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Starting from the equations which express the divergence of the Maxwell field tensor and its dual in terms 
of the electric and magnetic current densities, a field theory of the Dirac magnetic monopole is constructed. 
It is shown that such a theory is incompatible with the requirement of Lorentz invariance if the usual 
number of degrees of freedom of the electromagnetic field is to be preserved. It is further demonstrated by 
an explicit construction of the generators of spatial rotations that, independent of the question of Lorentz 
invariance, the usual argument for the quantization of magnetic charge is not consistent with rotational 
invariance. A soluble field-theoretic model is given which clearly displays the difficulties of Lorentz in
variance inherent in any theory of the Dirac monopole. The mass spectrum of the Maxwell field in this 
model is shown by direct calculation to be explicitly noncovariant if and only if both the electric and mag
netic couplings are nonvanishing. 

I. INTRODUCTION 

THE great proliferation of ever larger symmetry 
groups witnessed in the past several years has 

now made fairly commonplace the view that one of the 
major problems of high-energy physics is the discovery 
of a group large enough (and flexible enough) to accom
modate the known particles and resonances. Thus the 
simplicity which the physicist has come to expect (and 
even demand) of nature has most recently been sought 
almost exclusively in terms of symmetries rather than 
detailed dynamics. 

One outgrowth of such a philosophy has been a 
revival1 of the old symmetry argument for the existence 
of Dirac's magnetic monopole.2 According to this 
view the usual form of Maxwell's equations for the 
field tensor F^ and its dual F^^e^^F^ 

dvF»»=eQj», (la) 

(lb) 

display a lack of symmetry which must be remedied 
through the replacement of (lb) by 

drFf^goj*', (2) 
where /"'(#) is a conserved "magnetic" current which 
now provides a "monopole" source for the magnetic 
field. 

It is usually stated that a consistent quantization of 
such a monopole theory is possible only if a very definite 
relation exists between the electric and magnetic 
coupling constants. Since, however, there has thus far 
been no complete field-theoretical formulation of Dirac's 
monopole, previous derivations of this relation have 
been semiclassical arguments which are consequently 
not in agreement with respect to the question of re-
normalization. Thus, it is not at alljclear at present 
whether the usual constraint 

f/bc^ltfiV/br)-*, 11=1,2, (3) 
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1 K. W. Ford, Sci. Am. 209, No. 6, 122 (1963). 
2 P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931); 

Phvs. Rev. 74, 817 (1948). 

is to be required of the renormalized or bare coupling 
constants. Unless one is willing to take the questionable 
step of requiring that the appropriate renormalization 
constants be rational, it is clear that this ambiguity 
already suggests a possible complication in the formula
tion of a theory of the monopole and must cast con
siderable doubt on the utility of (3) in the analysis of 
experimental results.3 

In view of these rather uncertain foundations it is 
somewhat surprising that the monopole has long enjoyed 
an immunity to attack by theorists. This situation has 
recently been remedied by Zwanziger4 who showed that 
the monopole requires the existence of singularities 
which are not usually admissible in an S-matrix theory. 
Unfortunately, however, this argument fails in the 
important case in which the theory is assumed in
variant under the parity operation. Furthermore, Wein
berg5 has subsequently suggested from arguments based 
on perturbation theory that the monopole may well face 
even greater difficulties associated with the more funda
mental test of Lorentz invariance. It is the object of this 
paper to further examine this question and to show 
that is is indeed impossible to formulate a Lorentz-
invariant field theory of the monopole. 

In the following section we carry out a radiation gauge 
decomposition of Maxwell's equations in the presence of 
both electric and magnetic coupling. While it is con
venient for this analysis to introduce a set of potentials 
into the theory, it is to be emphasized that no loss of 
generality ensues from this device as the entire pro
cedure could alternatively be carried out by using 
explicitly nonlocal functions of the electric- and mag
netic-field strengths. Section III presents a construction 
of an energy momentum tensor which generates the 

3W. V. R. Malkus, Phys. Rev. 83, 899 (1951); M. Fidecaro, 
G. Finocchiaro, and G. Giacomelli, Nuovo Cimento 22, 657 (1961); 
E. Amaldi, G. Baroni, H. Bradner, L. Hoffman, A. Manfredini, 
G. Vanderhaege, and H. G. de Carvalho, Notas Fis., Centro 
Brasil. Pesquisas Fis. 8, No. 15 (1961); E. M. Purcell, G. B. 
Collins, T. Fujii, J. Hornbostel, and F. Turkot, Phys. Rev. 129, 
2326 (1963); E. Goto, H. H. Kolm, and K. W. Ford, ibid. 132, 387 
(1963). 

