form factor F\A by itself is able to 
accommodate the experimental range quoted in Eq. 
(4.2) with normalization near unity, unlike the other 
seven form factors. Moreover, F\A yields a rapidly 
rising total cross section above threshold which is 
characteristic of the experimental histogram in Fig. 5. 
These results suggest that the simplest N* production 
mechanism is through FiA alone. 

With this simplicity in mind, we have attempted to 
fit the total cross section data by adjusting the cutoff 
parameter b for the simple pole and Hofstadter cases 
of Eq. (4.1). The results are presented in Figs. 6 and 7. 

per nucleon 

FIG. 5. Experimental 
cross section per 
nucleon for single-pion 
events as measured by 
the CERN group, see 
Ref. 5. 

20 Variation of the cutoff parameter b has a sizeable effect on 
the total cross section and the forward/backward ratio. This was 
previously reported in Ref. 7. 
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^ in tO"38 cm2/(BeV/cf 

(E„*2BeV) 

0.051 

0.02-

FIG. 6. Differential 
cross section for i>M 
+» -> iV*++M" with 
pure F\A normalized 
to unity. Dashed 
curves refer to »= 1, 
solid curves to n=*2. 
The number in 
parentheses for each 
curve is equal to V& 
in MeV. This con
vention is used here
after. 

0.2 0.4 0.6 
q2 in (BeV/cf 

For the n= 2 case, a median value of (1.22 BeV)2 for b 
provides a reasonable fit. Cn the other hand, a lower 
median value of (0.77 BeV)2 provides a somewhat 
poorer fit for the n = l case. This single form factor 
mechanism predicts an equal N* production cross 
section by antineutrinos and is thus subject to a simple 
experimental test. 

Perhaps a more reasonable mechanism is obtained 
by considering F\A together with some vector contribu
tion. In particular, the CVC hypothesis relates the 
vector form factors for the weak n —» N*+ process with 
those present in N* photoproduction from nucleons. 
One finds the following relationship for the matrix 
elements: 

(N*+\Jiy\n)=(N*+\J^\p). (4.3) 

The N* isobaric model has been used by Gourdin 
and Salin21 to analyze the pion photoproduction process. 
In their notation, the electromagnetic vertex is given 
by 

(iV*+|7/I|/>)=^[Ci5xM75- (Pt/m,)ipny,ydup, (4.4) 

where Ci(0) and Cj(0) are deduced to be 5.6 and 0.37, 
respectively. These numbers then imply that we take14 

F1v(0) = 5.6 and F2
r(0)=-5.6 (4.5) 

for the n —» N*+ process. Since their analysis indicates 
that both Fz

v and FA
V are very small, Eq. (2.12) is 

satisfied. 
In Figs. 8 and 9 we have plotted the differential and 

total cross sections using the vector form factors 
normalized according to Eqs. (4.5) and taking FiA(0) 
= —0.87 so as to yield a more nearly correct differential 
cross section at low-momentum transfer. The opposite 
sign of Fi^(0) is not considered since it leads to a 
decidedly worse fit to the total cross section near 
threshold. For the range of cutoff parameters included, 
a good fit is obtained with a median value of b^ (0.67 
BeV)2 for n=2. The simple-pole-type form factors, on 

the other hand lead to a very poor fit, and this case 
has not been plotted. 

V. PREDICTIONS OF SU(fi) AND THE 
CVC HYPOTHESIS 

In the last section, we have first investigated the 
effectiveness of the various form factors in contributing 
to the total cross section and then attempted to "fit" 
the experimental results in a rather ad hoc fashion by 
adjusting the normalizations and cutoff parameters. 
The recent development of the SU(6) symmetry 
scheme, on the other hand, enables one to correlate the 
n-*N* inelastic and n—>p "elastic" processes and 
hence to specify the Fiv*A(0). Here we present the 
results based on an analysis of the detailed predictions 
of SU(6) and the CVC hypothesis for the form factors. 

