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The character, stable or unstable, of a medium can be deduced from the behavior of an ideal model of a 
semi-infinite medium which is subjected to an excitation only at the boundary. A new analytic method is 
used to solve this particular problem. The results obtained show a connection between the character of the 
medium and certain properties of the dispersion equation, and agree with those derived from other methods 
by Sturrock, Jackson, Bers, and Briggs. 

I. INTRODUCTION 

A. The Physical Aspect of the Problem 

A MEDIUM subjected to an excitation at its 
boundary or at any other place, or to an initial 

perturbation, can behave in different ways: If, in an 
infinite medium, an initial perturbation dies out, the 
medium is said to be stable. If it grows while propagating 
the medium is said to exhibit a convective instability. If 
it grows in time at every point, the medium is said to 
exhibit a nonconvective instability. 

In a semi-infinite medium, an excitation at the bound­
ary may generate either a nongrowing wave, or a wave 
growing in space, or may start a nonconvective insta­
bility which invades the whole medium and prevents the 
establishment of a permanent regime. This behavior is 
strongly connected with the behavior of an initial per­
turbation, and reflects the intrinsic character—stable or 
unstable—of the medium. 

B. The Formulation of the Problem 

Let us consider a medium subjected to a perturbation 
of a known type; we wish to predict whether there will 
be an instability, whether it will be convective or non­
convective, and also the character of the waves of the 
eventual permanent regime, i.e., whether they will be 
growing or decaying in space. 

The main feature is the dispersion relation of the 
medium, as has been clearly understood by Sturrock. 
Nevertheless, the direct use of the dispersion relation 
leads to a well-known difficulty in the simplest case of a 
loss free medium: When solved for real values of w 
(the angular frequency), it yields complex-conjugate 
values of the wave numbers k and k*, which represent 
growing as well as decaying waves. In the absence of 
any criterion, a similar difficulty would appear when k 
is taken to be real. 

There are two ways of approach: One can, as did 
Sturrock,1 examine the kinematic properties of a wave 
packet satisfying the dispersion relation. One can also 
start with the differential equations of the problem and 
try to establish a connection between the form of the 
solution and certain properties of the dispersion relation. 

The classical Fourier-Laplace transform used by Jack­
son2 is an illustration of such an approach. 

In spite of the various mathematical precisions which 
have been added to it, in particular by Polovin,3 Stur-
rock's elegant theory remains rather intuitive and it 
seems very difficult to recast it into a rigorous and quite 
general form. Moreover, this theory is difficult to extend 
to the case where the coefficients of the dispersion rela­
tion are complex quantities and where it is not possible 
to plot the dispersion curve u(k) in real coordinates. 

The Fourier-Laplace transform is more rigorous. If 
the Fourier inversion is made first, as Jackson did, it is 
possible to predict the existence of an instability, but it 
is difficult to obtain information on its convective or 
nonconvective nature. If one makes Laplace inversion 
first, as Bers and Briggs did recently,4 and then deforms 
the contours of integration properly, one may obtain 
complete information on the behavior of a system sub­
mitted to a well-localized external source. But this pro­
cedure makes use of the causality principle, whereas in 
the following method the causality principle is auto­
matically fulfilled thanks to a purely analytic condition, 
namely, a holomorphy condition, which eliminates 
erroneous solutions. 

The basic physical idea of this paper is to deduce the 
character of the medium from its behavior when it is 
semi-infinite and when the only excitation is an oscilla­
tion at its boundary. We shall first investigate the be­
havior of this ideal model, either for x>0 or for x<0, 
using a purely analytic method. Then, using physical 
considerations, we shall deduce the character of the infi­
nite medium when submitted to any kind of excitation. 

H. BEHAVIOR OF A SEMI-INFINITE MEDIUM 

A. Limitations of This Study 

The medium considered in this section is one-dimen­
sional, semi-infinite, and the only disturbance is an exci­
tation at its boundary. Thus, the conclusions of this 
section may not be used directly for an actual plasma, 
which is subjected to other excitations, such as initial dis-

1 P. A. Sturrock, Phys. Rev. 112, 1488 (1958). 

* J. D. Jackson, J. Nucl. Energy: Pt. C 1, 171 (1960). 
8 R. V. Polovin, Zh. Tekhn. Fiz. 31,1220 (1961) [English transl.: 

Soviet Phys.—Tech. Phys. 6, 889 (1962)]. 
4 A. Bers and R. T. Briggs, MIT Research Laboratory of Elec­

tronics Report No, 

776 
1963, p. 122 (unpublished). 
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turbance, thermal noise, etc., and is generally bounded 
in space, so that a convective instability is generally 
reflected and leads to a nonconvective one. 

B. The Merits of the Double Laplace Transform 

As Sturrock has pointed out, the growth or decay of 
a wave in space is essentially dependent on the stability 
or instability of the transient regime preceding it. As 
shown by the calculation and as is almost evident 
intuitively, a growing wave follows a convective growing 
transient, whereas a decaying wave is preceded by a 
decaying transient regime, while a nonconvective in­
stability does not constitute a transient regime and is 
not followed by a permanent regime. 

We have used the double Laplace transform in order 
to obtain simultaneously the permanent regime and the 
transient, so as to avoid the difficulties involved in the 
study of an isolated wave. 

