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Influence of Multiple Virtual Transitions on the Reorientation 
Effect in Coulomb Excitation* 
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Calculations of the reorientation effect in Coulomb excitation of the first 2+ state of even-even nuclei are 
extended by employing the semiclassical approximation to take into account second- and third-order virtual 
E2 transitions to higher excited states. Deviations from first-order perturbation theory in the excitation 
probability are investigated numerically as a function of the bombarding energy and the scattering angle 
for heavy-ion projectiles. Results are presented for rotational and vibrational nuclei as a guide in the se
lection of conditions suitable for the determination of the static quadrupole moment of the lowest 2+ state. 
Conditions for the practical convergence of the perturbation expansion are discussed. 

I. INTRODUCTION 

UN D E R conditions of heavy-ion bombardment 
higher order effects in Coulomb excitation can be 

appreciable and the necessity for taking such effects 
into account was first pointed out by Breit and Lazarus1 

in connection with gamma-ray angular-distribution 
measurements and inelastic-scattering studies. These 
authors considered the second-order reorientation effect, 
which can be described as a change in direction of the 
nuclear spin axis during the excitation process. After 
the nucleus has first been excited from the ground state 
to one of the magnetic sublevels of the final state, a 
second transition to another magnetic sublevel of that 
state can take place on account of the interaction of 
the projectile with the static moment of the final state. 
Breit, Gluckstern, and Russell2 studied effects which 
arise in the case of El (0 —> 2) excitation from the cross 
product between the first- and second-order excitation 
amplitudes. Particular attention was paid to this term 
because it is linear in Q22, the static quadrupole moment 
of the 2+ state, and therefore offers the possibility for a 
determination of the sign as well as the absolute value 
of the static moment. The modification of the inelastic 
scattering and the angular distribution of the de-excita
tion gamma rays, as well as the effects in certain co
incidence experiments involving the observation of 
inelastically scattered projectiles and of the de-excita
tion gamma rays, were worked out by them in the semi-
classical (SC) approximation.3 Numerical results indi
cated that measurable deviations from first-order theory 
were to be expected. 

The possibility of multiple excitations to higher 
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1 G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955). 
2 G. Breit, R. L. Gluckstern, and J. E. Russell, Phys. Rev. 103, 

727 (1956). 
3 G. Breit and R. L. Gluckstern, in Handbuch der Physik, 

edited by S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. XLI/1, 
p. 496. 

states in heavy-ion bombardment indicates that such 
transitions, which can affect a measurement of the 
reorientation effect in the first excited state, must also 
be taken into account. Second- and third-order virtual 
E2 transitions to intermediate states of spin 0, 2, and 
4 were investigated in the work reported below with 
reference to selected even-even nuclei. The deviations 
expected from first-order theory are analyzed into 
second- and third-order components and studied as a 
function of the bombarding energy and the scattering 
angle. Studies of the inelastic scattering were treated 
first, since the interpretation of these measurements is 
not affected by complications which may affect the de-
excitation gamma rays.3,4 

The higher order SC probability amplitudes are 
introduced in Sec. I I as a product of a nuclear-structure 
factor and an orbital integral. The contributions to the 
excitation probability are classified according to the 
order of the interaction energy. Some general features 
of the reorientation effect in the first 2+ state of even-
even nuclei are discussed briefly in Sec. I I I . Corrections 
due to virtual E2 transitions to higher excited states 
are considered for rotational nuclei in Sec. IV and 
vibrational nuclei in Sec. V. 

II. OUTLINE OF THE SEMICLASSICAL THEORY 
OF HIGHER ORDER EFFECTS 

Application of standard time-dependent perturbation 
theory yields the higher order SC probability ampli
tudes3,5 for an electric transition from an initial state 
i with spin I{ and projection quantum number Mi to a 
final state / with spin / and projection M, 

O,IM 
CD _ . -iT KE\;iJ)R{1)QiMi(\)IM), (la) 

&IM ( 2 ) : 

s x = l X ' = l 

XRm(^Mi(\)Is(\
f)IM), (lb) 

4 (a) G. Breit, R. L. Gluckstern, and J. E. Russell, Phys. Rev. 
105, 1121 (1957); (b) G. Breit, in Proceedings of the Third Con-
erence on Reactions Between Complex Nuclei, edited by A. 
Ghiorso, R. M. Diamond, and H. E. Conzett (University of 
California Press, Berkeley, 1963), pp. 273, 277. 
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oo oo oo 

«/*<»= (-*)» E L L E i(E\;i,r) 
r,s X = l X ' = l X " = l 

X*(EX';r,*)'CEX'W) 

XR(s)(IiMi(\)Ir(\
f)Is(\")IM). (lc) 

The summations over the intermediate states r and ̂  
include both the initial state i and the final state •/.-
These equations contain a dimensionless factor, which 
measures the strength of the coupling between the 
states r and s due to the electric interaction, and is 
denned as 

t(E\; r,s)= (2/ r+l)-1/2[Z1e2/^ / x)]^ ( X ) * (2) 

where Trs
(X) is the reduced nuclear matrix element3 of 

the electric multipole operator between the states r and 
s. Here a' is half the classical distance of closest approach 
in a head-on collision; Z\e and Z2e are the charges of 
the projectile and target, respectively; and v is the 
asymptotic value of the relative velocity of the two 
particles. The reduced radiative transition probability5 

is related to the quantity t(E\; r,s) by 

\t(E\; r,s)\^lZie/{hva^)jB{E\ r-+s). (3) 