In the SU(6) symmetry scheme,6 the baryon Jp= J+ 
octet and the baryon f+ decuplet are conveniently 
assigned to the 56-dimensional irreducible representa
tion since the spin-unitary-spin content is given by 
56= (2,8)+(4,10). The PS meson octet and the V 
meson nonet, on the other hand, can be placed in the 
adjoint representation, 35, since 35= (1,8)+(3,8) 
+ (3,1). In the framework of 517(6), Beg and Pais22 

have extended Cabibbo's original hypothesis23 by 
making the assumption that the weak vector and axial 
vector currents of the hadrons transform like members 
of two different 35's. The effective matrix element for 
the semileptonic interaction 

VI + JBI —> Bj+Z (5.D 

can then be written in the low-frequency limit as 

c c 
<£256| — 7 / ( 3 5 ) + — / / (35) | BxtyL, 

^3Biajfitk^(pi)B^^(p{)CrMq) > (5.2) 

0.5^ O" in I0"38 cm2 

FIG. 7. Total cross 
section corresponding 
to Fig. 6. 

2 3 4 5 6 
Ev (Lob) in BeV 

21 M. Gourdin and Ph. Salin, Nuovo Cimento 27. 193, 309 
(1963). 

» M. A. B. B6g and A. Pais, Phys. Rev. Letters 14, 51 (1965). 
Note that an error in the sign of the nw term of Eq. (2) has been 

» N. Cabibbo, Phys. Rev. Letters 10, 531 (1963). 
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where 
Gv 

+f -^ ( * -W, (5.3) 

1 
(5.4) 

and q=p2—pi. The completely symmetric baryon 
tensor of the 56 in the rest frame can be reduced in 
terms of the spin and unitary spin tensors24 according to 

1 

+ ( e V + 2 € > V V ^ " ] , (5.5) 

where the Latin indices take on the values 1, 2 and the 
Greek indices the values 1, 2, 3. The lepton four-vector 
matrix ZM= (L,i£o) is given by 

4.= 

where 

0 /„cos0 JMsir# 
ycosfl 0 0 

JJsinB 0 0 

—#M=ui(k2)y^(l+yb)u,(ki), 

(5.6) 

(5.7) 

and 6 represents the Cabibbo angle, 0 « 15°. 
An important consequence of this SU(6) scheme lies 

in the fact that the octet-decuplet transitions can be 
related to the "elastic" octet-octet transitions since 
both SU(3) baryon multiplets belong to the same 
SU(6) supermultiplet. Thus one can make use of the 
parameters determined in the well-known n-*p 
process (GVMP

2= 1.02X 10~5 and GU= L2GV) to predict 
results for the other processes, e.g., n-+N*+ and 
p->¥{«. 

We consider first the inelastic reaction «|—»iV*+ | , 
where the | denotes the third component of spin. Here 

cm2/(BeV/c)2 

FIG. 8. Differential 
cross section for 

with TV* (0) =-0.87 
and FiF(0) and 
Ftv(0) derived from 
N* photoproduction 
data. Only case »=2 
is plotted. 

0.05 

0J02 

n (BeV/c)2 

0.51 

0.4 

0.3-

FIG. 9. Total cross 
section correspond
ing to Fig. 8. 0 2-j 

24 The notation for the spin and unitary spin tensors is given 
in M. A. B. B6g, B. W. Lee, and A. Pais, Phys. Rev. Letters 13, 
514(1964). 
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the appropriate tensor components are b$2xl for n\ 
while for iV*+ we use y/Sdm=^Sdm=\/S(P11 with its spin 
+ | component denoted by v3xm=v3x121=V3x2U. We 
then have in the nonrelativistic limit 

9ENB(nJ -» iT+§) - <#*+£ | {Gv/y/T}jy 

+ (G^/v2)7/|ni)L, 

Gv 2V2 
= — ( c o s 0 ) — * A T p t ( q x l ) 3 

v2 3 

GA 2V2 
(cos0)—h . (5.8) 

This result is to be compared with the nonrelativistic 
limit of (2.9) which implies 

