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is everywhere non-negative. But (4) and (5) imply that 

JU(Vo,\)-g(Vo,V)lP(V0,\)dV<4*V=0 

from which we conclude that 

C/(^o,V)-g(F0,V)]P(Fo)V) = 0 

which means that 

f(Vo,V)-g(V0,\) = 0. 

We can write the conservation laws (2) and (3) in the 
equivalent form 

L 5 3 ^5(Fo-Fo ( n ) )5^ (V-V^) 

= E S^8(V0- F 0^05 ( 3 ) (V~V^)) . (6) 
n ' - l ' 

Suppose that in the initial state there are no two 
particles with the same values of PVn) and V(n) and 
with nonzero values of 53(n) and suppose that the same 
is true for the final state. Then the conservation law 
(6) implies that the initial and final states contain the 
same number of particles with nonzero third component 

L INTRODUCTION 

IF the velocity of electrons traveling in a dielectric 
medium is higher than the phase velocity of light 

in the medium, radiation is observed. This is the well-
known Cerenkov effect.1 The theoretical analysis of the 
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Grant No. AF-AFOSR-496-65. 
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1 P. A. Cerenkov, Phys. Rev. 52, 378 (1937). 

of spin, that for these particles the set of values of F0
( n ) 

and V(n) for the initial state is the same as the set of 
values of Voin,) and V(n/) for the final state, and that 
each of these values carries the same third component 
of spin initially and finally. There may be a permutation 
of these values among particles with different quantum 
numbers like charge. Particles with zero third com­
ponent of spin, in particular particles with zero spin, 
are not restricted by this conservation law. If there 
is a duplication of values of F0

(n ) and V(n) in the initial 
state or of Vo(nf) and V(n'} in the final state, there may 
be a cancellation of terms in (6) so that these particles 
do not participate in the conservation law. 

If Fo<n) and V(n) for a particle in the initial state are 
equal to Fo(n° and V(n'} for a particle in the final state, 
then these particles have the same velocity. The 
relativistic velocity of the particle is 

v<»)/Fo(w)=Pcny(P(n)M-w«2)i/2 

and the nonrelativistic velocity is 
V(n)/(l-70(n)) = p(n)/mn> 
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Cerenkov effect was first obtained by Frank and Tamm,2 

who treated the problem of the radiation from an elec­
tron moving uniformly in a homogeneous dielectric 
medium. Extension of their analysis to anisotropic and 
dispersive media has been carried out by various 
authors.3 The problem of the emission from a particle 
traversing a piecewise homogeneous dielectric medium 

2 1 . M. Frank and I. Tamm, Dokl. Akad. Nauk. S.S.S.R. 14, 
109 (1937). 

3 J. V. Jelley, Cerenkov Radiation and its A p plications (Pereamon 
Press, New York, 1958). 
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The formal exact solution to the problem of the radiation of a charged particle traveling with a constant 
velocity in a periodically inhomogeneous medium is obtained. As a specific example, the case with a sinusoid-
ally varying dielectric profile is treated in detail. Results of the computation are summarized in two graphs 
from which information concerning threshold velocity for a particular mode, the emission angles for various 
radiating modes, and the cutoff frequency for a certain mode can be found. Unlike the case of Cerenkov radi­
ation in a homogeneous medium, there exist radiating modes in this inhomogeneous-dielectric case even 
when the velocity of the charged particle is below the threshold Cerenkov velocity. A formal expression for 
the radiation spectrum is also given. Approximate expressions for the radiated fields and for the radiation 
spectrum are obtained when the variation of the permittivity is small. Results are discussed and interpreted. 
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was considered by Fainberg and Khiznyak4 and by 
Garybyan.6 However, very little work has been carried 
out on the problem of the radiation from an electron 
moving uniformly in a continuously inhomogeneous 
periodic dielectric medium. It is expected that if the 
wavelength of the emitted radiation is much smaller 
than the period of the inhomogeneity, the terenkov 
radiation would depend to a great extent upon the 
permittivity in the immediate neighborhood of the 
particle, which may be assumed nearly constant. The 
WKB method was used by Ter-Mikaelyan6 to investi­
gate this problem. On the other hand, if the wavelength 
of the emitted radiation is much greater than the period 
of the dielectric variation, the (Jerenkov radiation will 
depend primarily upon the average value of the permit­
tivity of the medium. At wavelength comparable to the 
period of the medium, the behavior of the radiation is 
not readily apparent. 