«D. Zwanziger, Phys. Rev. 137, B647 (1965). 
8 S. Weinberg, Phys. Rev. 138, B988 (1965). 
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group of translations and spatial rotations on the 
fundamental field variables but fails to yield the genera
tors of pure Lorentz transformations. It is subsequently 
shown that it is not possible to modify this energy 
momentum tensor so as to admit the construction of a 
consistent set of generators of the Lorentz group. 
Finally, in Sec. IV we illustrate these general results by 
presenting a soluble field-theoretical model which has 
both electric and magnetic couplings. Although the 
model is fully consistent for vanishing eo or go, in the 
case e0gQ7^0 the excitation spectrum of the Maxwell 
field is shown by direct calculation to be explicitly 
noncovariant. 

H. FORMULATION OF THE THEORY 

The basic equations (la) and (2) which define the 
fundamental ingredients of a monopole theory may be 
split quite naturally into two distinct sets of equations. 
Of these the first, 

dkF>k=e0j
0, (4a) 

d ^ - g o j V , (4b) 

serves to express the longitudinal parts of the electric 
and magnetic fields in terms of the appropriate charge 
density while the remaining set, 

doF°k=diFkl-eQJk
f (5a) 

3oF°*=diFw--*o/»*, (5b) 

consists of the equations of motion for the true degrees 
of freedom of the Maxwell field. In writing (4b) and 
(5b) we have introduced the convenient notation jh^ix) 
for the magnetic current in accord with our intention to 
construct a parity-conserving theory describing the 
coupling of a pseudovector magnetic current density. 
While the final results do not depend upon the assump
tion of parity conservation, this seems to be the more 
interesting case and serves to illustrate all the essential 
points. 

We shall construct the current j^ix) for a spin one-
half field in the usual way: 

where q is the imaginary antisymmetrical charge matrix 
which acts in the two-dimensional internal space of the 
Hermitian field ^(x).6 With regard to the construction 
of jz"(x) it is crucial to note that the assumption that 
jf>*(x) be formed without the use of derivatives is an 
essential restriction without which the usual Pauli 
moment coupling term could be used to provide a 
perfectly consistent realization of (la) and (2). While 
it is well to note explicitly this additional assumption, 
the basic philosophy of the monopole must in any event 
require us to retain as much as possible the formal 
similarity in the construction of j*{x) and jb»(x). 

6 We use a Majorana representation of the Dirac algebra and 
the metric (1 ,1 ,1 , - 1 ) . 

In order to preserve the invariance of the theory with 
respect to both parity and charge conjugation,7 it is 
necessary to introduce a second Fermi field \f/f(x) and 
define the current by 

where q' is the symmetrical matrix 

<-c :)• 
The operation of electric charge conjugation may now be 
introduced by requiring 

E+(x)E-~l=q'+(x), 

so that 
Ej»(x)E-l=-j»(x), 

Ej?(x)E~l=]V(x). 
i 

Similarly, magnetic charge conjugation is defined by 
i 

M^(x)M'1=^(x) 9 

[ MV(x)M-l=iqt'(x), 

with the consequent result 

1 Mj»(x)M-1=j>(x), 
) Mjtf{x)M-l=--jtf(x). 

\ Thus the transformation induced by the product 
> operator C—EM on both current operators, together 

with the prescription 

' CFr(x)C-l=-Fr(x), 

- ensures the invariance of (la) and (2) under the com-
i bined operations of electric and magnetic charge 
1 conjugation. 