VKMnh-> iV*+J )= -1—;rC^O) - / ^ ) ] 
VZl2y/6M 

X ( q x l ) 8 ~ v / f i F x 4 ( 0 ) / s J , (5.9) 

where M is set equal to (Mi+M2)/2. A straightforward 
so* identification leads to14 

4v3 fi(p)-fj,(n) 
Fiv(0)-F2

v(0)= =7.5 (5.10a) 

and 
e/2M 

2^GA 

F^(0) = = - 0 . 8 3 , 
5 Gv 

(5.10b) 

with G set equal to Gv cos0. The magnitude of F\A(0) 
is determined uniquely with its phase fixed relative to 
Fi F (0) . In the low-frequency limit with the baryon 
masses degenerate, no information is obtained about 
the remaining five induced form factors. 
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In order to determine individually the two vector 
form factors appearing in Eq. (5.10a), we now invoke 
the CVC hypothesis. The resulting linear relation, 
(2.12), then reduces to 

(M1+M2)
2LFiv(0)+F2V(0)3 

+ (M2
2-Mi2)Fz

v(0) = Q (5.11) 

at zero-momentum transfer. The N* photoproduction 
analysis of Gourdin and Salin21 indicates that the ratio 
Fz

v(0)/F2
v(0) is small. In addition, its effect in (5.11) 

is reduced by the appearance of a small coefficient. 
Hence from Eqs. (5.10a) and (5.11), we deduce that14 

Fiv(Q) = -F2
v(Q) = 3.75. (5.12) 

We now wish to argue that the effects of the remain
ing form factors are not appreciable. For this purpose, 
we make use of the results of Sec. IV, where the effec
tiveness of the individual form factors was investigated. 
The three form factors, Fzv> FJ, and F*A can be safely 
eliminated since their contributions are found to be 
negligibly small. For the remaining form factors, F2

A 

and FzA, the situation is not so clear. Static theory25 

cr in I0"38 cm2 

-(450) 
FIG. 11. Total cross 

;OEA. section corresponding 
<850) to Fig. 10. 

2 3 4 5 6 
E„ (Lab) in BeV 

28 See, e.g., J. S. Bell and S. M. Berman, Nuovo Cimento 25, 
404 (1962). 

leads one to believe that F2
A itself is small, in which 

case its contribution to the cross sections will also be 
small. We shall assume this to be the case. For FZ

A, 
however, little can be said. Even though it has a doubly-
induced nature, its contribution at 2=0 is nonvanishing 
due to the N*-N mass difference. Since there is no 
information on this term, we have dropped it.26 

For the three form factors now considered, we have 
plotted in Figs. 10 and 11 the A7*+ production cross 
section for both the n=l and n=2 cases for several 
values of b. The SU(6) predictions are seen to be in 
reasonable accord with experiment27,28 for the n=2 case 
with b close to the "elastic" value, b= (850 MeV)2. The 
V—A interference term is constructive for this neutrino 
reaction. For the antineutrino process, the interference 
term is destructive and the corresponding curves have 
been plotted in Figs. 12 and 13. Further discussion will 
be presented in Sec. VI. 

We now turn our attention briefly to the N-Yi* 
octet-decuplet transition. According to the AS/AQ= +1 
rule, weak Y\ production from nucleons can only occur 
by antineutrinos according to 

and 
(5.13) 

(5.14) 

The production cross section for process (5.14) is twice 
that for (5.13); therefore, the cross section for Fi* 
production per nucleon is 1.5 times that for the Fi*° 
reaction. 

The SU(6) predictions are the following: 

and 

=— tan0, (5.15a) 

=— tan0. (5.15b) 

Taken together with the extended CVC hypothesis, the 
above then implies that 

2V(0)=-F 2
F (0 ) = 2.85, 

F1A(O) = _ O . 5 9 , 
(5.16) 

with G—Gv sin0. We observe from Eqs. (5.15) that the 
Y* and N* antineutrino reactions are similar aside from 

26 In Ref. 8, we allowed for a small deviation of FiA from zero. 
The relativistic SU(6) theory predicts the normalizations of all 
eight form factors. It turns out that F*A(Q) is identically zero, 
while the contribution to the production cross section from FzA 

is relatively small. These results will be discussed elsewhere; see 
Ref. 9. 