It is therefore the purpose of this paper to treat this 
problem. A formal solution will be obtained for the 
spectral density of the radiation emitted by a charged-
particle traveling uniformly in a dielectric medium 
which is periodically and continuously inhomogeneous 
in the direction along the particle path. Detailed analy­
sis is carried out for a specific dielectric variation, i.e., 

«(*) = €a[l-$ COS(2x2/#)] , 

where ea is the average value of the dielectric constant, 
8 is the magnitude of the variation and p is the periodic­
ity of the variation. If the magnitude of the dielectric 
variation is small, approximate analytic results can 
be found. It is noted that owing to the inhomogeneity 
of the medium, there exists not only Cerenkov-type 
radiation by also transition-type radiation as well. 

H. FORMULATION OF THE PROBLEM 

It is assumed that an inhomogeneous dielectric 
medium fills the entire space and possesses a relative 
permittivity 

e(z)/€o=e(z+p)/60, (1) 

a relative permeability 

M/MO= 1, (2) 

and a conductivity (7=0, in the (x,y,z) rectangular 
coordinate system, p is the periodicity of the dielectric 
variation, eo and ju<> axe, respectively, the free-space 
permeability and e(z) is an analytic function. A charged 
particle is moving in the z direction through this medium 
at a constant speed v. Denoting the charge by q, one 
has for the current density J due to the passage of this 

4 Ya. Fainberg and N. Khiznyak, Zh. Eksperim. i Teor. Fiz. 
32, 883 (1957) [English transl.: Soviet Phys.—JETP 5, 720 
(1957)]. 

6 G. Garybyan, Zh. Eksperim. i Teor. Fiz. 35, 1435 (1958) 
[English transl.: Soviet Phys.—JETP 8, 1003 (1959)]. 

• M. Ter-Mikaelyan, Dokl. Akad. Nauk SSSR 134, 318 (1960) 
[English transl.: Soviet Phys.—Doklady 5, 1015 (I960)]. 

particle 
J=(q/2TP)S(p)i{t-z/v)e., (3) 

where ez is a unit vector in the 2 direction, p2=r2+y2, 
and 8 is the Dirac delta function. Maxwell's equations 
for the present situation are 

VxE=-MdH/6V (4) 

dE q / z\ 
V x H = € « — + «(p)«( t— k , 

dt 2wp \ vJ 
(5) 

where E and H are, respectively, the electric and mag­
netic fields. Taking the Fourier transformation with 
respect to time of Eqs. (4) and (5) gives 

VX8=ia>fj3C (6) 

VXK=-uae(z)S+(q/4^p)6(p)ei»9i*e,. (7) 

8 and 3C denote the Fourier transforms of E and H, 
respectively; they are related to E and H by 

E = [ €*-«•'&>, (8) 
J —00 

H= J Xe-^'du). (9) 
J —00 

To solve Eqs. (6) and (7) for the region p>0, let us 
introduce a scalar function ip(p,z) as follows: 

3C=Vx[>(p,2)eJ, 

o)e(z) 
V*Vx|>(p,z)e a] . 