As we shall see, a double difficulty is usually en­
countered when a double Laplace transform is per­
formed: First, there appear superfluous initial and 
boundary values, which cannot be distinguished a priori 
from the necessary ones; then the final transform ob­
tained—which should be holomorphic—does not neces­
sarily have this property. The solution of this double 
difficulty is the main feature of our method: By imposing 
the holomorphy condition, we eliminate certain classes 
of singularities and this automatically removes the indi­
cated ambiguities and eliminates the superfluous initial 
and boundary values. 

Schematically our calculation is as follows: The linear 
system of equations of the multi-fluid type is first trans­
formed in x and / (space and time coordinates); one then 
obtains by reduction the transform of one of the func­
tions F(p,q) = A(p,q)/H(p,q); then the behavior of the 
singularities of the function q(p) and the position of the 
cuts in the p plane yield the required information on 
the form of the solution F(x,t) obtained by a double 
inversion. 

C. Outline of the Method 

(1) The following basic hypotheses are made: The 
medium is semi-infinite and one-dimensional. The func­
tions defining the perturbation, such as the electric field 
E(x,t), are continuous, at least piecewise; they are of 
exponential order in x and t, for an observer subjected 
to a uniform translation; this means that there are two 
fixed numbers pQ and q0 such that 

I E(x,t) | <M exp(qQx+pQt). 

(2) The transforms are defined by the following 
relation: 

E(P>Q)== / / E(xtt) exp(-qx-pt) dx dt, 
Jo Jo 

where E(xj) is defined for x>0 and />0. The integral 

defining E(p,q) converges for the values p=po and q=q0, 
as defined above. It follows that it is a fortiori convergent 
in the associated half-planes: 

Re(p)>pQ, Re(q)>q0. 

It can also be shown that E(p,q) is analytic in this region. 
If E(p,q) were not holomorphic in the associated half-

planes Re(p)>p0, Re(q)>q0, this function would not be 
a Laplace transform of a function E(x,t) piecewise con­
tinuous and of exponential order. This statement will 
play an essential role in what follows. 

(3) By applying this transformation to the system of 
partial differential equations, one gets the transformed 
system in p and q, in which appear explicitly the initial 
conditions at 2=0 and the boundary conditions at #=0. 
Among these there are, in general, superfluous values, 
introduced by the transformations; we will have to 
eliminate them. 

(4) One can deduce from this system one of the trans­
forms, e.g., E(p,q), which is obtained in the following 
form: 

E(p,q) = A(p,q)/H(p,q). 

The function H(p,q), when set equal to zero, gives the 
dispersion relation of the medium, expressed with the 
variables p=—ioo and q=ik. The function A(p,q) con­
tains all the initial and boundary values including the 
superfluous ones. 

A and H are algebraic if the "multifluid" model is 
adopted. In order that E(pyq) should be a Laplace 
transform, there should exist two associated half-planes, 
such that Re(p)>p0 and Re(g)>g0, in which the func­
tion E(p,q) has no singularities. 

(5) In fact, the zeros q(p) of H(p,q) may behave 
differently in the q plane when one increases Re(̂ >). One 
or more of them may be such that when Re(^) is in­
creasing, the real part of q, Re(g), increases indefinitely. 
Such poles of Ey of course, do not remain on the left of 
the two limiting straight lines Re(p) = p0

 a n d Re(<?) = <Zo 
in the associated p and q complex planes; thus they 
would violate the holomorphy condition imposed on 
E(p,q) and we have to eliminate them. 

To do so we must set the additional condition that 
these particular roots of the function H(p,q) should also 
be roots of the function A(p,q). This condition corre­
sponds to a certain number of equations (of the func­
tional type in general) which permit the elimination of 
the superfluous initial or boundary values. 

Finally, A (p,q) becomes, after division by the common 
factors, a new function B(p,q) and we are then left only 
with singularities such that 

Re(p)>p0 entails Re(q)<q0. 

In general, the required discrimination between the 
various roots of H(p,q) leads to the provision of "cuts" 
in one of the associated planes, e.g., in the p plane, in 
order to make the various determinations q(p) uniform. 
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(6) Now we have only to make the double Mellin-
Fourier inversion, by a successive integration along the 
Bromwich contours of the q and p planes, such that all 
the singularities and cuts are on the left-hand side. 

The following example, particularly simple, illustrates 
the method. 

D. Illustrative Example 

The problem of propagation in a Maxwellian plasma: 
macroscopic approximation. 

We shall suppose all initial values at /=0 to be zero. 
We shall consider the following boundary values, at 
*=0: 

the fluctuation of the electron density w(0,/), which 
we shall take to be of the form exp(—icot) for />0; and 

the boundary value of the electric field E(Q,t), without 
knowing a priori if this latter value is superfluous. We 
assume fj(0,/) = 0 (specular reflection). All quantities are 
defined for x > and t > 0. 

(a) The system of macroscopic equations. The system 
of macroscopic equations, for electron oscillations, is as 
follows: 

dn/dt+n0(dv/dx) = 0, 

dE/dx+4iren=0, 

e a2 dn dv 

-E+ +-=0, 
m no dx dt 

where n0 is the average electron density, n is the fluctu­
ating part of it and a is the thermal velocity, v being the 
particle's velocity. A double Laplace transform of this 
system yields 

qE(p,q)-d(p)+4Ten(p,q) = 0, 

(e/m)E(p,q)+(a*/no)Zqn(p,q) - c(p)2+pv(pfq) = 0. 

In this new system we have 

c(t)= J n(0,t)exp(-pt)dt, 
Jo 

d(p) = / £(0,0 exp(-pt) dt. 
Jo 

and 

We can thus obtain the transform of the fluctuating 
part of the electron density in the following form: 

n(p,q) = 
(e/m)nod(p)—a2qc(p) 

ooi2-{-p2—a2q2 

where o)i2=4^wnoe2/m. We recognize at once in the 
denominator (when set equal to zero) the dispersion 
relation of the plasma expressed with the variables 
p=—io) and q=ik. 