The equations (4) together with the decomposition 
of the electric and magnetic fields into their three-
dimensional transverse and longitudinal parts, 

Fok(x) = FT
ok(x)+FL

ok(x)==FT
ok(x)-dkA(x), 

i Fok(x) = FT
ok(x)+FL

ok(x) = FT
ok(x)--dkA'(x)t 

e 
! yield the identification 

t f e0j°(x') 

J J 4 i r |x-x ' | 

1 f g0j\°(x') 

B A'(*)- - V - ^ 5 o = / dM±± L . 
J 47r|x— x'l 

t 7 By charge conjugation we mean the product of electric charge 
i conjugation (E) and magnetic charge conjugation (M). See also 

N. F. Ramsay, Phys. Rev. 109, 225 (1958). It should be empha
sized that although a theory describing a particle having both 
electric and magnetic charge can be constructed if the requirement 

d of invariance under charge conjugation is dropped, the basic 
inconsistency problem remains unaltered. 
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The consideration of the equations of motion (5) is 
somewhat more complex and is most conveniently per
formed by the introduction of a vector potential. In the 
absence of the magnetic current jtf(x) this is usually 
done by using the divergenceless character of the mag
netic field to write FQk(x) as the curl of a transverse 
vector, 

fOk = 
ndiA, 

while for eo==0 the equation 

dkF°k=Q 

can similarly be used to introduce the pseudovector 
potential Bk{x)y 

^=tklmdiBm. (6) 

Thus, one can readily verify that for eo=0 a consistent 
monopole theory can be described by the Lagrangian 

-gojVBr+S'm, (7) 

in direct analogy to the go=0 case for which one has the 
more familiar Lagrangian8 

£B=lFrFr-iFr(d^,-d^J+eoj»A,+£'ty). (8) 

This leads in a natural way to the question of the 
number of degrees of freedom to be allowed the electro
magnetic field if one is to describe a nontrivial monopole 
theory. In particular we note that the equations of 
motion implied by Eq. (7), 

FM"=&"*daBfi, 

dJpM^gojV, 

together with the equations resulting from the 
Lagrangian (8), 

FE
flv=dftAv—dvA»i, 

allow the construction of a tensor F^^FB^+FM1" 
which satisfies the equations (la) and (2). Since each 
of these two theories is (kinematically) completely con
sistent, an essentially trivial monopole theory is real
izable. However, this not unknown result has been 
accomplished only at the expense of a doubling of the 
usual number of degrees of freedom of the electromag
netic field, thus implying the existence of distinct 
"electric" and "magnetic" photons. Since these photons 
furthermore do not interact with each other (thereby 
negating any argument for the quantization of charge), 
we shall immediately reject this formulation in favor 
of an approach not requiring a photon doublet. 

8 It is well to note here that a straightforward application of the 
action principle Q. Schwinger, Phys. Rev. 91, 713 (1953)] yields 
the commutation relation 

K*P~-*?')lEk{x)iHl{x
,)l= -u">»dm8(x-x') 

for each of the two theories described by Eqs. (7) and (8). 

To this end we introduce the transverse potential 
A k (x) by writing in analogy to ordinary electrodynamics 

Use of Eq. (5b) enables one to write 

F^-doAu+g^diV^jr 

which, together with (5a), yields 

- d2A k=eojT
k+go€klmdQdiV~2jb

m. 

One can now construct in a straightforward way the 
Lagrangian appropriate to this system 

£=\ iWy^d- i*#AH- WPY'W 
+\F'»Fr-\F*'{d^9- dvA») 
+enjnA ll+gQF0keklmdiV-2j\m 

~hoFlmeklmdkV-2Js°, (9) 

where we have taken the bare mass of the \p' field zero 
in order to have dpj^=0. Since the magnetic current 
interaction appears to have been slighted by our choice 
of the potential Ak(x) rather than the Bk(x) of Eq. (6), 
it is well to emphasize here that one could equally well 
use this latter potential to obtain our result. The 
essential point to note is that the theory described by 
the Lagrangian (9) is inconsistent only in the case 
^ogo^O. 