(10) 

(ID 

\p (p,z) satisfies the following partial differential equation: 

— \ p — \ +— 
p dpL dp J e dz dz dz2 

f—+o>W*=0. (12) 

This method of solving the vector wave equation for 
an inhomogeneous medium is a modified version of the 
vector wave-function method of Hansen7 and Stratton.8 

\f/ must also satisfy the following boundary conditions: 

(a) the Sommerfeld radiation condition at p= 00, 
(b) Ampere's law at p=0, i.e., 

# q 
lim 2wp—= £««*/•. 
^° dp 2w 

(13) 

ni. FORMAL SOLUTION FOR tjr 

The appropriate solution for \(/ can be obtained from 
Eq. (12) using the method of separation of variables: 

+M=HQV(yp)Z(z), (14) 
7 W. W. Hansen, Phys. Rev. 47, 139 (1935). 
8 J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book 

Company, Inc., New York, 1941). 
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where H0
a)(yp) is the Hankel function of the first kind tion condition at p= oo is 

of order zero, T2 is a separation constant, and Z(z) ^ 
satisfies the foUowing differential equation: ^ = ^ ^ f p^^a*(£)#0<i)(7p)^? (24) 

cPZ IdedZ ^-°° 

ltf"7zlz+^0€~^Z~°' ^ w h e r e F$) i s m ^b i t r^y function of fi. Substituting 
Eq. (24) into the required boundary condition (13) 

In order that the radiation condition at infinity can be at p=0 gives, 
satisfied, both the real and imaginary parts of 7 must ^ 
be positive ^{z)( l\(^)WlK^/p)d^-e^\ (25) 

The solution of Eq. (IS) depends, of course, on the J \iJ 2r 
dielectric variation, c(z). Making the substitution "^ 

Division of Eq. (25) by (4t/i)e1^(z)eita^v yields 
* - « / # , (16) 

Z(Q~4*(Qu(£), (17) /* F(fi)ke$v{**/p)*+§B,9dp=—€-1/2(s). (26) 

d% r 1 d2* 3 /(/eV2 ^ l Since the right-hand side of (26) is periodic with period 
1_ l i — J +(wV0€--72)— L = 0 . (18) p} the left-hand side must also be periodic with period 

d? L2€ d? 4<?\d£/ irU p. Hence, substitution of (z+/>) for z in (26) yields 

If one assumes that c(£) is an even-periodic function of r00 /<icz\ iq 
period TT, the function in the brackets in Eq. (18) may / F(p)heM — W ^ ^ * - ^ / * ^ — € - i / 2 ( 2 ) . (27) 
be represented in terms of a Fourier cosine series. J-«> ^P' ° x 

Hence, (18) becomes Subtraction of (26) from (27) yields 

< P « 00 «, 

_ + [ e o + 2 £ 0 B c o S 2 » f > = O (19) | 2 7 ( ^ ) A e / I c ^ ! ! ) ^ , / . C e ^ W / . _ 1 W = o . (28) 

which is the canonical form of Hill's equation. The for- T , ,, , ,. . , , , ,, „ .„ , 
, , ... , v /iON , u* • J -4.U-.I. u i In order that linear independence of the Hill functions 

mal solutions of Eq. (19) can be obtamed with the help , , ^ r <. • , , A . /00x 
f Fl t* th Vio Th " e Preserved, the factor in square brackets in (28) must 

^ * ' v be zero. This requires that 
w(£) = ^a.2)(£) = e±tf$ f } J ) ^ , (20) /3=(a>p/i>7r)+2/, (29) 

n«»—oo 

where J is any integer. Hence, Eq. (24) becomes 
where the superscripts (1) and (2) refer, respectively, 
to the + and the - signs on the right-hand side of ^ £ ^(z)F^^(yiap)he^uaKn/p)f (30) 
this equation. {$ are the roots of the following charac- i—« 
teristic equation: 

where a=a>p/vw} and yf denotes the value of y for 
sin2(!?r£) = A(0) sin2(f 7r\/0o) (21) which fi=a+2l. Fi can be determined from the relation 

in which A(0) is an infinite determinant whose elements H . . , , . . « /7 r z \ 
are —e™(z)W= £ F i f c ^ W - - ) (31) 