(b) Elimination of the superfluous boundary or initial 
values. Our transform n(p,q) should be holomorphic in 
two associated half-planes, defined by Re(p)>p0 and 
Re(q)>q0, po and q0 being fixed. The roots of the de­
nominator are 

q=±ar1(p2+a>i2)1l2. 

It is clear that one of these two roots cannot be con­
sidered as a singularity of the function n(p,q) for it 
tends to p/a and its real part increases indefinitely, when 
that of p increases. This shows that one of our boundary 
values is superfluous. We then choose to eliminate d(p). 

Let us designate by q+= +arl(p2+03\2)112 that branch 
of the function q(p) which is real and positive when p is 
real and positive. 

We shall render the function q(p) uniform (i.e., such 
that to every point in the p plane there corresponds a 
single point in the q plane), by making a cut in the 
p plane, such as shown in Fig. 1, joining the critical 
points zbicoi, and located in R"~ (i.e., to the left of the 
imaginary axis of the p plane). Thus, whatever the value 
of p in R+ of the p plane, the corresponding branch q+ is 
in R+ of the q plane and the corresponding branch q~ is 
in R~ of the q plane (see Fig. 2). 

Now the root q+ of the denominator should also be a 
root of the numerator of n(p,q) when p is in R+. This 
means that we must have 

(e/m)nod(p)-a2q+(p)c(p) = 0. 

From this we find 

d(p)^(a2m/noe)(l/a)(p2+^2yi2c(p). 

This enables us to write the expression for n(pyq) as 
follows: 

n{p,q) = c(p)/tq+arKp2+^2yt2-}, 

where the square root has the sign specified above. Thus 
the function n(p,q) is uniform in the whole q plane and 
in the p plane comprising the indicated cut. 

p pkna 

FIG. 1. Branch cut between critical 
points dbitai, in the p plane. 

<f(P» 

<\ plana 

FIG. 2. The q plane with 
branches oiq(p). 
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If p is taken in JR+, the function is holomorphic when 
q is in i?+ and its only singularity is <f in Br. 

Now if q is taken in J?+, the singularities of n(p,q) are 
the poles of c(p) and also the value of p such that 
(p2+a>i2)ll2= —aq. The latter singularity is in R~, if it 
exists, because of the sign we have chosen for the 
square root. 

Thus n(pfq) is holomorphic in p and q in the associated 
half-planes Re(p)>p0 and Re(q)>q0. 

In the special case when the poles of c(p) are imagi­
nary, the function n(p,q) is holomorphic in 

Re(/>)>0, Re(?)>0. 

(c) The inversion. We shall obtain n(x,t) by a double 
Mellin-Fourier inversion in the p and q planes, i.e., by a 
successive integration of n(p,q) exp(qx-\-pt) along the 
Bromwich contours of the p and q planes (Figs. 3 and 4). 

n{x,t)-

where 

— / dpdq n(p,q) exp(qx+pt), 
in)2 J B%J Bi (2iw) 

»(P,q) = c(fi)/lq+<r*(p+<*i*m. 

One should note that n(pfq) is well denned on the 
Bromwich contours. Let us first integrate in the q plane. 
If p is given in R+, the only singularity of n(p,q) is the 
pole: q=—arl{p2-\-o>i2)112 which is in Br. Closing the 
Bromwich contour by the infinite semicircle in Br and 
applying Cauchy's theorem, one obtains 

— [ »(p>> 
lVK J Bi 

q) expqxdq=c(p) exp[— (x/a)(p2+(ai2)l/r]. 

We shall now integrate in the p plane, assuming that 
n(0,t) is of the form exp(—ico^), i.e., that c(p) is of the 
form (p+iwo)-1. We thus get 

*G 
1 /•*«-» expZ-(x/a)(p2+a>i2yi2l 

Xit)=—~ I dpexppt 
2flT J a—too p-\~io)o 

FIG. 3. The Bromwich contour 
in the q plane. 

I 

^ plane 

FIG. 5. Closing the integration con­
tour in the p plane for t <x/a. 

•K 

p plana 

The integration technique will depend on the values of 
t considered as compared with x/a. Indeed, when p 
tends to infinity, the integrand tends to 

Therefore, when t<x/a} the Bromwich contour should 
be closed by an infinite semicircle to the right, i.e., in 
JR+ (see Fig. 5); whereas for t>x/a, it should be closed 
by an infinite semicircle to the left (the integral must 
vanish on the semicircles) and in this case it should be 
joined to the contour of the cut, as shown in Fig. 6. 
For t>x/a} one has, by applying Cauchy's theorem: 

n(x,t) = exp[(-icooO- (^A)(coi2-co0
2)1/2]~/(x,0, 

where J(x,t) is the contribution due to the integration 
along the contour of the cut. 

j p plane 

FIG. 6. Closing the integration con­
tour in the p plane for t>x/a. 

(d) J(x,t) a transient. We shall now show that J(x,t) 
represents a transient, i.e., that J(xft) —> 0 when t —>oo. 
One can see on Fig. 7 that 

2iwJ(x ,0= [ dp 

Xexppt-
expC-tVaX^+cu!2)1/*] 

p+iuo •I +J + l 
I&1 

The integrals along the paths 71 and 72 are equal to 

FIG. 4. The Bromwich contour 
in the p plane. 

p plane 

IB* 

FIG. 7. Contributions to the 
integration along the cut. 