27 The results presented in Figs. 10 and 11 differ slightly from 
those published earlier in Ref. 8. This is due to the choice of 
M=i(Mi-Mf2) in Eq. (5.9) in place of Mi as used previously. 

28 In the exact SU(6) symmetry limit, only the direct axial-
vector term, FiA, survives. In this limit, N. T. Papastamatiou and 
D. G. Sutherland [Phys. Letters 14, 246 (1965)] have also ob
served that the invariant differential cross section predicted by 
SU(6) is compatible with the CERN experimental result (Ref. 5). 
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the SU(3) coefficients, the tangent of the Cabibbo 
angle, and the mass effects. 

We have assumed a Hofstadter-type q2 dependence 
for Fiy , F2V, and FiA and neglected all other form 
factor contributions, with somewhat less justification 
than previously. The ratio of Y* to N* production per 
nucleon is only about 1.5% and is plotted in Fig. 14 as 
a function of antineutrino energy. 

VI. DISCUSSION OF THE RESULTS 

Our purpose, as stated in the Introduction, has been 
to present a detailed phenomenological study of the 
neutrino-induced iV*(1238) production process. To this 
end, we have invoked the local nature of the neutrino-
lepton interaction to enable us to write the matrix 
element for this process in terms of eight form factors 
which are functions only of the momentum transfer 

(T in I0 '3 8 cm* 

0.5H 

0.2H 

^ in I0 '3 8 cm2/(BeV*)2 

dqz 

(E„ = 2 BeV) 

FIG. 12. Differen
tial cross section for 0I" 
the antineutrino 
process, v^+p —• 
N*°+IJ+, with the 
same form factors 
employed as in 
Fig. 10. 

0.02 

0.01 
0.4 0.6 

• n (BeV/c)2 

variable. We have presented the general expression for 
the differential cross section for unpolarized weak N* 
production in Appendix B. This formula is considerably 
more involved than its "elastic" counterpart, because 
of the higher intrinsic spin of the N* isobar. 

In Sec. IV, we have seen fit to limit our attention to 
the rather simple ^-dependence of Eq. (4.1) for the form 
factors involved. As such, each form factor depends 
upon three parameters and, except for the structureless 
case, exhibits a singularity in the unphysical region for 
the production process. The three parameters are the 
normalization, Ft

F«A(0); the order, n; and the location, 
biv*A, of the pole in the complex t plane. In general, the 
analytic structure of these form factors is considerably 
more complicated; in effect, we have assumed that the 
structure of each one is dominated by an effective 
singularity on the real axis. This / dependence is not 
too unreasonable at low-momentum transfer and, in 
fact, for the "elastic" reaction, it fits the experimental 
results rather well. For practical purposes, we have 

/&50) 

0.4 

0.3H 

FIG. 13. Total cross 
section corresponding 
to Fig. 12. 0 2 . 

O.H 

2 3 4 5 6 
Ep (Lob) in BeV 

assumed identical locations and orders of the effective 
poles for all eight form factors; in addition, we have 
confined our attention to three choices for n, i.e., 
w=0, 1, and 2, corresponding to a structureless, simple 
pole, and Hofstadter-type momentum transfer de
pendence. 

Given this functional dependence for the form factors, 
one can make the following general remarks.29 The 
invariant differential cross section at zero-momentum 
transfer depends solely on the normalizations of the 
form factors and is dominated by FiA. Cn the other 
hand, the asymptotic behavior of the total cross section 
for large s is a sensitive function of the parameter n as 
exhibited in Table II. This becomes apparent even at 
moderate neutrino energies as shown in Fig. 4. Conse
quently, we have dismissed the structureless case for 
which a(s) diverges at least quadratically with s and 
concentrated on the two cases, n=l and 2. From 
threshold to 10-BeV neutrino energy, the first is 
characterized by a continuously rising cross section, 

FIG. 14. Anti
neutrino cross sec
tion ratios for Fi* 
compared to N* pro
duction. The form 
factors are deter
mined from SU(6) 
and the CVC hy
pothesis with w=*2. 