A ( 0 W = 1 , Sw l— KtJ 

A(O)mn=0«^«/(0o-4m2) (m^n). (22) with the help of the orthogonality properties of Hill's 
functions.9*10 We have 

The coefficients bn(fi) are determined from the recur­
rence relation _ * [p iq nsJwz\ . , , 

F i = — / — e-1f2(z)he2i^aa) (•— )e%(**lvdz, (32) 
-(0+2n)2*ttO3)+ f Mw-«GS)-0. (23) fCWo &r \ ^ / 

where C* is a normalization factor which is denned 
The most general expression for ^ that satisfies the radia- T 

9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics / I ^2H-«(1) (£) 12d£ = Ci. (33) 
(McGraw-Hill Book Company, Inc., New York, 1953). J o 

10 N. W. McLachlan, Theory and Application of Mathieu 
Functions (Oxford University Press, Oxford, 1951). Equation (30) constitutes the formal solution for \p. 
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m . THE RADIATION SPECTRUM one has 

We shall now obtain a formal expression for the energy rftyy 8ir « » 
radiated by the particle per unit length and per unit = — ]T £ FiFm*(yia)Z12 

frequency interval. The total energy W radiated by the dLdo> &L J—« «—«° 
particle is equal to (^"exp Wrf-ym*)p} 

• / ' ~ ° X / A«a+2«f-jAea+Sm*(-W. (43) 
where P denotes the radiated power. By Poynting's -L f V 
theorem* the power radiated into a cylinder of radius Vtmzin ^ orthogonality properties of the Hill func-
p coaxial with the track of the particle and of length 2L t{ms a n d ̂ ^ Q u t ̂  i n t £ g r a l i n E q ( 4 3 ) g i v e s 
IS 

P=-2irp dz{Ez{p,zfyH4>{piz,t)}. (35) = _ £ \Fi\2Ci(yia)zl2(yi*)112 

Expressing £*(p,s,0 and H+fazj) in terms of their Xexp [>(Y|«-7z«*)p] (44) 

Fourier transforms and substituting (35) into (34) I f 7 |« i s i m a g i n a r y j the corresponding term in the series 
y becomes zero at large values of p, so one has finally 

W — arpf *f *f <"f, *< fLJlzMWyV, _ . (45) 

X[£ . (p > ^ ) f f* (p^ / ) ^ ( - r f - ' ) ] - (36) 
where the summation is taken over those values of / 

Interchanging the order of integration gives for which yf is real. Equation (45) constitutes the 
formal solution for the spectral density of the radiation. 

V. CLASSIFICATION OF THE RADIATION IF=-47r2p/ dzl do> 9 1 dzl 
J tmm—L J 0>— 00 

v r < ? / w / N-I / - ^ Owing to the mhomogeneity of the dielectric medium, 
XL£*(p,z,co)3e*(p, z, — co)J. (37) ,, , ? . . . r?u u A *• i • 

L. M-7 wr-7 7 / J \ / u ^ ra^atxon given on by a charged particle moving 
Since E,(p,z,t) and #„(p,s,0 are real, it follows that uniformly through this medium contains not only 

Cerenkov-type radiation but also transition-type radia-
fL f°° tion. In order to classify these types of radiation, let 

W= -ktPp \ dzl Jo)[^(p,2,co)0C/(p,2;,w) u s fast consider the degenerate case of the radiation in 
*—z, ««o a h o m 0 g e n e o u s medium. For this degenerate case, the 

+ <S,*(p,z,w)5C0(p,z,o))]. (38) HH1 functions, hefiM(Q, reduce to the exponential 
functions, i.e., 

The energy radiated per unit path length and per unit he^l){£) —> e^, (46) 
frequency interval d?W/dLdco is given by where 

m , mL P-VOo-tfw-y'HpH*. (47) 
l [*< 
— / dz[St(p, = - 4 ^ — / ^[<S,(p,2,aj)aC/(p,2,a>) 

dLdo) 2L J9mm-L ' The coefficient Fj given by Eq. (32) reduces to 

+ S,*(p,2,co)0C^p,Z,w)]. (39) l/tjx 1 r* 
F ,= - ( — ) — / e 2 " " / ^ (48) 