T<fc 
>*« 
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zero according to Jordan's lemma. Indeed 

p—ioji 
( 

p-\-io)o 

i / x \ 
• expf —(p2+a>i2)112) exp pt -

when p —> iooi. Let us now associate Ti and T2, noting that the square root has opposite signs on the two sides of 
the cut; we get 

r expl(x/a)(p'+^y^-expl-(x/a)(p'+m2)112'] 
2iirJ(x,t)= I dpexppt 

p-{-ic*)Q 

Let us introduce a function 

V(p,x) = (p+i^orHexpKx/aXp'+^yi^ 
- e x p [ ~ ( ^ ) ( # 2 + ^ i 2 ) 1 / 2 ] } . 

This function is continuous on Ti, bounded and is zero 
at the limits p=zkicoi. By an integration by parts, we 
obtain for 2iwJ(x,t) the following expression: 

[ exp pn+iul f i 
U(p,x) - \ dp 

t -L»«i J r 

exp pt dU 

t dp ' 

where the first term on the right-hand side is nil. The 
integral along T\ is absolutely convergent, for dU/dp 
behaves like (^±tcoi)~1/2 when p tends to =Fio>i, Thus 

r dU 
2iwtJ(x,t) = — / dp exp pt—(p,x). 

Jn dp 

But on Ti, we have | exppt | < 1, for the cut is located in 
R-. We thus can write, using the rule of the moduli 
majoration: 

r \dU\ 
2iwt\J(x,t)\< / — 

J n I dp I 
ds 

where s is the line abscissa of p. This latter integral is 
independent of t. We thus can conclude that: 

J(x,t) —> 0, when t —-> <*>. 

(e) Conclusion, We see that the wave front of the 
transient moves with the velocity a (x=at) equal to the 
thermal velocity of the plasma. Beyond this front 
(x>at)> the medium is not disturbed. Behind it, the 
transient is followed by an evanescent wave (see Fig. 8) 
when a>o<wi. 

Ampl. 

MA 
(b) 

FIG. 8. (a) Wave front of transient followed by evanescent 
wave, at a given instant of time, (b) The wave as a function of 
time at a given point in space. 

A similar study can be done for more complex prob­
lems, where several components (thermal electrons, 
beams, ions, etc) are present. But in that case the degree 
of the dispersion equation is higher than 2 and the ex­
pression of the roots is cumbersome or even impossible. 
It thus appears interesting to predict the form of the 
solution without actually evaluating it but by a mere 
inspection of the dispersion equation. This is the object 
of the following sections where a general study of the 
problem is made. 

We shall follow a method similar to the one used in 
the preceding case, which is rather simple, and start 
with some preliminary remarks. 

E. Preliminary Remarks 

The case we have just analyzed suggests the following 
remarks: 

(a) There exists a continuous solution in x for 
0<x<at; in other words, there exists a permanent 
regime. This property is due to the fact that we were 
able to provide a cut in R~, which has led us to a con-
vective transient, disappearing at every point after a 
finite time. If one of the critical points were located in 
R+, the functions J(x,t) would have been an increasing 
function of /, thus giving rise to a nonconvective in­
stability, preventing the establishment of a permanent 
regime, and the solution would then have been discon­
tinuous in space at x=0. 

(b) We also can see why this permanent regime corre­
sponds to a solution decreasing in time, i.e., why only 
the negative sign of the square root appears in the solu­
tion: This is because, when p= —icoo, only the root q~ 
located in R~ can be retained as a singularity of the 
transform n(p,q). 

This root satisfies the following condition: There exist 
two numbers po and qo such that Re(^)>^0 entails 
Re(q)<qQ. If the root satisfying this condition were 
located in R+ for p— — ico0} we would have found a 
growing solution. 

By considering step by step the different stages of this 
method and examining systematically the various 
eventualities, we shall find a criterion enabling us to 
predict the behavior of the medium by a mere inspection 
of the dispersion relation. 
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F. Semi-Infinite Medium in x% 0 Form of the Solution 

(a) The system of differential equations to be solved 
is obtained as follows: 

The medium is subdivided into a certain number of 
"components" 1, 2, ---n, adequately chosen (e.g., an 
isotropic plasma + a beam, etc.—see Fig. 9). 

One then writes down the linearized macroscopic 
equations for each of the components. These equations 
are coupled by the Poisson equation. We thus obtain 
n equations of continuity, n equations of motion, and 
the Poisson equation. 

(b) The double Laplace transform then gives the 
transform F(p,q) of the required function F(x7t) in the 
form 

F(P,q) = A(p,q)/H(p,q). 

A and 27 are algebraic in p and q. A usually contains the 
superfluous initial or boundary values, introduced by 
the transforms. 

The singularities of F(p,q) should be such that there 
exist two real fixed numbers po and <?o ensuring the 
holomorphy of F in the associated half-planes: 

Re(p)>pQ;Re(q)>qQ. (1) 

These singularities are of two kinds: some of them are 
fixed; they are due to factors of the form [g(^)]"1 or 
[h{q)~]~l. The others are "mobile"; they are due to 
factors of the form [£(£,#) ]"*. The boundary condition 
exp—io0/, whose transform appearing in A is r(p) 
— (̂ +iwo)*~1, gives a fixed singularity p= —io)Q. One can 
show that A (p,q) has no other singularities. On the other 
hand, the zeros of H(p,q) are mobile singularities q(p). 
The latter can violate the holomorphy condition; they 
must be such that there should be two real fixed 
numbers po and <?o satisfying the requirement 

Re(p)>pQ entails Re(q)<q0. (2) 

(c) Thus we have to find those roots q(p) of H(p,q) = 0, 
which do not satisfy the holomorphy condition of F. 
These roots are those whose real part increases indefi­
nitely when the real part of p is increasing (see 
Figs. 10 and 11). 