0.02 

0.01 

2 3 4 5 6 
EP (Lab) in BeV 

* These features were previously discussed in Ref. 7 for the 
» = 2 case. 
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TABLE III. Form-factor parameters for the three models in
vestigated. Tne characteristic values for y/b are drawn from the 
experimental results. Those in parentheses indicate that the fit 
is very poor. 

Model 

(1) Pure FiA 

(2) N* photo-
production 
-J-CVC-f/V1 

(3) S*7(6)+CVC 

Form factor parameters 

FiHO) Fi^(0) F2^(0) 

1.0 0 0 

-0.87 5.6 -5.6 
-0.83 3.75 -3.75 

(»=1) 
Vb 

(MeV) 

770 

(360) 
(450) 

(»=2) 
Vb 

(MeV) 

1220 

670 
820 

while the second leads to a cross section which saturates 
within this energy range. For fixed normalizations, 
FiVtA(0), and given n, the shape of the differential cross 
section, and therefore the front-to-back ratio, depends 
critically upon the cutoff or "shape" parameter b. As b 
is increased, the total cross section increases while the 
F/B ratio decreases by orders of magnitude. 

The effectiveness of each form factor in contributing 
to the cross sections has been investigated in some 
detail. This study is influenced to some extent by the 
mass one inserts to render all the form factors dimen-
sionless. With the choice made in Sec. I l l and all form 
factors normalized to unity, we find that in the low-
energy region they can be listed in decreasing order of 
effectiveness according to: 

Fi* {FJ,FJ,F*\Fz
A)y F8

F , / V , FJ. 

The ones within the parentheses are about equally 
effective. 

We have attempted to derive some quantitative 
results from the current CERN experimental informa
tion on weak N* production by considering several 
simple models. In each case, the n=2 Hofstadter-type 
form factors yield better results than the w=l simple 
pole functions, since the experimental cross section 
appears to saturate within 8 BeV. Moreover, the 
information on da/dt at low-momentum transfer 
suggests that F%A must be present to an appreciable 
amount: FiA(0)>0.7 with the same weak-coupling 
constant as in beta decay. 

In Table III, we have recorded the form factor 
parameters characteristic of the three models con
sidered. The first model is the simplest in that it singles 
out the importance of FiA alone. In the second model, 
Fiv(0) and /?2F(0) are determined uniquely from the 
work of Gourdin and Salin on N* photoproduction, 
while FiA(0) is adjusted to yield the observed differ
ential cross section. On the other hand, all three form 
factors at zero-momentum transfer are determined by 
SU(6) and the CVC hypothesis. 

The predictions of the SU(6) symmetry scheme are 
obviously of greatest interest. This scheme appears to 
triumph on three counts. First, the prediction for the 

magnitude of FiA(0) is just what is required to give the 
correct differential cross section at low-momentum 
transfer. Second, the V-A interference effect is con
structive and large in agreement with the rapidly rising 
N* production cross section just above threshold. And 
third, the Hofstadter-type cutoff parameter is charac
teristic of that for the elastic reaction, 5« (850 MeV)2. 
These predictions are rather remarkable—and perhaps 
somewhat fortuitous. 

It is somewhat curious that the predictions from the 
N* photoproduction data do not yield better results. 
With b= (850 MeV)2 and «=2, the total cross section 
prediction is much too large.80 Only with a considerably 
smaller value of (670 MeV)2 is reasonable agreement 
obtained. 

On the basis of SU(6), N* production by anti-
neutrinos is suppressed at low energies by the large 
destructive V-A interference effect. This is also typical 
of the elastic reaction. Y* production by antineutrinos 
is suppressed also by the Cabibbo angle and unfavorable 
SU(3) Clebsch-Gordan coefficients. These predictions 
serve as a test for this model. 