Inserting the relations p\ST/^/€ Jo 

(S,(p,2,co)= ( p— ) , (40) 
W € p a p W p / -sj/SirVc for J«0 . (49) 

K*{pw)=-ty/dp (41) 
Hence, the wave function ^ given by Eq. (30) becomes 

into (39), where ̂  is given in Eq. (30), and utilizing the 
large-argument asymptotic expression for the Hankel *<7 
functions tf=-e*»W>(Yo«p), (50) 

limH0
a)(X) = (—) e«x-«(W«) (42) where 

8T 

**/ (ytry-afat-tP/*. (51) 
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FIG. 1. Stability diagram for Hill's equation with 5=0.25. 

And, the energy radiated per unit path length and per 
unit frequency interval is then given by 

dPW <f 

dLdo) 4w€0) 

= 0 

(7oa)2 for 7oareal 

for 7oa imaginary. (52) 

Therefore, only the /=0 term survives as the inhomo-
geneous medium degenerates to a homogeneous one. 
This /=0 term corresponds to the Cerenkov radiation 
term. It is defined that the /=0 term in Eq. (30) will 
be designated as the Cerenkov radiation term and the 
IT^O terms will be designated as the transition radiation 
terms. Consequently, the Z=0 term in Eq. (45) will be 
designated as the radiated energy spectrum due to the 
Cerenkov effect while the IT*0 terms in Eq. (45) will 
be designated as the radiated energy spectrum due to the 
transition effect. 

The angles of emission of the radiation can be readily 
obtained from Eq. (30) and the expression for the Hill 
functions, Eq. (20). The radiation is composed of an 
infinite number of cylindrical waves emitted at angles 

din= arctan 7l« 

L(/3rr-2w)7r/>-
(53) 

with respect to the positive z-axis, where n and / are 
any integers and fti is given by Eq. (29). It will be 
noted that for any value of I for which yi* is real, 
radiation is emitted at an infinite number of angles 
ranging from zero, when n is very large and positive, 
to 7r, when n is very large and negative. One would 

-et • 

-2.0 -io ao 

FIG. 2. Stability diagram for Hill's equation with 5=0.4. 
The 7f*=0 curve is given by the dot-dashed line. 

FIG. 3. Transverse separation constant (pyoM2 as a function of 
frequency (pkaM

% for Cerenkov mode (/=0) well below the 
threshold velocity. The dot-dashed line indicates the curve for the 
homogeneous case. No radiation is emitted. 

expect that the angle at which the dominant Cerenkov 
radiation will be emitted is the angle 0oo: 

/ 7o* \ 
0oo=arctan( ) , 

== arctan (v) (54) 

since this is the angle at which the Cerenkov radiation 
is emitted in a homogeneous medium. 

VI. AN EXAMPLE: THE DIELECTRIC PROFILE 
£ (z) = £«[1 — 5 cos(2nz/p)] 

In order to obtain quantitative results from the formal 
solution, it is necessary to assume a specific dielectric 
profile. Let us consider the following dielectric variation: 

*(2) = €«[1 ~ 5 cos(2wz/p)2, (55) 

where cfl is the average value of the permittivity and 8 
gives the relative amplitude of the variation. Further­
more, 0 < a < l . Substituting Eq. (55) into Eq. (18) 
gives the coefficients 0O and 6n in Eq. (19). They are 

0O=(^ (coWa-Y*"2)-^ l V 

\J \(l~82)1'2 J 

i= 1 - Jw7«oea-t 
2 W 

(1-52)1/2 

4 C i s - 2 d 

e«=-

in which 

G 2 - l 

(3w+l)C1"+2-(3»-l)C1" 

d 2 - l 

C i - ( l /« ) - ( l /* ) ( l -«*)"» . 