It can now be readily demonstrated that the equa
tions implied by (9), 

F<>*= - dQAk- dkA°+g0<:klmdiV-2jsm, 

Flm= diAm-dmAi+go<:klmdkV-2j5», 

ly^-d^eoqAA+m L=0, 

y-dr+yrtkq'e^di V-2F0m+y°g0ybq
f V~2jb° \r=0, 

by using the potential Bk(x)^—eklmdiV~2F°m and 
B°(x)z=goV~-2J5° can be given the more symmetrical 
form9 

drF'^eoj", (10a) 

df^gdf* (10b) 

y^d^eoqAA+m U = 0 , (10c) 

7 M ( - ^ - fltf^nV=0. (lOd) 

Finally, we obtain from (9) the only nonvanishing 
equal-time commutation relations among the canonical 

9 These equations are essentially identical to those obtained by 
Cabibbo and Ferrari, Nuovo Cimento 23, 1147 (1962). 
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variables \p(x), ^'(#), FT°*(*)» and Ak{x): 

{i{,'(x)rf'(x')}8(x0-xQ') = 8(x-x'), 

[FT
pH*)^K^)]«(^--«p/)=««r(*--^)» 

a list which may be supplemented by the derived 
relations 

ZFT0K(x),Bl(x')ld(x?-x°')= -i8ki
T(x-xf), 

to give a more symmetrical result. It is well to note that 
our reluctance to increase the number of degrees of 
freedom of the Maxwell field has made the potentials 
Ak(x) and Bk(x) canonical variables, a point which is 
intimately related to the basic inconsistency of the 
theory. 

Although we have now succeeded in writing the 
equations of motion of the monopole in the seemingly 
covariant form (10), it will nonetheless be shown that 
this theory fails to yield a consistent set of generators 
of the Lorentz group. We shall now focus attention on the 
proof of this important result. 

III. PROOF OF NONCOVARIANCE 

We shall approach the question of the covariance of 
the theory constructed in the previous section by 
seeking an explicit operator realization of the energy-
momentum tensor T^ such that the generators 

(11a) P*= / d3xT°»(x), 

J»v= / dzx[_x»T»v{x)-xvT»*{x)~], (lib) 

satisfy the structure relations 

- iZPxJ^l=gxpPfi-giuPp, 

~ i[_JK\ , /M J = g»\JvK — gv\JnK — gM*^"X+ gvJpX 

of the inhomogeneous Lorentz group. It is clear from 
(11) that, for the verification of these commutation 
relations, it is sufficient to carry out the construction 
of T°»(x). 

For T°k(x) we shall show that the appropriate 
operator is 

It is convenient in working with Pk and Jki to use in 
place of (12) the form 

1 1 
FT01 (dkA i-diA k)+&-dkx/,+W-M' 

i i 

+%di MtrkiM+tdMbrkilf), (13) 

which differs from it by an inconsequential divergence 
term. Since (13) is identical to the momentum density 
operator in the absence of coupling, it is clear that (12) 
leads immediately to the structure relations appropriate 
to the three-dimensional inhomogeneous rotation group. 
More generally, one can show by straightforward 
calculation that Pk and Jki generate the group of 
spatial translations and rotations upon all the basic field 
operators of the theory. 

Before turning to the question of pure Lorentz 
transformations we shall briefly remark upon the last 
term of Eq. (12). It is clear that this expression exactly 
cancels any contribution to the momentum density 
arising from purely static electric and magnetic fields. 
Thus it is significant that there can be no intrinsic 
angular momentum associated with a stationary elec-
tron-monopole pair, in direct contradiction of one of the 
more elegant formulations10 of the argument for the 
quantization of charge. According to this latter view 
the classical angular-momentum density r x (E x H) of 
the electromagnetic field should give rise to a net 
angular momentum for an electron-monopole pair with 
respect to the relative direction they define in space. 
Thus in the classical limit 

e0j° (x) = eb (x) 5 (y) 8(z—a), 

gojt°(x) = gd(x)8(y)8(z)y 

one might expect an angular momentum about the z 
axis. 

+hdmak^)+hdim^^)-FL^k^FL^t (12) 

/•= f [ rx(ExH)] 3^ 

- 2 , / 
d l 

— 
4TT 

egr Cadr 

47rLi0 

(4TT)2 lx2+y2 + (z-a)22m dz r 

I xdxj lr2+a2-2rax]-ll2dr 

ir r1 °°/rV 
- / xdxZ[-)Pi{x) 
a J_i o \a/ 

rdr r1 oo/a\l 

where 
o-jki=i*['y*,7i]-

10 This formulation is due to M. Fierz, Helv. Phys. Acta 17, 27 
(1944). 
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the quantization of which leads immediately to the well-
known result 

eg=2nir. 