The quantity RM in Eq. (1) is also dimensionless. 
I t is simply a linear combination of orbital integrals, 
which are functions of the scattering angle in the 
center-of-mass system 6 and the set of adiabaticity 
parameters £rs associated with the nuclear states r and 
s involved in the excitation process. The adiabaticity 
parameter is defined as usual by 

with 

A (/ 'A/; l f V ^ ) = 47r(2X+l)FxM(7r/2,0)C(/ ,X/; M'/iiM) , 

where the standard spherical harmonics FxM and vector 
addition coefficients Cijijtjz', m\rn<mi) have been used. 
The orbital integrals are defined as 

hfl(£;6)=[ Kx»(w)dw, 
J —oo 

/

OO /*Wf 

dw/KvA^) dwK^(w), (6) 
-00 J —00 

/

oo pw" i*wf 

dv/'Kv-f (w") J dv/Kvpf W) I dwKM , 
-oo J —oo J —oo 

where the abbreviations 

K^ (w) = exp (iut+ifx <p) (e coshw+ l ) ~ x , 

co/= £(e sinhw-\-w), 

'(e2—1)1/2 sinhw"] <£> = tan - 1 

coshw+e 

(7) 

€=l/sin(|6>), 

have been employed. 
The excitation probability for the final state / may 

be expanded as 

where 
7is=ZiZ2/e

2(hvs), 

(4) P=p(l.l)+Pa>2)_|_p(2,2)_)_p(l,3)_|_ . (8) 

and vs is the velocity of relative motion at infinite 
separation, when the target nucleus is in state s. Work
ing in the focal coordinate system5 of the hyperbolic 
orbit, the explicit formulas for RM are 

= HA (IfKU; MffiMi)h^ tt/<; 6), (5a) 
/* 

RW(IiMi(\)Is(\')IfMf) 

= T.i:Y.A(If\'It;Mfii,M,) 

XA (IjJn M^Mdh'v,^ (*/.,**; 0)» (5b) 

R^(IiMiOC)Is(\')Ir(\")IfMf) 

H fi' n" Mr M8 

XA (IXIT] Mslx
fMr)A (IMi; MrnMt) 

X/x"M" fX'M',X/i ( 8 )(f/«,f«r,fr*-; B) , ( 5c ) 

6 K. Alder, A. Bohr, T. Huss, B. Mottelson, and A. Winther, 
Rev. Mod. Phys. 28, 432 (1956). 

where the superscripts indicate the order of the ampli
tudes that are involved. The individual terms for elec
tric excitation of the final state / are 

PM = Xlt(Ek;i,f)TF™, (9a) 
x=i 

pa.» = £ £ £ t{EK;i,f)t{E\';i,s) 
« X X ' ,X" 

Xt(E\";s,f)Fs™, (9b) 

s Xi,X2 

+ Z ' E ' /(£XI;V)/(£XJ;*,/)/(£XI';*,«0 
»' Xi ' .Xs' 

Xt(EU;s',f)Fss,v-»}, (9c) 

pc».«>=£ I I E I t(E\;i,f)t(E\i;i,r) 
r,8 X Xi X2 X3 

X*(£X2; r,*)*(JE\8; s,f)Fr.™. (9d) 

The prime on the summation sign in Eq. (9c) indicates 
a restriction to those terms in which at least one index 
is different in the two sets of indices C?,Xi,X2) and 
C?',Xi',X2'). Since the summations over magnetic quan-
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turn numbers have been performed, the indices s, s', 
and r refer here only to a summation over different 
energy levels. 

The functions F introduced in Eq. (9) are denned as 

F(U)=(2lH-l)-i £ [RViliMiWIfMAJ, (10a) 
Mi.Mf 

Fs<
1.2)=(2/,+ l)-i £ 2RV(IMiQi)IfM/) 

Mi,Mf 

XlmRVQiM <(\')/.(X")//Jf/), (10b) 

F s(
2 .»=(2/,+ l)-1 

X E | i? ( 2 )( /^(Xi)/ s(X2) / / l f /) |2 , (10c) 

Mi.Mf 

F38,<
2.2>=(27i+l)-i 

X E 2RelR^*(,IiMi(\1)Is(\2)IfMf) 
Mi,Mf 

XRM (IiMi(\i')Is' (X,')//Jf/), (10d) 

i?rsa.3) = - ( 2 / i + l ) - i E 2RV>VMfr)IfMt) 
MitMf 

XReRW (IMiQidlrQitf.Qidlfiff). (lOe) 

The quantities F are real functions of 0, the multipole 
order of the transitions, the spins of the intermediate 
states, and the adiabaticity parameters coupling these 
states. The phases of the nuclear wave functions have 
been chosen so that the reduced matrix elements are 
real. For a particular nucleus, once the energy levels 
and spins have been measured for the states which are 
involved in the Coulomb excitation process, the func
tions F can be computed numerically as a function of 
0 and the set of £'s. All other nuclear structure informa
tion is contained in the t factors. 