(56) 

(57) 

(»>2), (58) 

(59) 

For a given 5, depending upon the values of 60 and 0i, 
Eq. (19) would yield solutions that are stable or un-
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stable.11 In order to satisfy Sommerfeld's radiation con­
dition only the stable solutions are allowed. For a given 
value of 5, a diagram giving the stable and unstable 
regions can be constructed. Two such stability dia­
grams for 5=0.25 and 5=0.40 are given in Figs. 1 and 2. 
These diagrams provide information concerning the 
threshold velocity for each mode (i.e., for each /) and 
the angles of emission for various radiating components. 

To illustrate how one may obtain this information 
from this diagram, let us consider the following pro­
cedures. Combining Eqs. (56) and (57) and eliminating 
0>Wap2/T*(ka2fM gives 

5 /pyi«\ 25 

2 

r 5 / l \ 4Ci 3-2Cn 
+L2\(1-*)1'1~ / d 2 - l J' 

(60) 

where Ci is given by Eq. (59). For a fixed value of 5 
expression (60) gives a family of straight lines corre­
sponding to various values of (pyf/w)2. The line for 
which (pyia/w)2=0 is drawn in Fig. 2. Above this line, 
(py?/ir)2 is positive corresponding to radiation, while 
below this line, it is negative corresponding to radially 
evanescent fields and therefore no radiation is emitted. 
For a given velocity of the charged particle (v/va), for 
a given frequency (kap/ir) and for a given mode (/), 
one may compute 0 from Eq. (29). — 0i can also be 
computed knowing (kap/ir). The intersection between 
the lines 0=constant and — 0X=constant provides the 
point from which one may obtain the value for 0O. 

FIG. 4. Transverse separation constant (PyoM2 as a function of 
frequency (pka/ir)2 for Cerenkov mode (/=0) above the threshold 
velocity. Dot-dashed line indicates the curve for the homogeneous 
case. Radiation is emitted at all frequencies. 

11 Stable solutions refer to solutions which possess real values 
of p while the unstable solutions refer to solutions which possess 
complex values of 0. [See Eq. (20).] 

I—i 
8*0.4 

- 20 

FIG. 5. Transverse separation constant (py^i/ir)2 as a function of 
frequency (pka/ir)1 for l— — \ transition radiation mode above 
the Cerenkov threshold velocity. Radiation is emitted when 
(pkaM2 is greater than 1.9. 

Hence the value of (pyia/ir)2 can be computed from 
Eq. (56). The sign of (pyi*/*)* provides the information 
whether this particular mode radiates or not. As a 
specific example, let 5=0.4, pka/w=2.0, v/va=* 1.414, 
1=0] we then have 0= 1.414, and — 0i=O.4. The inter­
section of 0= 1.414 and — 0i=O.4 yields the value for 
0o which is 2.05. Using Eq. (56) we have (pyia/w)2= 2.87, 
which is positive, hence radiation does occur for this 
particular case. Knowing (pyia/ir)2, it is a simple matter 
to compute the emission angles from Eq. (53). They are 
for «=0, 0oo=5O.2o; w=l, 0Oi=26.1°; n=2, 0O2=17.4°, 
etc. 

It is noted from Eq. (29) that no matter how small 
the velocity of the charged particle is, £ can always be 
adjusted using / to give modes which would radiate. 

(£) 
aJt A 

20 

i 

1 / 1 
| 10 

1 
2.0 

1 
3i0 

8*0.40 

v _ I 
\" 2 

4.0 

Vf m 

FIG. 6. Transverse separation constant (py-i/w)2 as a function of 
frequency (pka/ir)2 for / = —1 transition radiation mode below 
the Cerenkov threshold. Radiation is emitted only in the fre­
quency range 0.35 < (pka/v)*<±S). 
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dLdw 

* — * ( • - » 

*£") 
if 

FIG. 7. Spectral density of Cerenkov radiation (/=0 mode) 
above the Cerenkov threshold velocity. 