Although one could, in principle, hope to retain this 
argument by seeking an alternative form for Pk and Jki, 
it is an immediate consequence of Schur's lemma that 
these operators are unique and that the last term of (12) 
is essential to the preservation of rotational invariance.11 

We have thus uncovered serious objections to the quan
tization of charge independent of the more complex 
question of Lorentz invariance. 

Having now established the rotational invariance of 
the theory (at the expense of giving up magnetic charge 
quantization) we must now go on to consider the pure 
Lorentz transformations to display the fundamental in
consistency of the theory. To this end we propose for 
the operator T°°(x) the form 

2™ (x) = Upyk(-dk - e0qA k Jf+fafflr 

+W(hk(-dk- M ' T ^ ^ + § [ ( F ° * ) 2 + (^°*)2] • (14) 

As the first and most obvious property of T°°(x) we must 
require that P° generate the development in time of all 
operators in the theory. Thus 

[dWtT°«(x'),x(x)>-doX(x) 
J i 

for any operator X(#), a result which is readily estab
lished by straightforward calculation. Another im
portant condition is the requirement that Jok as denned 
by (lib) transform F*v as a second-rank tensor, i.e., 

- C ^ 0 & ^ " ] = (pPdh-x
k9i)Fi»+g*Fk' 

Again one can directly verify this commutation relation 
as well as the corresponding vector transformation 
properties of both j»(x) and j^(x) thus establishing the 
covariance of Eqs. (10a) and (10b) for the T°°(x) 
of Eq. (14). 

It is, however, well known that in the radiation gauge 
formulation of electrodynamics A?(x) (\p(x)) fails to 
transform as a vector (spinor) in spite of the covariance 
of (10c). Thus the question of the behavior of Eqs. (10c) 
(when go=0) and (lOd) under a Lorentz transformation 
is considerably more complex, and it is precisely here 
that a monopole field theory must founder. In the g0= 0 

11 The inclusion of this term reduces Pk and Jki to their free-field 
forms, thus immediately displaying the rotational invariance of the 
theory. 

limit one has from (14) the result 

-C / °M*(* ) ]= (x°dk-x
kd0)Al-8kiA0+diak, (15a) 

~i£Jok,t(x)l= (xPdk-xWW-^yty 
+¥eoq{akM, (15b) 

where 
ak= dmV~2(xkFim)-xkdmV-2F0m 

= [dmV-2,#*]F°m. 

In spite of the absence of manifest Lorentz invariance 
in this theory one has the familiar result that the 
equation of motion 

7»Udv-eoqAA+tnM=0 

is covariant with respect to the Lorentz transformation 
described by (15). A similar situation occurs in the 
case e0=0. Here the vector potential B^x) and the 
spinor \p'(x) satisfy the commutation relations 

- C ^ ° W * ) ] = {ofidk-x^Bi-hiBo+di®,, (16a) 

-iZJoktf'(x)l= (x°dk-x
kd°W 

- ^ V + ^ Y 5 { ( B * , f } , (16b) 
where 

&*= ~ dmV~2(xkF0r»)+xkdmV~2FQm 

a result which establishes the covariance of the equation 

7»(-d,~goqfy*B»y'(x) = 0. 

In the case of nonvanishing electric and magnetic 
couplings, it is clear that, for the energy density of 
Eq. (14), the transformation properties of \p and \f/' are 
given by (15b) and (16b), respectively. However, be
cause of the presence of the term goj\kBk in (14) and the 
noncommutativity of A^x) with Bk(x), the commuta
tion relation (15a) becomes 

-i£j°k,Ai(x)l= (x°dk-~xkd°)Al-8klA° 

+ dlak+goelmnldmV~2,xkJjf>» (17) 

while (16a) now has the form 

-C^0*>£*(*)]= (x°dk-x
kd°)Bi-5kiB° 

+ dl®k+eoel'nnLdmV-2,xklJ\ (18) 
The presence of the additional terms in both (17) and 
(18) has destroyed the covariance of Eqs. (10c) and 
(lOd), as a Lorentz transformation on these equations 
now has the effect of introducing a direct interaction 
proportional to e0go between the fields $ and i//\ Thus, 
provided that the uniqueness of T°°(x) can be estab
lished, we have the gratifying result that the theory 
fails the test of Lorentz invariance if and only if eogoĵ O. 