If all the roots q(p) satisfy the condition (2), the 
function F is of course holomorphic in the associated 
half-planes and (1) is satisfied. Moreover, F(p,q) is then 
uniform in the whole p plane, since the rotation of p 
around a critical point of the function q(p)} results in a 
simple permutation of the zeros qk(p) of the polynomial 
H(P>q)=lq-qi(P)Tq-q*(P)y''lq-qn(p)J Now, if 
certain roots q(p) of H do not satisfy the condition (2), 

FIG. 9. Velocity distribution 
for two plasma components. 

FIG. 10. A path with 
indefinitely increasing real 
part in the p plane. 

^ plana 

FIG. ll.# Roots of different 
behavior in the q plane. 

one must eliminate them. Such is the case of the root 
<72

+ of Fig. 11, whose real part increases indefinitely when 
that of p increases. This elimination of certain singu­
larities qa(p) entails the fact that F(p,q) is no longer a 
symmetric combination of the roots q(p) of the equation 
H(p,q) = 0, since certain factors of the form [_q—qa(p)~] 
disappear in the product H(p}q) = (q—qi)(q—q2)' • •. 

In this case, we must prevent the roots which have 
been retained, qn(p), from interchanging with the re­
jected ones qa{p)- To do so we will have to provide 
appropriate cuts in the p plane (see Figs. 12 and 13), 
joining the critical points 0 around which certain re­
tained roots qn(p) interchange with the rejected ones 
qa{p). The cuts should be drawn in Br wherever possible, 
i.e., where there are no critical points in B+. In Fig. 12 
we have a case in which the cuts can be provided in Br. 
Figure 13 corresponds to the case in which the cuts 
cannot be made in Br. 

p plane 

FIG. 12. p plane with cuts 
in the left half-plane. 

FIG. 13. p plane in the case 
when cuts cannot all be made in 
the left half-plane. 4P-
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- i<*> 

p plane 

FIG. 14. p plane with p starting 
from p——uaQ. 

(d) Next we shall express the fact that the roots qa(p) 
which do not satisfy the holomorphy condition, must 
nullify the numerator A(p,q). These roots will not be 
poles of F{pyq), and the superfluous initial or boundary 
values will be eliminated through the relations 

Alp,qa(p)>0. 

The function A (p}q) can then be written in the following 
form: 

MPS = A1&M«{P)~] I I [<7-<7«(iO], 
a 

so that the singularities qa(p) of F(p,q) will disappear: 

w N A(p>q) 

^ A1lp,q,qa(p)']IIatq-qa(p)'] _4'[>,?,?«] 

Untq-qn(p)lIl«Lq-qa(p)l I I [<?-<?«]' 

Let us note again that the new numerator A1 is in 
general a function of the roots qa and that it is uniform 
in the p plane, thanks to the cuts previously provided 
in that plane. 

Now, when p assumes a pure imaginary value, let us 
say —iwo (Fig. 14) we have several possible cases of 
localization of the poles qn(p) of the function F(p,q). 
Some of these may be purely imaginary (Fig. 15); some 
others may be in R~ or in R+. 

(e) Now we shall make the Mellin-Fourier inversion 
in the q plane, by an integration along the Bromwich 
contour in the q plane having to the left the poles q{p) 
of F (Fig. 16). Suppose the function F(q) is of the order 
of q~n (with n>0 when q—>oo in R+), we have 

Fit: 
2tTT J Br 

F(p,q) exp qx dq 

q plane. 

= 5Z Res. at the poles q(p), 

FIG. 15. q plane showing 
rejected root. 

N 

q plane 

FIG. 16. q plane with integration 
contour, and poles. 

or 

F(p # ) = — / 
2vK J Br 

Mp,q) 

B(p,g) 
exp qx dq 

AP,1n) 

(dH/dq)(p,qn) 
exp qnx, 

where A contains the factor g(p) = (p+io:o)~1, corre­
sponding to the harmonic boundary value, whose fre­
quency is co0, so that 

F(p,x) = g(p)Hn h{p,qn) expqnx} 

where b has no poles in p, outside the cuts, since 
dH/dp=0 only at the critical points qn(p), these being 
the retained roots. The only pole p of F(p,x) is that of 
the function g(p), i.e., p— —iaio. 

(f) The Mellin-Fourier inversion in the p plane is 
somewhat more involved owing to the cuts we had to 
provide in that plane. We join the Bromwich contour 
to the cuts, thus establishing a path of integration to the 
left, of which F(p,x) is holomorphic except at the pole 
p~ —io)0 (see Fig. 17). Thus 

F(x,t)=— / F(p,x) exp pt dp 
2m J Br 

2iir J B 

Kp,qn) 

I Br p+lUQ 

^ ( * , 0 = Z K exp(qnx—ia)Qt)~J(x,i), 

exp(qnx+pt) dp, 

where 
6»=J[— icoQ, qn(—iuo)2, 

-to)Qf qn are the poles of F(p,q) when p has the value p= • 
and J(x,t) is the contribution of the cuts. 