In searching for practical convergence conditions for 
the perturbation series, it is convenient to introduce the 
ratios of successive terms of different order 

P/pcu) = i + p 2 1 + p 3 1 + . . . (Ha) 

= l+i?2i(l+i?32+--0, (Hb) 
where 

J?21=pa.2)/pu.« j (12) 

p 3 1 = [p(u) + p(2 ,2) j / P ( i , i ) 9 ( 1 3 ) 

£ 3 2 = [p(U) + p(2,2)]/p(l,2) m (14) 

The third-order effect P^^ is included with the term 
P(2'2) that arises from a product of second-order ampli
tudes, since both contributions are of fourth order in 
the interaction energy and, in typical cases, were found 
to be of the same order of magnitude. The probability 
ratios introduced above are investigated numerically as 
a function of 0 and £. 

III. REORIENTATION EFFECT 

In order to avoid confusion with other processes the 
words "reorientation effect" will refer here exclusively 
to higher order virtual transitions between the magnetic 
sublevels of the final state. Preliminary results of a 
calculation of the third-order reorientation effect for 
E2 (0 —» 2) excitation have been reported by Lin and 
Masso.6 In this case, when all other higher order effects 
are neglected, the probability ratios take the form 

P21 = ^ ^ 2 (15) 

where 

Dnfcey-

Duti ; » ) = ( • 

i?32—XZ?32, 

•35y/2 p2(i,v 

.2 J F™' 
•35y'2 CF2<

2'2)+F22
a'3)] 

,2*7 F,a» 

(16) 

(17) 

(18) 

and £ without any subscripts refers to the 0 —> 2 transi
tion, i.e., £=£20. The energy separation between the 
magnetic sublevels of the 2+ state has been neglected. 
The negative of the function Z>2i is plotted in Ref. 7, 
where it is denoted by Z,(0,£). The reorientation effect 
for this special case is characterized by a dimensionless 
parameter,2 

X = — 
@22£ie2 

Ahva'2 
(19) 

which enters into a calculation of successive orders of 
the reorientation effect. The term P^>d\ which arises 
from the cross product between the first- and third-
order amplitudes, and P&>2\ the direct second-order 
reorientation contribution, are both of order X2 and 
were found numerically to have opposite signs for 
£<1.5; since these two terms are of the same order of 
magnitude for £^0.8, a strong cancellation occurs for 
this range of £. This circumstance reduces the over-all 
contribution of order X2 to the excitation probability. 

Numerical calculations were carried out for 0.05 <£ 
< 3 and 10o<6K180° employing an IBM 7094 com
puter for the projectiles He4, C12, N14, O16, S32, Ne20, and 
A40 bombarding Fe56, Se76, Cd114, Sm152, Er168, and Pt194 

in order to survey a variety of conditions. The ratio 
XD21 of the second-order reorientation probability P2

(1,2) 

to the first-order probability P*1*1) is a monotonically 
increasing function of the scattering angle in the 
center-of-mass system. The angular variation of \D2i 

6 D. L. Lin and J. F. Masso, in Proceedings of the Third Con
ference on Reactions Between Complex Nuclei, edited by A. Ghiorso, 
R. M. Diamond, and H. E. Conzett (University of California 
Press, Berkeley, 1963), p. 267. 

7 A. C. Douglas, W. Bygrave, D. Eccleshall, and M. J. L. 
Yates, in Proceedings of the Third Conference on Reactions Between 
Complex Nuclei, edited by A. Ghiorso, R. M. Diamond, and H. E. 
Conzett (University of California Press, Berkeley, 1963), p. 274. 



0.15 1-

0.10 

R E O R I E N T A T I O N I N C O U L O M B E X C I T A T I O N 

T 

O.I5h 

B1185 

0.05 

9 0 120 
9 (degrees) 

180 

FIG. 1. The ratio AZ>2i of the second-order reorientation effect 
P2

(1 '2) to the first-order probability PC1*1) plotted as a function 
of the scattering angle in the center-of-mass system 0 for O16 

bombarding Cd114. The curves are designated by several fixed 
values of the adiabaticity parameter £ and Q22, the static quadru-
pole moment of the lowest 2+ state, is taken as 1 b. 

is illustrated for O16 on Cd114 in Fig. 1 for several values 
of?. 

The absolute value of this second-order effect can 
be increased by employing even heavier ions, since X 
varies approximately as the first power of the projec
tile's mass number A1 for a fixed value of £ or E/A1, 
where E is the incident laboratory energy. The ratio 
AD2i(£,0) is illustrated in Figs. 2-4 for E2 excitation of 
the 558-keV level in Cd114, the 122-keV level in Sm152, 
and the 80-keV level in Er168. It is found that the ratio 

0.30 

"o.2oh 

0.10 

-0 .10 

- 0 . 0 5 h 

FIG . ^ 3 . The ratio X#2i=P2
( 1 '2yP ( 1 , 1 ) plotted as a function of 

the adiabaticity parameter £ for heavy ions bombarding Sm152 

at 0 = 180° with Q22 = -1 .69 b. 