We shall extend our analysis elsewhere9 to include 
the predictions of the relativistic generalizations of the 
517(6) theory.'1 
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APPENDIX A: KINEMATICS 

1. Center-of-Mass System (c.m.s.) 

In the c.m.s. of the s channel, we define 

£ i = (ki,ioji), £ 2 = (k2,to>2), 

pi=(-K*Edf #2=(-k2,i£2). 

The two independent scalar variables are 

s=W*, /=wr?-"2oJiW2+2wi|k2| cos0, (A2) 

where W is the total cm. energy and 0 is the cm. angle 
between the outgoing lepton and the incident neutrino. 

18 This point was also observed by Berman and Veltman, see 
Ref. 10. 

n Note added in proof. After submission of our manuscript, it 
has come to our attention that members of the CERN heavy-
liquid bubble-chamber group have recently made a more detailed 
analysis of single pion production in neutrino reactions than that 
published in Ref. 5. Since the new experimental cross section is 
considerably larger than the published one, the predictions of the 
SU(6) theory now appear to be less favorable. A summary of the 
results obtained in this paper with reference to both the published 
and the new experimental findings is presented in Ref. 9. 

We wish to thank Professor Ph. Salin and Professor C. Franzi-
netti for informing us of the new results prior to publication. 
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The momenta and energies in the c.m.s. are 0m«x*, is determined by 

2W\ki\ =s-Mi2, sin0m«*=Mi{[s- (M2+wi)2] 
2W\U\={ls-(M^miY2Ls-(M,+mlY2}^; (A3) X [ ^ ( M 2 - W 2 ] } V C ^ 2 ( ^ M 1

2 ) ] . (A10) 

<o = Ik I 2Wo> =s—M 2+mf ^ e differential cross sections in the lab are related to 
' ' (A4) the invariant differential cross section according to 

2WEl=s+M1*, 2WE%=s+Mi-m?. 
da 2a)iMi|k2|

2 da 
The differential cross section in the c.m.s. for N* = 9 
production is given by d cos0 (Mi+coi) | k2| —coiw2 cos0 dt 

(All) 
da da da 2&\M\ p2 r da 

- = 2 W l | k 2 | - , (AS) d cos0 dt d cos0* wiE2 cos0* — | p21 (Mi+a>i) dt 

where da/dt is given by Eq. (3.1). APPENDIX B: INVARIANT DIFFERENTIAL 
CROSS SECTION 

2. Laboratory System 
. . The invariant differential cross section is given by 

In the lab where the target nucleon is at rest, we £ q /j j \ a s 

define /7 1 T 
*i=(ki,i«i), ^2= (Wo>2), _ = ? (B1) 
Pi=(0,iM{), pt~iv*i&). W h e r e * 2r (5- l f f l« 

Here 
6 

^Jf iH^coiMi , /=W|2-2o;ico2+2a)1|k2| cos0,, (A7) r - J G ^ g l ^ W X ^ O . (B2) 

where Si is the lab angle between the outgoing lepton —,, r ^ v / ,\ r -^ ,<* »\ . ,. . , 
j 4.u • -i * * • TU 4. J • The functions X,(,yJ) of Eq. (3.7) are given explicitly 

and the incident neutrino. The momenta and energies . A . , % ) ' ' ,. } J B ™h>"^"y 
u ° m terms of 5 and * according to 

are now given by & 

2Ml\ p, | = { [ ( ^ i + A f ^ - O C ^ i - ^ ^ - O ) * ; (A8) " < * + < - * > * - « « ( * + < - * *)> (B3b) 

• . - I k t l ^ T ^ - x + i - W , , , ^(s-Mt-mMs+t-MS-mV, (B3c) 

2ilf1Es=M1
2+Af2

2-*. ( A 9 ) *X<=(s-Mf)('+t-Mf), (B3d) 

Let 0* be the angle between the JV* isobar and the 2Xs=MiM2(t-m?). (B3e) 
incident neutrino. The maximum laboratory angle, The functions Ri(t) are found to be 