The question of the uniqueness of T°°(x) can be 
handled by relatively straightforward considerations. 
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First, it is to be noted that, since the equations of 
motion of the Maxwell field (la) and (2) are fixed, and 
the T°°(x) of Eq. (14) transforms F^(x) as a second-
rank tensor, that part of T00 which contains terms in
volving FT

ok and FT
ok (as well as Ak and Bk) is unique. 

That is, any attempt to include additional terms in 
T00(x) involving the dynamical variables of the Max
well field must alter either the fundamental equations of 
motion or the transformation properties of JPM"(X). Thus, 
we have only to deal with the somewhat more subtle 
problem of whether covariance can be restored by intro
ducing a direct interaction between the currents j " and 
j ^ . It is clear that such a coupling must be proportional 
to eogo and involve no dimensional parameters. It is not 
difficult to verify, however, that there is no rotationally 
invariant parity-conserving coupling, either local or 
nonlocal, which can be introduced between these two 
currents. 

It is perhaps instructive to briefly view here the 
question of covariance in terms of the commutation re
lations of T^ix) with itself as discussed by Schwinger.12 

In particular he has shown that a sufficient condition for 
Lorentz invariance is 

= -(Tok(x)+Tok(x'))dk5(x-x'). (19) 

In the present case this rather complex condition may 
be simplified considerably by noting that it is certainly 
valid for eo or go equal to zero. It is an immediate 
consequence of this observation that (19) is not satisfied 
for the T»k(x) and r°°(*) of Eqs. (12) and (14) in the 
two important respects: 

(i) The commutator fails to generate the last term 
of (12). 

(ii) The commutator of jkAk with j\kBk is not 
accommodated by the structure of (19). 

It requires only a slight extension of this result to again 
establish the uniqueness of T°°(x) as well as its necessary 
incompatibility with the structure relations of the 
Lorentz group, thus further verifying the basic in
consistency inherent to a monopole theory. 

IV. A SOLUBLE MODEL 

As a simple realization of a theory which illustrates 
all the essential features discussed in the preceding 
sections, we shall construct here a soluble model de
scribing the coupling of conserved electric and magnetic 
currents to the electromagnetic field. To this end it is 
convenient to introduce the scalar and pseudoscalar 
fields <t>(x) and #>(#), respectively, which, in the absence 
of coupling, are described by the Lagrangian 

£ = 0^ M 0+i0^ M + V^tV+^'v?. (20) 

12 J. Schwinger, Phys. Rev. 127, 324 (1962). 

As a result of the equations of motion, 

a*-o, (21) 

implied by (20), the fields ^(x) and <p*(x) describe 
conserved vector and pseudovector currents, a result 
which is unaltered by the inclusion of any coupling 
which does not explicitly involve the fields </>(x) and 
<p(x).n Thus we are led to propose the model described 
by the equations 

dJFr^eri", (22a) 

dvF*v=gw». (22b) 

In the special case go=0 such a theory is described by 
the complete Lagrangian 

Z^lF^F^-^idtAr-dAp) 

which is identical to a model previously considered in 
the discussion of the connection between gauge in
variance and mass.14 The symmetry between electric 
and magnetic coupling is displayed by the observation 
that for 0o=O one has as the appropriate Lagrangian 

£=~lF^Ftiv+hFa^dllBy-dvBfl)e^ 
+ <pfidli(p+%<pti<pli—goBfi<pli. 

In the former case one finds that the two transverse 
modes of the Maxwell field corresponding to a given 
momentum combine with the scalar mode of the field 
<j>(x) to describe the three degrees of freedom of a vector 
meson with mass eo2. It is therefore of no surprise that 
in the case of purely magnetic coupling the transverse 
electromagnetic modes together with the field <p(x) 
describe a pseudovector field of mass go2. This, however, 
suggests that in the case of nonvanishing electric and 
magnetic coupling there might well result serious com
plications as 4>{x) and <p{x) compete in their efforts to 
determine the character of the Maxwell field. 