XD2i is approximately independent of the bombarding 
energy and decreases slowly as £ is increased. This 
feature is important for a possible separation of the 
second-order reorientation effect, which depends linearly 
on Q22, from other higher-order corrections. 

The second-order reorientation effect can also be in
creased for any pair of nuclei by simply raising the 
beam energy. However, there are restrictions on the 
lower limit of the adiabaticity parameter. Numerical 
results show that corrections of higher order than the 
second are appreciable for £ smaller than a limiting 
value depending on the target nucleus. In this region 
of £, calculations employing the perturbation approxi-

-0.151-

- 0 . 1 0 

- 0 . 0 5 H 

F I G . 2 . The ratio XP2i=P2
(1 '2)/P (1 ,1 ) plotted as a function of FIG. 4. The ratio XJ92i=P2(1'2)/-P(1,1) plotted as a function of 

the adiabaticity parameter £ for heavy ions bombarding Cd114 at the adiabaticity parameter £ for heavy ions bombarding Er168 at 
0= 180° with (>22= 1 b. 0= 180° with (?22= -2 .14 b. 
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mation may not be accurate. Secondly, the bombarding 
energy should be sufficiently below the Coulomb 
barrier so that nuclear reactions other than electric 
excitation are negligible. This requires that there be a 
large geometric separation or gap between the nuclear 
surfaces of the projectile and target.6 

IV. CORRECTIONS DUE TO VIRTUAL E2 
TRANSITIONS IN ROTATIONAL NUCLEI 

Besides the reorientation effect other virtual transi
tions to higher excited states during the collision can 
populate the final state. In studying the reorientation 
effect in the first 2+ level of even-even nuclei displaying 
a rotational energy spectra with the spin sequence 0+, 
2+ , 4+, • • • virtual third-order E2 transitions to the 
ground state and to the 4+ state will introduce correc
tions to the term Pa>*\ 

p ( i , 3 ) = = p 2 2 ( i , 3 ) + p 2 0 u ( 3 ) + p 2 4 ( i , 3 ) j (20) 

where the subscripts indicate the intermediate states in 
the third-order excitation. The individual terms are 

i V M ) = (T/eYB(E2, 0 - > 2)B(E2, 2 -> 2)P22
(1 '8), (21a) 

i V i , 3 ) = (T/ey£B(E2, 0 - > 2)] 2F 2 0
( 1 ' 3 ) /v /5, (21b) 

p 2 4 a .8) = (Q.6V5)(T/eYB(E2, 4 - * 2) 
XB(E2,0-+2)F2^>*\ (21c) 

where 
T=Z«?/(hva'*). (22) 

Virtual excitation to states beyond the 4+ level is 
neglected. Measured B(E2) values, which were taken 
from Ref. 8 for Er168 and from Refs. 9 and 10 for Sm152, 
were used in the calculation. To obtain an estimate of 
the higher order corrections, the static moment is 
approximated by the value from the rotational model5 

eQ22= - (2/7)[(16x/5)£(£2, 0 - • 2)]1 '2 , (23) 

which gives <222= - 2 . 1 4 b for Er168 and Q 2 2 = - 1 . 6 9 b 
for Sm152. 

The ratio 

#32 = lP22M + P^d) + P20(1^ + P2A^yP(1'2) (24) 

is illustrated as a function of £ for S32 bombarding Er168 

in Fig. 5, where curves for several scattering angles are 
included to show how the lower limit for £ must be 
raised, if measurements are made at smaller angles. The 
rather strong £ dependence of Rd2, especially at the 
lowest £, is in contrast to the slow variation of R2\ 
with £ for all energies. The value of £ at which the curve 
for Rz2 increases rapidly is observed to become larger 
as 0 is reduced from 180° to 60°. For f below approxi-

s A. C. Li and A. Schwarzschild, Phys. Rev. 129, 2664 (1963). 
9 R. Graetzer and E. M. Bernstein, Phys. Rev. 129,1772 (1963). 
10 G. Goldring, J. de Boer, and H. Winkler, in Proceedings of 

the Third Conference on Reactions Between Complex Nuclei, edited 
by A. Ghiorso, R. M. Diamond, and H. E. Conzett (University 
of California Press, Berkeley, 1963), p. 278. 

mately 0.4 for 0>6O°, the ratio JR32 increases quite 
sharply in absolute value, becoming much greater than 
unity, indicating that to this order the perturbation 
expansion cannot be expected to be accurate for this 
range. Small values of £ correspond to high bombarding 
energies, since £ depends on 1/E3/2. When £ = 0.4 the 
incident laboratory energy for a S32 projectile on Sm162 

is about 30 MeV and on Er168 about 24 MeV. Some 
estimates are presented in Table I. For low energies 

TABLE I. Estimates for rotational nuclei at £=0.4 and 0—180°. 
The static moment Q22 was taken as — 1.69b for Sm152 and —2.14b 
for Er168. 