Ri=riuv(\Fs
A\*+\Fi

r\*)+rRe(FiAFiA*-F1
vF2

v*) 
-r*i«(Af,/Jf O I X I W - |2V|2)+H|iVT- I W ) ] 
-r2((t-Mi2+M,2)/2M1M,)Re(wFiW*+»FiFF8<'*) 
- r2((*- M x2- mjyiMtMi) Re (wFi W + s F i ^ F O 

+r2ttt> Re[Fi W - F . ' F 4 r*+((M2-ilf i ) / ( # i + U 0 ) ( F » W - F , W ) ] , (B4a) 

Ri= - Rt(F1
AFir*+ruFl

AF1
y'+rvF1

rFi
A*- Ir^uvF^Ft7*), (B4b) 

Rz= - {.M1/MH(u\Fl
A\t+v\Fiy\')-r(.M1/M^ R e f F i W + F x W ) 

-r*uv(M1/M1)lu(\F3
A\i+\F,A\i)+v(\Fi^^+\Fty\^2+rat-M^-M^)/M^ 

XR^FiAFtA'-FirFi
v*-ru(Mt/M1)F1

A(Fi
At-Fi

A')-rv(Mi/M1)F1^(F»v*-Ft
v*)2 

+2r*uv ReZFi
A(Fi

At-F4
A*)-Fi

v(.Fz
v*-Fi

v*)2+2r*uv(M2/M1) R e ( « F » W + t f W ' ) , (B4c) 

J?4= -r*m(MJMd (w | iV+ZV 12+f |Ft r+F4
v \ i)+r(Mi/Mi) Re(Fi W + F i ^ F O 

-2r2(M*/M1) R e ^ ^ F a ^ + F ^ + s F x ^ F ^ + F O ] 
+2r»«n(M8/Ml) ReLF^(F^ , +F 4 ' t , )+ f t F (F . y *+F 4 H3, (B4d) 
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- f ^ ( V 2 i f i 1 ) ( « | F 4 A | f + w | / ? 4 F | , ) - i w R e ( F i ^ i ^ + F l
F F » ^ 

+riuvRelu(F1
AFz^+F1

AF,A*-F2
AFz^+v(F1

vFzv*+F1
vF^+F2VFin^ 

4 r M ( M 2 - M 1 ) / ( M 1 + M 2 ) ) ^ (B4e) 
where 

r=Mi / ( i f i+M2) , 2MxM2u~t- (ilf i+M2)2 , 2Jf iilf * = * - ( M j - ^ ) 2 . (BS) 

APPENDIX C: TOTAL CROSS SECTION 

As stated in Sec. IV, we have adopted the following phenomenological t dependence for the form factors: 

F^A(0) 
Fiv,A(i) (Cl) 

For the two cases of interest, »= 1 and w= 2, the invariant differential cross section of Eq. (Bl) may be integrated 
analytically to yield the following results: 

(P W- 2 n'*** 
( r ( 5 ) = / hV(s,t)dt, f o r « = l , 

47r (^ -M 1
2 ) 2 3>^ 

(C2) 
(? b* 2 /•«— 

a(s)= / k™(s,t)dt} forw=2, 
4 T T ( 5 - M 1

2 ) 2 3 J ^ 

where 
tmin=M1*+M22-2E2El-2\p2\ | P l | , tmBX=M1*+M2*-2E2Ei+2\p2\ | P l | . (C3) 

The momenta and energies appearing in (C3) refer to the center-of-mass variables defined in Appendix Al and 
are functions only of s. 

The indefinite integrals of h(n) (s,t) are tabulated below. Terms involving FJ and F±A have been dropped, since 
they yield extremely small contributions to the N* production process. 