This is because I may take on positive as well as negative 
integer values. This conclusion is in contrast with the 
case of Cerenkov radiation in a homogeneous medium 
in which radiation will take place only if a certain 
threshold velocity is reached. This observation may be 
understood by the fact that transition radiation occurs 
for any velocities. 

Figures 3 through 6 display the functional variation 
of (pyitt/w)2 with respect to (pkjwf for various values 
of / and the ratio v/va when 6=0.40. The fact that 
(pyia/w)2 can be positive even if v<va is apparent in 
Fig. 6. 

VH. APPROXIMATE SOLUTIONS FOR SMALL 5 

If the amplitude of the dielectric variation given by 
Eq. (55) is very small, i.e., if 5<3C1, it is possible to derive 
approximate analytic expressions for the scalar wave 

function ^ as well as the energy radiated per unit path 
length and per unit frequency interval cPW/dLdu. 
Retaining terms correct to the first order in 5, we 
have 

*o«(*A)VM«.-7iai), 
» I « « [ 1 - ( ^ / 2 « V M « J , 

0n~O (»>2), 

ft^C8)/*o08)«-«i/Po- (0-2) 2 ] , 

Si08)/4o08)«-«i/Po- OM-2)2], 

bn(P)/bo(P)~0 ( | n | > 2 ) , 

C,-7r|6o(a+2/)|2, 

p=VOo. (61) 

The Hill's function then reduces to 

he,™ (vz/p) « ^ / • e « « / p [ i . 1 (fi)e-2ri*l*>+bo (0) 
+bi(P)*'*"*l- (62) 

Substituting Eq. (62) into Eq. (32) and carrying out 
the integration gives 

iq f bi(a— 2) 

87r€0l[>o(<*-2)]2 4&o(a-2)J 

'-—14-1 • 
M«+2) 8 

* i « 
n 

8*ta\lbo(a+4)J 460(a+2) 

(63) 

Inserting Eq. (63) into Eq. (30), one obtains the ap­
proximate expression for the scalar wave function: 

8ar V IL \» f / J J 4L (w#/ t t r ) - l J 

K <A1/2 i r V i-£(/>*«A)2\ «/ i - M ^ « A ) 2 \ i 
W ) P 1 - ^ M 1 + — ) - ^ M l ) 

W JL 4 \ fap/vw)-l/ 4\ (^/w)+l/J 
rr /« 2TT\2-J1/2 } *r i~K^aA)2i\ 
IL * \w W j PJ 4L (<ap/vr)+l J/' 

+^o(1)l 
4 \ 

+JIo(1)] 

It is noted that as 8 approaches zero, \p reduces to the 
expression for the homogeneous case. As p approaches 
zero, yp also reduces to the same expression for the 
homogeneous case. This is because as p approaches zero, 
even if 8 is finite, the medium becomes macroscopically 
homogeneous with an average permittivity €a. Equa­
tion (64) also shows that to the first order in 8, the 
threshold velocity for the Cerenkov component (/=0) 
is l/(jio€a)

112 which is identical to the threshold velocity 
for the homogeneous case. The threshold conditions for 
the /==bl components of the field are, respectively, 

*a2-[(«A)±(27r/#)]2=0. (65) 

It is also possible from the threshold conditions, Eq. 
(65), to obtain the frequency ranges for the /=d=l 
component radiation. For t>>l/Gu€a)

1/2, we have 

u>2irv/plv(jxeay<2+l] (66) 

for the /= — 1 component and 

co> 27rV^(M€a)1/2~ 1] (67) 

for the l= + l component. When v<l/(jjL€a)
112, we have 

27r»/^0iC«)l/2+l]<w<27rt;/#Cl~^(M€a)1/2] (68) 

for the /= — 1 component. Although radiation occurs 
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below the usual Cerenkov threshold velocity, the 
spectral density of the radiation for the Z= —1 compo­
nent is quite small. (It is of the order of S2.) This fact 
will be shown below. 