Projec
tile 

C 1 2 

0 1 6 

Ne20 

S 32 

A40 

C12 

O16 

Ne20 

S32 

A40 

E 
(MeV) 

10.4 
14.1 
17.9 
29.9 
35.9 

8.3 
11.3 
14.3 
23.8 
28.4 

i?21 

-0.037 
-0.049 
-0.060 
-0.089 
-0 .11 

-0.029 
-0.037 
-0.046 
-0.069 
-0.080 

RS2 

-0.093 
-0.12 
-0 .14 
-0 .21 
-0 .26 

-0.066 
-0.086 
-0 .11 
-0 .16 
-0 .19 

when £>0.4 and Z±< 16, the results for Er168 show that 
I£211 <0.07 and | P 3 i | < 0 . 0 1 , if @22= - 2 . 1 4 b. Since 
the ratio P32 is less than 16% in absolute value, meas
urement of the second-order reorientation effect may 
not be seriously complicated by these third-order cor
rections. In the case of Sm162, the limits on the ratios 
are |P 2 1 | <0 .09 , | R n \ <0.02, and | i?3 2 |<0.21 for all 
angles, when ?>0 .4 and Z i < 16, if Q22= - 1.69 b. 

V. CORRECTIONS DUE TO VIRTUAL E2 
TRANSITIONS IN VIBRATIONAL NUCLEI 

Excitations of higher excited states of spin 2 have 
been measured in many cases of even-even medium 
weight11 and heavy12 nuclei. Second-order excitation of 
the lowest 2+ state via the second and third spin-2 
states contributes to the term 

pa.2) = p2a.2)+p2/(i.2)+p2/ /(i,2) ? (25) 

where the subscript indicates the intermediate state in 
the second-order excitation; here 2' and 2" designate 
the second and third 2+ states, respectively. This term 
may be represented as 

pa.2) = iy i .2 )c 2 , (26) 

where C2 represents the correction factor to P^M due 

11 P. H. Stelson and F. K. McGowan, Phys. Rev. 121, 209 
(1961); F. K. McGowan, R. L. Robinson, P. H. Stelson, J. L. C. 
Ford, and W. T. Milner, Bull. Am. Phys. Soc. 9, 107 (1964); 
F. K. McGowan, R. L. Robinson, P. H. Stelson, and J. L. C. 
Ford, Jr., Nucl. Phys. 66, 97 (1965). 

12 F. K. McGowan and P. H. Stelson, Phys. Rev. 122, 1274 
(1961). 
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-0.05 

-0.15 

# FIG. 5. The ratio R^ZP^+P^l/PW plotted as a func
tion of £ for S32 bombarding Er168 at several scattering angles in 
the center-of-mass system with Qi2= — 2.14 b. 

to the addition of the last two terms in Eq. (25). The 
ratio of P^1-2) to the first-order probability P(1,1> may be 
expressed as 

P 2 i = T{ (35/32Tryi2Q22F2(
1'V+S'F2,w 

+S"F2»<1'2))/F(1'1\ 

where 

(27) 

S' = =fc:[£(E2, 2'->0)J3(E2, 2 ' -> 2) / 
B{E2, 2-»0)e 2] 1 / 2 , 

S " = ± [ P ( P 2 , 2"-*0)B(E2, 2 " - * 2) / 

B(E2,2-+0)e2J/2, 

and T is defined in Eq. (22). The factors S' and S" 
depend on the relative signs of the combination of re
duced nuclear matrix elements contained in the above 
brackets. Contributions due to excitation of higher 
spin-2 states have been neglected, since the corre
sponding matrix elements may be expected to be small 
relative to the matrix elements for the states which are 
included. The quantities F are positive for 0 .2<£<2 , 
so that the correction contained in C2 is quite sensitive 
to the signs of the matrix elements involved, which are 
generally unknown. For larger values of £, Rn becomes 
less dependent on these signs, because the correction 
due to virtual excitation of higher spin-2 states de

creases relative to the reorientation effect P 2
( 1 ' 2 ) /P ( l i l ) , 

which is approximately independent of E. The factor 
C2 is approximately independent of the scattering angle; 
it changes by only a few percent as 6 is varied. When 
both 5 ' and S" have the same sign, the correction due 
to virtual excitation of higher spin-2 states is largest, 
amounting to 12% of the second-order reorientation 
effect in the lowest 2+ state of Cd114, if @22= — 0.6 b and 
£=0.6. This correction decreases, when £ is increased, 
as illustrated in Fig. 7 for O16 bombarding Cd114. 