/ 

16 

h^(s,t)dt=ZSiw(s,t); n-1 ,2 (C4) 

&<»>=._ |F1-*(0)|*Crfl/,(«)+d,/,(irf)], 

5,<-) = - | FJ (0) | W . G0+<V. («<)], 

S,<"> = r21ZV (0) 12[(rf3- 2M !M2m ?) / . ( i»)+ (di+WJitfn («*)+/„ («rt2)], 

S / ^ r 2 ! JV(0) | 2 [ ( r f 3 +2^ 1 M 2 m«/ B M+ (d4-2if l a f O / . ^ R / . t i i r f * ) ] , 

5,<") = 2r*|F^(0)|*{((l*'i/Jfi)rf»-»M)/.(f«) 

S^ = 2ri\Fi
v{Q)\i\{{Mi-M1)/{Ml^Mim{M1/Mi)di-rnHdIn{.uv) 

r2 (Jf,-Jf,)*+«^ r r1 (Afj-Afx^+Wj2 "I r2 l 
- <*6 dt \In{uVt) dtlniuvt*)} , 

S7<»> = r Re[ /V (0)/V*(0)][(rf i + d . + d . - l f j f ,mi«)J,,(1)+ (rf2+rf4+5Jlf 2/M,)/.(*) 

+/B(/2)+2(rf1-M1M2mi2)/B(w)+2(rf2+M1J^ 

58
(") = rRe[/?1 ' '(0)F2 ' '*(0)][(rf1-f i;3+^-ilfiM2m i

2)/n(l)+(rf2-(i4+5ilf2/lf,)/B(0 

- /»W-2(d i - J f i l f^ )7 - ( r ) -2 (d ,+J f 1 J fOA(«^+21f i i f«m^/ l l ( i iB) -21fJ f i i r
l l M)] t 
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(n) = -r RtlF^(0)Fi^(0)2{L((Mi-M1)/(M1+Mi))(2dz+ml

i)+ml
idiyn(u) 

+t2aMi-Mi)/(M1+Mi))di+MS-Mii+m?yn(ut)+((Mi-Mi)/(Ml+M2))In(uP) 

+2rldi-ml
i(s+M1M2-m?)yn(uv)+2r[di+M1(M1+M2)yn(uvt)), 

SwM = -rRelF1v(0)F3v*(0)MUz+mii+((Mi-M1)/(M1+Mi))mWiyn(v) 

+ l2di+«M2-M1)/(Mi+M2))(Mf-Ml
i+m?)yn(vi)+In(vt*) 

+2r[d3-m?(s-M1Mi-m?)¥n(uv)+2rZdi+M1(Mi-Mi)yn(uvt)}, 

S11(»> = 2r2Re[F^(0)F3^(0)]{[r(</3+2rfB+w,4)-w i
2(5+M1M2)]InW+(2s-rw1

2)Zn(OTO}, 

Snin) = - 2r2 R e p V (0)F3"* (0)]{ [r (d3- 2di+ml
i)+((M2- MO/ (Mx+ilf 2) W {s-MJ£$y» (uv) 

-VttM.-MiytMi+MMs+rmfihiuvt)}, 

Si,<») = R e p V ( 0 ) F ^ (0)][(M2
2-M1

2)m,2/n (1)+djn ( / )+ / . (**)], 

SI4<">=r Re[F1^(0)i?2'r*(0)][(M2
2-ilf W / , ( « ) W . W + / . ( « ? ) ] , 

5i5<"> = rReC^(0)F 1 ^(0)][ (M 2
2 -M 1

, ! )m, 2 / B W+rf4/»W+/«W] ) 

5i6<")==-2r2Re[F^(0)F2
v*(0)][(Af2

2-M1
2)OT,2/„(w)+J4/»(MJ'/)+/nM2)]. 

We have condensed the above expressions by using the following formulas: 

di^Ms-MS-mflis-Mf-mfi+MfmflMi/Mt, di=2s-M1
2-M2

i-m?, 
d2={s-2Mi-m?)MJM2, d^is-Mfiis-MfiMt/Mr, (C5) 

di=2si-2s(Mii+MS+mii)+2MW2
i+m?(M1

i+Mi
i), dt=s-m?/i, 

and 
f y*t 

The symbols r, u, and v were previously defined in Appendix B. 
In the above formulas, we have adopted a universal cutoff parameter for all eight form factors, i.e., biv>A=bt 

for simplicity. If this restriction is relaxed, the changes that must be made in Eqs. (C2), (C4), and (C6) are both 
trivial and obvious. 