An approximate expression for the spectral density 
can be obtained with the help of Eqs. (61) through (64). 
Substituting these equations into expression (45) and 
carrying out the algebraic manipulation gives 

dW <f 

dLdo) 4ir€aco 

X (7-i-)* 
If- 28 f (a- l ) + * ( a - D2](a-3) s 

+ (7oa)i 

+ (7iH)! 

fl(a-1)2+ (a-3)*]+16 ( a - l)2(a-3)2 

[ l6 ( a
2 -1) ( 1+— \+5f\ (ft-1) 

fib- iy+ (fl+m+Mtf- if 

Zf+lSfia+V+Pia+mia+S)1 

/*[(«+ lf+ (a+3n+ 16(o+ l)>(«+3)2 I 

in which 7_ia, 70", and 71" must be real, 

(69) 

and 
'-AT) 

a)p/vw=a. 

-8 

If any of these yia in Eq. (69) is imaginary, the term 
containing this yf should be set to zero. 

The behavior of the 1=0 (Cerenkov) term in Eq. (69) 
is very similar to that of the spectral density of Cerenkov 
radiation in a homogeneous medium, i.e., 

ffW 

dLdo> 

?W 

l «0 term 4ir \ tf) 
(70) 

with va= 1/(M€O)1/2, except in the vicinity of <ap/v7r= 1, 
When up/vr= 1, this 1=0 term is zero. A sketch of the 
spectral density for the /=0 term as a function of fre­
quency is given in Fig. 7. 

The l= + l (transition) term in Eq. (69) is of the 
order of 52 over the whole frequency spectrum. The 
/= —1 (transition) term is also of the order of fi2 over 
the whole frequency spectrum except around cop/vir= 1. 
At this point, the Z= — 1 term is of the order of unity 
and has the value 

dfW 

dLdco l «• — 1 term at ap/v*» i ~ 4tr \ t*2/ 

In other words, a peak occurs for the J= — 1 term at a 
point where a null occurs for the 1=0 term. A sketch of 
the spectral density for the /= — 1 term as a function of 
frequency is also given in Fig. 7. 

It can be shown from the approximate expression 
for the scalar wave function, Eq. (64), that at frequen­
cies other than w£/wr=l, the phase for the J=0 

q2MV7T 

d2w 
dLdw 

i-m 

FIG. 8. Spectral density of / = — 1 transition radiation mode 
above the Cerenkov threshold velocity. 

Cerenkov radiation is stationary at the angle 

0|i«o«arctan tr1) (71) 

which is simply the Cerenkov radiation angle in a homo­
geneous medium. On the other hand, around the fre­
quency o)p/vw=l the phase for the J= —1 transition 
radiation is stationary at the angle 

0|z_i«arctan| [-(HI (72) 

which is (T— 0C), where 0C is the Cerenkov angle. Thus 
the peak J= — 1 transition radiation is emitted in the 
backward direction while the 1=0 Cerenkov radiation 
is emitted in the forward direction. 

One way of interpreting the above result qualitatively 
may be given in terms of the Bragg reflection condition. 
Above the Cerenkov threshold velocity, the charged 
particle emits radiation at an angle 0C with respect to 
the direction of travel of the particle. The radiated wave 
then undergoes multiple reflections due to the striations 
of the medium. Bragg reflections occur when the fol­
lowing condition is satisfied: 

n\=2pcos$4i, 

where n are positive integers, 

and 

(73) 

(74) 

(75) 

(76) 

When # = 1 , we have the condition described earlier. 
Therefore according to this argument one would expect 
a null in the Cerenkov radiation spectrum and a cor­
responding peak in the transition radiation spectrum 
when wp/vw=l. The Bragg-reflection analysis indicates 
that one might expect other peaks and nulls in the 
various spectra when <ap/vw takes on integer value other 
than unity. 

\=2wva/o) 

co$de=va/v. 

Hence, the Bragg condition becomes 

o)P/vr=n. 