Virtual third-order E2 excitation of intermediate 
states of spin 0, 2, and 4 introduces the correction 

P(1 .3) = = p 2 2 ( l ,3 ) + p 2 0 ( l ,3) + p 2 4 ( l ,3) + p 2 0 , ( l ,3) + p 2 / 0 ( l ,3 ) 

+ P 2 2 / ( l f 3) + p 2 , 2 ( l ,3 ) + p2,2/Cl,3) + p 2 / / 2 ( l , 3 ) 

+ P 2 2 / / ( l ,3 ) + p 2 M ( l f 3) + p 2 „ 4 ( l , 3 ) + p2//()/(l,3) 

+ P 2 / / 2 / / ( i ,3) + p 2 / o / i ,3) + . . . j ( 2 8) 

where the subscripts indicate the sequence of inter
mediate states in the third-order transition. The excited 
states of spin 0 and 4 are designated by 0' and 4, re
spectively. In order to study contributions to the 
excitation probability of fourth order in the interaction 
energy, one must add to P^»3> the term 

p(2,2)==p2(2 )2)_J_p2,(2,2)_|_p2, /(2,2)_|_p22/C2,2) 

+ P22, /(2>2) + p 2 / 2 / / ( 2 , 2 ) > ( 2 9 ) 

where the last three terms arise from cross products 
between second-order transition amplitudes involving 
different intermediate states. 

Numerical results will be discussed for the reorienta
tion of the 558-keV 2+ level in Cd114; the excitation 
energies of the 0 /+ , 2'+, 4 / + , and 2"+ levels are 1133, 
1208, 1282, and 1363 keV, respectively. Second- and 
third-order transitions involving six intermediate states 
are computed. The last five terms in Eq. (28) are 
neglected along with terms referring to transitions in
volving a second excited spin-0 state, since these con
tributions are expected to be small relative to the prin
cipal terms represented by P24

(1 '3) , P2o(1'3), P22
(2 '2) , 

P22(1,3), P22'(1,3). All nuclear matrix elements are ob
tained from measured P (£2) values,11 with the excep
tion of Q22, which was assigned different values in the 
calculation. The unknown signs of the matrix elements 
are not important in the third-order correction, because 
they enter only the terms in P&M and P(2>2> which are 
relatively small. 

The ratio of pa.8)+pc2,2) t 0 pu.D c a n be written as 

Rzl= T*{ (35/327r)<2222CP2(2 '2)+P2(1 '3)]+5 /V2 '(2 '2)+y ,2P2-(2 '2) 

+ (0.6y/5)B(E2, 4 - » 2)e~2F2^^ + {y/S)B(El, 2 -> 0)e-2P2o(1>3)+P(P2, 2' - > 2)<r2P2 
,(1,3) 

+ 0 . 2 ( A / 5 ) P ( P 2 , 0' -> 2)£T2P2(/
1 '3)+ (V

/5)P(P2, 2' -> 0)e-2P2,0
(1'3) + (35/32Tryt2Q22[S/ (P22, (2,2) 

+P2,2<1'3>+Q2>2,e22-1P2^ (30) 
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This form of expression emphasizes that i£3i can be 
regarded simply as a product of T2 and the quantity 
contained in curly braces, which is an explicit function 
only of £, 0, and the nuclear matrix elements, but not 
of the projectile. On the other hand, the parameter T 
defined in Eq. (22) does depend on the charge, mass, 
and incident energy of the projectile. The ratio R2\ has 
been represented in Eq. (27) as a similar product of T 
and another quantity, which is an explicit function of 
£, 0, and the target nucleus. It is possible to distinguish 
at least partly between second- and third-order effects 
by investigating the variation of the excitation proba
bility with £, 0, Zi, A i, and E.1Z For example, it may be 
possible to separate out the quantities discussed above 
by keeping £ and 0 fixed in measurements employing 
different projectiles. 

0.5 

-0.5 

1 ] 

[-

" 1 !' " I 

0 on Cd 1 

,J _ 1 L J 

-0.10 

-0.08 

•e -o.06 

» -0.04 

-0.02 h 

0.5 1.0 1.5 

FIG. 7. The quantities XZ>2i = P2
( 1 '2 )/^ ( 1 , 1 ) , £2i = P (1 ,2 )/P (1 ,1 ) , 

and (i?2i+JR3i) = Ci>(1 '2)+P (2 '2)+P (1 '3)]/P (1 '1) plotted as a func
tion of £ for O16 on Cd114 at 0 = 180° with Q22= - 0 . 5 b. 

a wide range of £ in the case of A40 bombarding Cd114, if 
I fe | <0.6 b. These results imply that the perturbation 
approximation is less useful the heavier the projectile. 

The quantity R21+RZ1, which represents the sum of 
second- and third-order effects relative to the first-
order excitation probability, is illustrated in Figs. 7 and 
8 as a function of £ for O16 on Cd114 at 0= 180°. Devia
tions from first-order theory are indicated even at large 
£. Generally, when £>0.6 and Q22 is negative, the ratio 

FIG. 6. The ratio P3 2=[P ( 1*3 )+P ( 2 '2 )]/P ( 1 , 2 ) plotted as a func
tion of £ for O16 bombarding Cd114 at 0=180° for several values 
of Q22. Curves a, b, and c correspond to the assigned values for 
Q22 of —1.0, —0.6, and —0.4 b, respectively. 