This is the solution of the problem in the general case. 
Now the behavior of this solution depends on the locali­
zation of the qn and of the behavior of J{x,t). In the 
following section we shall examine the various cases to 
be considered. 

4t: 
=K<; 

^ 

p plana 

<m> FIG. 17. Bromwich integration 
contour in p plane joined to cuts, 
and one pole. 

• H i 

I 
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G. The Various Cases to Be Considered 

We have seen that the solution of the problem has the 
following general form: 

The first term may represent a permanent regime, whose 
frequency is o<> and which may be of growing or de­
creasing amplitude in space depending on the localiza­
tion of the qn. The second term represents a non-
permanent state which can be either a transient if 
J(x,t)—>0 when / —»<*> or a nonconvective instability 
if/(#,/)-*o° when/—> oo. 

Thus we have to examine two points in order to 
ascertain the form of F(x,t): the localization of the qn(p) 
when p — ~iuo, and the behavior of J(x,t) when / —»oo. 

(a) Localization of the qn. Remembering that the qn 

are those roots q(p) of the equation H(p,q) = Q which 
satisfy the condition Re(p)>pQ—* Re(q)<q0, we can 
conclude that if among these roots there is at least one 
in R+ when p= —iw0, the permanent part of the solution 
is growing in space. It is not growing in space if none of 

TABLE I. Stability criteria for waves moving to the right: 
qn satisfying R(p)>po - • R(qn) <£o. 

cj plana p plane 

. t 'A ' * 

FIG. 18. Near the critical point Q, the contribution / ( / ) along 
the path is an increasing function of time. 

the qn are in R+, and is even decreasing in space if all 
the qn are in R~. 

(b) Behavior of J(x,t). Remembering that J(x,t) is the 
contribution due to the integration along the contour 
enclosing the cuts, we can see that its form depends on 
the localization of the critical points. The following 
situations may be encountered: 

There is no critical point of q(p) in R+; it can then be 
shown that J(x,t) —> 0 when t—»<*> for \exppt\<l on 
the cuts, so that the product tJ(x,t) has an upper limit 
independent of i\ in this case / represents a connective 
transient regime. 

At least one of the critical points is in R+. Because of 
the fact that at this point the roots qn which have been 
retained interchange with those rejected qa, the inte­
grand X)n [b(p,qn)/(p+iuo)'2 exp(qnx+pt) has different 
values on opposite sides of the cut, and since Re(p)>0 
it is an increasing function of / along a certain portion 
of the cut (cf. Fig. 18). The contribution of the cut is 
thus an increasing function of the time and J(x,t) 
represents in this case a nonconvective instability. 

(c) Conclusion. Table I presents in a compact form 
the various cases to be considered and the corresponding 

Localization of 
the critical 
points in the 
p plane 

None in 
R+ 

Some in 
R+ 

Localization of the retained roots 
qn when p=—io)o 

No qn in R+ Some qn in R+ 

The medium is Convective 
stable—no instability, 
growing waves growing waves 
nonconvective instability—no 

permanent regime 

behavior of a semi-infinite medium in x>0, when the 
only perturbation is an excitation at its boundary. 

H. Semi-Infinite Medium in JC$j0 

The above study cannot predict possible convective 
instabilities going to the left. For it is necessary to make 
a similar study for a semi-infinite medium in x<Q. The 
calculation is identical to that of Sec. IIG, but the 
holomorphy condition (2) is no longer the same. The 
retained roots qm(p) are such that 

Re(p)>pQ entails Re(q)>q0. (3) 

Noting that the waves growing to the left are associated 
with qm in R~, we obtain Table II, showing the behavior 
of a semi-infinite medium in x<0 when the only per­
turbation is an excitation at its boundary. 

m. BEHAVIOR OF AN INFINITE MEDIUM 

A. The Basic Physical Idea 

Section II describes the behavior of a semi-infinite 
medium in rather restrictive conditions. But as we will 
see, this behavior reflects the intrinsic character of the 
medium. Indeed, if the medium is stable, that is, if 
perturbations of any kind within it die out, then an 
oscillation at its boundary generates a wave which does 
not grow in space, neither for x>0 nor for x<0. If an 
oscillation at the boundary x=0 generates a wave grow­
ing in space x>0 (the medium being semi-infinite in 
#>0), then the medium exhibits a convective instability 
going to the right; in other words, any kind of perturba-
such as initial perturbation, thermal noise, etc., will 
generate a disturbance which grows while propagating 

TABLE II . Stability criteria for waves moving to the left: 
qm satisfying R(p)>p0 -» R(q) >q0. 

Localization of 
the critical 
points in the 
p plane 

None in 
R+ 

Some in 
R+ 

Localization of the retained roots 
qm when p=—io>o 

No qm in R~ Some qm in Rr 

The medium is Convective 
stable—no instability, 
growing waves growing waves 

Nonconvective instability— 
no permanent regime 
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TABLE III . General stability criteria. £2 = branch point of k(oj) where some kn interchange with some km; kn=roots satisfying 
Im(<*))>a -*Im(k)>b; km — roots satisfying Im(o>)>c -* Im(£) <d. (af b, c, d, being given fixed numbers). 