Proceeding in direct analogy to the approach de
veloped in Sec. II we can now write the Lagrangian 

<£ = IF^F^- %F»v(dvA v- dvA J+4>"drf>+|<£"0M+ ^d„*> 
+i<Ptl^+eo^>tlAll+goFok€klmdiV-2(pm 

-igoFlm€klmdkV-2<p° (23) 

appropriate to Eqs. (21) and (22). In addition, one 
finds from (23) the equations 

f^-dty-eoA*1, 

<p*=-dk<p-gQeklmdiV-2F°m, 

<p°= - d°<p+ig0e
klmdkV-2Flm, 

18 This point has been discussed in some detail by G. S. Guralnik 
and the author (to be published). 

14 D. G. Boulware and W. Gilbert, Phys. Rev. 126, 1563 (1962). 
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which upon introduction of B* as defined by 

assume the form 

(pf^-dtp-goBf. (24) 

It now requires only simple manipulations on Eqs. 
(21), (22), and (24) to derive the reduced field equations 

(-d2+eo2)<£(*) = 0, 
( - d 2 + g o 2 ) ^ ) = 0, 

( - d*+e<?+g<?)FT
0k(x) = efgiV-*FT«k. 

While the fields <j>(x) and <p(x) each appear to be un
aware of the presence of the other, the Maxwell field, 
unable to choose whether to be a vector or axial-vector 
meson, experiences a fatally noncovariant distortion of 
its excitation spectrum if and only if eogo^O. Thus the 
breakdown of Lorentz invariance which revealed itself 
in the general monopole theory through the non-
covariance of the equations of motion has been given in 
this soluble model an explicit and dramatic realization. 

In order to illustrate more clearly the correspondence 
with the general monopole theory, we shall briefly 
discuss the covariance problem from the viewpoint of 
the preceding section. In this case one has 

-eogQ(diV-2</>°)ekl™(dmV-2<pO) 
and (25) 

T^(x) = U<t>0)2+U<P°)2+Udk<t>+eoAky 
+h(dkv>+goBky+K(F>*)*+ OF0*)2]. 

In analogy to our previous result the last term of (25) is 
necessary to preserve rotational invariance while at the 
same time it eliminates the necessity for the quantiza
tion of charge. One further finds that the Hamiltonian 
P° generates the time development of all operators in the 
theory and that J0k correctly transforms F^(pc) as a 
second-rank tensor. 

There is however, one noteworthy distinction between 
this model and the more general theory which arises 
from the fact that the currents <£M(#) and ^(x) are 
linear rather than bilinear in the operators of the 
charge fields. Thus, in view of the result of Eqs. (17) 

and (18) together with 

-C°*>*(*)> (*^*-**a°)*--«oa*, 
-iU°\<p(x)l= (x°dk-x

kdQ)<p-gQ($>k, 

it follows from (24) that ^(x) and ^(x) cannot trans
form as vectors. This has the immediate consequence 
that none of the equations of this theory are covariant 
with respect to the Lorentz group if eogo^O. 

With this minor difference all our previous results 
carry over to this model. The general proofs of the 
inconsistency directly apply and at the same time we 
have the further advantage here of being able to 
explicitly calculate the noncovariant mass spectrum of 
the Maxwell field. 

V. CONCLUSION 

Although the pursuit of the magnetic monopole has 
never attained the distinction of being considered one 
of the most pressing problems in particle physics, the 
demonstration of its incompatibility with the axioms 
of quantum field theory does dispose of what has been 
at least a mildly annoying problem of electrodynamics. 
While it goes without saying that the final verdict on 
this question must be given by the experimentalist, the 
discovery of such a particle (without a "second photon,,) 
would require a drastic reformulation of some of the 
most fundamental aspects of quantum field theory. 

Despite the fact that invariance under parity and 
charge conjugation has been incorporated into the 
proof given here, it is to be emphasized that this point 
is quite inessential, the conclusion resting solely on the 
assumption of the existence of a Lagrangian and a well-
defined set of generators of Lorentz transformations. It 
is well to note further that this paper has emphasized 
throughout the symmetry between electric and mag
netic couplings, and the basic consistency problem only 
arises in fitting both into the same theory. While there 
is thus no fundamental basis for choosing between the 
two types of coupling (as there is no reason why 
matter should be locally favored over antimatter), 
nature, having once decided on a vector coupling, is no 
longer free to admit a pseudovector interaction. 
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