The ratio #32=[P (1 '3)+P (2 '2)]/P (1 '2) , which includes 
these higher order corrections, is illustrated in Fig. 6 
as a function of £ for O16 on Cd114 at (9= 180° for several 
choices of Q22. The relative signs of the matrix elements 
have been chosen as positive and £ refers again to the 
0 —> 2 excitation. The results indicate that for £ below 
0.4, which corresponds in this case to an incident energy 
of 33.3 MeV, the absolute value of R32 increases sharply. 
This implies that for the £<0.4 the perturbation ex
pansion to this order cannot be expected to be accurate. 
At larger £, P32 decreases in absolute value and these 
corrections due to virtual excitation of higher states 
become less important relative to the second-order re
orientation effect. When employing projectiles much 
heavier than Ne20, ^32 can exceed unity even at low in
cident energies. For example, this difficulty occurs over 

-0.10 

-0.08 

£-0.06h 

»-0.04h 

-0.02H 

01— 
0.5 1.0 1.5 2 . 0 

13 This point has been emphasized frequently by G. Breit. 
FIG. 8. The quantities XA21, i?2i, and (Rm+Rn) plotted as a func

tion of £ for O16 on Cd114 at 0= 180° with Q22= - 0 . 7 b. & 
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Rzi is positive, while R2i is negative. As the adiabaticity 
parameter is increased above 0.6, the ratio R$i becomes 
smaller in comparison to the absolute value of R21. This 
may permit an approximate separation of the second-
order reorientation effect from the other higher order 
effects at the lower incident energies. Similar results 
were found for other heavy ions. When £=0.6, the 
bombarding energy in the laboratory is approximately 
1.6 M e V / 4 i for C12, N14, O16, S32, and Ne20 and the gap 
distance between the nuclear surfaces in a head-on 
collision with Cd114 is about 14 F. 

VI. DISCUSSION 

As a check on the applicability of the perturbation 
approximation in heavy-ion Coulomb excitation, some 
second- and third-order excitation amplitudes have been 
computed. The relative magnitude of successive terms 
in the expansion of the excitation probability in powers 
of the interaction potential has been investigated as a 
function of the scattering angle and of the incident 
energy for heavy ions bombarding selected even-even 
nuclei. In searching for practical convergence conditions, 
a range of values of the adiabaticity parameter £ was 
found for which the double requirement that the ratio 
R21 of second-order to first-order effects and the ratio 
Rz2 of third-order to second-order corrections be small 
in comparison to unity can be satisfied under suitable 
circumstances. The procedure employing the perturba
tion approximation may therefore still be used in 
studies of low-energy heavy-ion Coulomb excitation to 
provide some reasonable estimates, if the corresponding 
values of £ for the transition are restricted by the lower 
limits indicated above. 

The primary objective of the work has been to find 
conditions for which the second-order reorientation effect 
is appreciable, and corrections due to higher order effects 
can be applied in the analysis of experiments. In the 
cases studied, a range of £ was found for which | R%21 < 1, 
while R21 is appreciable. The second-order reorientation 
effect relative to the first-order probability always in
creases slowly as £ is reduced. On the other hand, higher 
order effects increase much more sharply as £ is reduced, 
exceeding the second-order effect usually when £^0.4. 
These higher order corrections can be reduced relative 
to the second-order effect by increasing £ or lowering 
the incident energy. However, R21 itself becomes smaller 
in absolute value for larger £. The total excitation proba
bility P also decreases rapidly as £ is increased. These 
circumstances affect the accuracy to which Q22 can be 
determined from a perturbation calculation. 

For heavy deformed even-even nuclei, as long as the 
bombarding energy corresponds to a value of £ above 
the approximate lower limit of 0.4, effects of higher 
order than the second are not expected to introduce 
significant corrections. Some quantitative estimates are 
given in Table I for Sm152 and Er168. Although these 

TABLE II . Estimates for Cd114 with Q22=-0.6b and 0=180°. 
The measured B(E2) values were taken from Ref. 11, and the 
relative signs of the matrix elements were assumed to be positive. 

£ 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
2.0 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
2.0 

E 
(MeV) 

25.8 
21.3 
18.4 
16.3 
14.8 
13.5 
11.7 
55.0 
45.7 
39.4 
35.0 
31.6 
28.9 
25.0 

P2a,2)/pa,i) 

-0.089 
-0.082 
-0.077 
-0.073 
-0.069 
-0.066 
-0.062 
-0.159 
-0.147 
-0.137 
-0.130 
-0.124 
-0.119 
-0.111 

R32 

-0 .52 
-0 .43 
-0 .32 
-0 .25 
-0 .20 
-0 .17 
-0 .13 
-0 .92 
-0 .76 
-0 .58 
-0 .45 
-0 .36 
-0 .30 
-0 .22 

(i?21+i?81 
-XZ>2i) 

0.048 
0.037 
0.027 
0.020 
0.016 
0.013 
0.010 
0.140 
0.109 
0.079 
0.059 
0.046 
0.038 
0.028 

corrections are appreciable, they may not prohibit an 
estimate for Q22. 