Localization of the roots kn and km when co is real 
No kn in Z~~ Some kn in Z~ Some km in Z + Some knm. Z~~ 
No &m in Z + No km in Z + No &n in Z~ Some &m in Z + 

calization 
of the 
critical 
points 

Q 

No Q in Z + 

Some 0 in Z + 

Stability Convective instability Convective instability Convective instabilities 
going to the right to the left going in both directions 

No growing Growing waves in x>0 Growing waves in x<0 Growing waves in x<0 
waves as well as in x>0 

Nonconvective instability—no permanent regime 

to the right. If an oscillation at the boundary x=0 
generates a wave growing in space x<0 (the medium 
being semi-infinite in #<0), then the medium exhibits 
a convective instability going to the left. If the medium 
exhibits a nonconvective instability, in other words if 
perturbations of any kind such as initial perturbation, 
thermal noise, etc., generate a disturbance which grows 
in time at every point, then an excitation at the bound­
ary will start this same instability which will invade 
progressively the whole medium, growing indefinitely 
at every place, and will prevent the establishment of a 
permanent regime, either for x>0 or for x<0. This 
connection between the behavior of a medium when it is 
excited at its boundary or by a source within it, has 
already been implicitly considered as evident by several 
authors and has been clearly stated by Sturrock.1 

Thus, the results we have obtained with our special 
semi-infinite model can readily be used to establish a 
general criterion of the intrinsic character of the medium, 
as shown in the next section. This criterion establishes a 
connection between the stable or unstable, convective 
or nonconvective nature of a perturbation and the 
damped or amplified form of the progagating waves, on 
the one hand, and certain topological properties of the 
dispersion equation on the other, involving the location 

o> 

FIG. 19. Dispersion curve 
ca(k)t case l l l . 

of the critical points and the behavior of the roots in 
the complex plane. 

B. General Form of the Criterion 

In order to formulate our criterion and to compare it 
with that suggested by Sturrock, it is convenient to 
return to the classical parameters u and k, setting 

p=—io) and q= ik. 

Thus, to the q in R+ (right-hand-side half-plane) will 
correspond the k in Z~ (lower half-plane); and to the 
critical points in the R+ part of the p plane correspond 
critical points in the Z+ part of the co plane. 

Let us consider a medium whose properties are de­
scribed by an algebraic dispersion relation Z>(a?,&) = 0. 
We designate by kn(u>) the roots satisfying the condition 

Im(«) > a entails Im(*n) > b, (20 

and by &m(a>) the roots satisfying the condition 

Im(«) > c entails lm(km) < d (30 

(where a, b, c, d, are given fixed numbers). Then, if the 
0 points are the critical points of the function £(«), 
where some kn interchanges with some km: 

(a) The medium is stable and cannot support growing 
waves in space, if at the same time none of the kn(co) is 
in Z~ (the lower half-plane) for real w, none of the km(a)) 
is in Z+ for real a?, and no critical points 12 are in Z+. 

(b) The medium is subject to convective instabilities 
and can support growing waves in space, if at the same 
time some of the kn(oo) are in Z~ for real a>, or some of 
the km(o)) are in Z+ for real co, and no critical points Q 
are in Z+. 

"7 

V 
FIG. 20. Dispersion curve 

o>(k)t case II . 
FIG. 21. Dispersion curve 

«(&), case I. 
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k plana 

FIG. 22. Root kn initially 
(for w=wo) in the lower half-
plane. 

I t CO plane 

(c) The medium is subject to nonconvective insta­
bilities and cannot support a permanent regime if 
certain critical points Q are in Z + . 

Table I I I presents the connection between the charac­
ter of the medium and the topological properties of the 
dispersion equation in a compact form. 

C. Simplified Form. Connection with 
Sturrock's Criterion 

When the dispersion equation has real coefficients, 
one can plot the dispersion curve co(k) in real coordinates 
and examine the influence of the different pairs of 
branches (Figs. 19, 20, 21). 

In case I (Fig. 21), it can be shown that the critical 
points of k(u>) are complex. One of them is in R+. One 
of the k(oo) does not satisfy the holomorphy condition 
(2)', for it is negative when w —><*> this k(oo) interchanges 
with the other kn(o)) which satisfies the condition (2'). 
We thus have here a nonconvective instability. 

In the two other cases the critical points are real. 
Consequently we must examine the behavior of the 
kn(u). We note that the conditions of IIIB(b), 

kn(o>o) in Z~~, Im(«)>a —» lm(kn)>b, (4) 

as well as 

&m(co0) in Z + , Im(«) > c —> Im(*OT) < d, (5) 

can be expressed quite simply; indeed, the condition (4) 
means that the root kn (Fig. 22) initially in Z~, when 
cc=o)o is real (Fig. 23), passes into Z + when w follows an 
arbitrary path in Z + , starting from o>0, avoiding the cut 
and leaving behind it the real axis. In the same way, 
condition (5) means that the root km initially in Z+ 
passes into Z~. Consequently, conditions (4) or (5) 
entail that all paths originating in o>0 (Fig. 23) and pro­
ceeding upward in Z + , must contain an odd number of 
points co (real k). This means that the path a> (real k) 

FIG. 24. Path^ in a> 
plane corresponding to 
real k. reaiu> 

plotted in the « plane, and passing through the critical 
points, must join these critical points by a continuous 
line (Fig. 24). 

This happens only in cases I and I I (Figs. 21 and 20). 
Thus case I I (Fig. 20) corresponds to a convective in­
stability, and a wave growing in space can exist. Case 
I I I , on the other hand, corresponds to a stable medium, 
which cannot support growing waves. 

This is exactly Sturrock's criterion,1 as proposed 
for the case when the dispersion relation has real 
coefficients. Nevertheless if one applies the latter 
criterion it seems necessary to ascertain that no complex 
critical points have escaped the analysis, which is not 
self-evident. 

D. Connection with Bers and Briggs' Criterion 

Recently, Bers and Briggs4 have given an original 
method which solves elegantly the problem of insta­
bilities and growing waves in an infinite medium sub­
mitted to a well-localized source of excitations. They use 
the Fourier-Laplace transform, and they apply the 
principle of causality. This procedure appears to be 
equivalent to the use of our holomorphy condition. 
Considering that their contour F is a boundary between 
the roots of the class kn and that of the class km, and 
that their "true singularities" (resulting from two 
&-plane poles that merge through the contour P) corre­
spond to our 12 points where some kn interchanges with 
some km, one sees that their procedure leads in fact to 
the same form of criterion as ours. 

F. Illustrative Examples: Electrostatic Waves 

(a) Maxwellian plasma. The dispersion relation is 

l -a>iY(« 2 -a 2£ 2 ) = 0 , 

where a is the thermal velocity and a>i is the plasma 
frequency. (See Figs. 25-27.) One can see that this 
medium is stable. The wave of frequency w0 is damped. 

FIG. 23. w plane with path 
starting from o?o and avoiding 
branch cut. 

co plane 

i FIG. 25. Dispersion curve. 
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(b) Crossed beams. The dispersion relation is (see 
Fig. 28) 

l-c*2
2/(a>~-kV)2-o>2

2/(o>+kV)2=Q, 

where co2 is the plasma frequency of the beams; or, in 
reduced form: 

l-(y-*)-*-(34-*)-*==0, 

where #=&F/a>2, ;y=co/co2. The critical point i/2 in Z+ 

(Fig. 29) causes the interchange of roots according to 
the scheme 

1*±4, 2*±3. 

The roots 1 and 3, which are of the class kn, interchange 
with the roots 4 and 2, which are of the class km. (See 
Fig. 30.) We conclude that there is a nonconvective 
instability. 

(c) Beam-plasma. The dispersion relation is (see 
Fig. 31) 

l-«iV(w2-a2A2)-w2V(w-*^)2=0 

where an and o>2 are, respectively, the plasma frequency 
of the plasma and that of the beam. The root &i(co0) in 
Z~~ is of the class kn (Fig. 33); thus we have a convective 
instability going to the right. When the medium is 
semi-infinite in x>0 and is excited at #=0 the wave of 
frequency «0 (Fig. 31) is amplified in space. 

OJ plana 

FIG. 26. Two real critical points 
=fc«i in co plane. 

(d) Crossed beams, including collisions. This time, the 
coefficients of the dispersion relation are complex, the 
dispersion relation cannot be plotted in real coordinates; 
it is thus difficult to apply Sturrock's criterion. The 
dispersion relation is 

l-2co2
2-

a>(a>+iv)+k2V2 

-=0. 
(a>2-k2V2)Z(a>+ip)2-'k2V2'] 

There are 6 critical points of k(a>): 

co=0, 

o>= —iv, 

u=-iipM2u22-&2)112, 

«= -hv±¥W/W-\v2yi2-], 
The localization of the critical points is shown by 

Figs. 34 and 35 and the behavior of the roots by Fig. 36. 
Only k\ and k& are of the class kn-

When *><2o>2, one of the critical points is in Z+. At 
this point, the roots 1 and 3 interchange with the roots 
4 and 2. Thus we have a nonconvective instability when 
p<2a>2. 

When V>2OQ2, there are no critical points in Z+, none 
of the roots kn(uo) is in Z~; in this case the medium is 
stable and the waves are decreasing in space. 

y plana. 

FIG. 29. Critical points of x{y). 

KM* U 
k p\*x\± 

r,K> 

FIG. 27. Behavior of the roots 
kfa); when w=coo, the root k\ belong­
ing to the class kn is in Z+, the root 
£2 belonging to the class km is in Z~. 

X'p\&na 

l 
\ 
V 

\ If 

r 
\ \ * 

FIG. 30. Behavior of the roots x{y). 

FIG. 28. Dispersion curve 
for crossed beams. 

1 

+H 

fc) 

FIG. 31. Dispersion curve for a 
beam-plasma interaction when a>22/W 
< ( F 2 A 2 ) ~ 1 . 
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FIG. 32. Critical points of &(co): 
4 real points. 

w plana 

i w 
FIG. 34. Location of 6 critical 

points for the case of crossed 
beams, including collisions, for 
y<2o>2, in a> plane. 

co plane 

J5 
1 

1$ 

FIG. 33. Behavior of the roots £(&>). 

plane 

FIG. 35. The « plane with 
location of the critical points for 
V>2w2« 

u> plane 

% s 

IV. CONCLUSION 
It is encouraging to see that identical results are ob­

tained by several independent approaches. None of 
these methods is free from difficulties, but since they 
deal with quite different models (initial disturbance in 
an infinite medium, boundary conditions in a semi-
infinite medium, localized source in an infinite medium), 
it can be concluded that Sturrock's ideas are well 
confirmed. 

From a practical point of view, it must be noted again 
that if we want D(co,k) to be algebraic, the medium must 
be divided into a certain number of well defined com­
ponents, adequately chosen, which is not always easy. 
Furthermore, the classification of the branch points 
may be laborious, mostly when the degree of k(ai) is 
higher than 4, or when D(a>,k) is no longer algebraic. 

FIG. 36. Behavior of the roots 
in the k plane. 

k plane 

All the methods based on Fourier or Laplace trans­
forms deal with analytic transforms of the disturbance. 
They can be directly applied to the multifluid theory, 
but they should be re-examined in the microscopic 
theory, where the presence of trapped particles entails 
analytic difficulties. 