For vibrational nuclei, higher order corrections are 
expected to be more important relative to the second-
order reorientation effect than for deformed even-even 
nuclei, especially if Q22 is small. However, a larger 
range of £ may be accessible to experiment. Some esti
mates for Cd114 are presented in Table I I as an illustra
tion of the magnitude of the effects under discussion. 
Caution is necessary in applying the results presented 
here, since they are sensitive to the choice of the relative 
signs of the reduced matrix elements and to the B (E2) 
values employed. As £ is increased from 0.6 to 1.2, R& 
is reduced by 50%, while P2(1,2)/^>(1,1) is reduced by 
only 20%. In general, as the incident energy is lowered, 
Rz2 decreases much faster than i£2ij the ratio of the 
second-order effect P2

(1 ,2) to the first-order probability 
pd.i) i s nearly independent of energy so that it might 
be possible to achieve an approximate separation of this 
effect from other higher order corrections. For suffi
ciently low bombarding energies, detection of the re
orientation effect, which is linear in the quadrupole 
moment of the excited 2+ state, may not be seriously 
complicated by virtual E2 excitation of higher states. 

Since it is possible to determine the dependence of 
some of the higher order effects on energy, angle, and 
charge of the projectile in the bombardment of the same 
target, even if the transition moments needed for the 
complete calculation are not available, it should be 
helpful to have experiments in which the bombarding 
energy and projectile charge are varied so as to enable 
the determination of the proportionality constant to 
be made empirically.13 A partial step in this direction 
has been made in the recent measurements of the re
orientation effect in Cd114 by de Boer et al.u and 
Stelson et al.15 

14 J. de Boer, R. G. Stokstad, G. D. Symons, and A. Winther, 
Phys. Rev. Letters 14, 564 (1965). 

15 P. H. Stelson, W. T. Milner, J. L. C. Ford, Jr., F. K. 
McGowan, and R. L. Robinson, Bull. Am. Phys. Soc. 10, 427 
(1965). 
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In this preliminary survey of higher order corrections, 
particular attention has been paid to virtual E2 excita
tion, since the low-energy transitions in even-even nuclei 
undergoing collective excitations are known to be pre
dominantly of the electric quadrupole type.5 However, 
the possibility of virtual transitions of different multi-
polarity is not ruled out. Estimates16 of a second Ml 
or E4 transition in the sequences 0+ (£2)2+ (M 1)2+ 
and 0+ (£4)4+ (E2) 2+ indicate that such effects are not 
expected to be serious in comparison to the E2 effects, 
at least in studies of the reorientation effect in even-
even nuclei under conditions of low-energy heavy-ion 
bombardment. The possibility of second-order El 
transitions via the giant dipole resonance has been 

pointed out by Eichler17 in connection with the re
orientation effect in Cd114. Recent estimates by Mac-
Donald18 indicate, however, that such effects may not 
be serious. 
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The quadrupole deformation of Li7 is calculated by generating many-particle wave functions from de
formed single-particle orbitals. In order to account for the El properties of Li7 and retain the dominance of 
the basic shell-model configuration, excitation of the (Is)4 core must be included. The admixtures of higher 
configurations are appreciable. 

I. INTRODUCTION 

RECENT detailed calculations1'2 of the electric-
field gradients in LiH have led to an accurate 

value for the quadrupole moment of Li7, namely 
Q (Li7) = — 0.043 b. van der Merwe showed3 that this is 
much greater than one obtains with the usual (lsY(lp)d 

configuration. He showed that an effective charge of § 
was needed to get the experimental result and also 
produce agreement with the measured B(E2) strength4 

between the ground state and the first excited state. 
Recently, Present5 reproduced the experimental value 
for <2(Li7) by mixing 2 P states from (lpY, (lp)2(2p), 
and (lp)2(lf)—leaving the (Is)4 core intact. The inten
sity found for the (lp)z component was only 35%. 

The method of generator coordinates offers a direct 
procedure6 for calculation of such configuration mix
tures, starting from single-particle orbitals in a field of 
quadrupole deformation. I t is also simple to include 

fWork performed under the auspices of the U. S. Atomic 
Energy Commission. 

i S. L. Kahalas and R. K. Nesbit, J. Chem. Phys. 39, 529 (1963). 
2 J. C. Browne and F. A. Matsen, Phys. Rev. 135, A1227 (1964). 
3 T. H. van der Merwe, Phys. Rev. 131, 2181 (1963). 
4 P. H. Stelson and F. K. McGowan, Nucl. Phys. 16, 92 (1960). 
6 R. D. Present, Phys. Rev. 139, B300 (1965). 
« D. Kurath, Nucl. Phys. 14, 398 (1960). 

deformation of the (Is)4 core with this method. Such 
an effect should certainly be included since the experi
mental value for Q(Li7) is about 1.8 times the value 
computed for Q(Li7) with the ( ls)4( l^)3 configuration. 
As is seen from Present's results, such a large effect is 
difficult to obtain by deforming only the lp orbitals. 
The objective of the calculation is to see whether one can 
account for the large quadrupole effects while keeping 
the (ls)4(lp)3 configuration dominant in Li7. 

II. PROCEDURE 

The application of the generating procedure to Li7 is 
considerably simplified by the fact that the energy spec
trum and magnetic-dipole properties are well described 
by a model with negligible spin-orbit coupling. I t has 
been shown3 that for Li7 the inclusion of spin-orbit 
coupling within the lp shell increases the quadrupole 
moment not more than 10% above its value at the 
Wigner supermultiplet limit 

Q(Li\ 2 P [ 4 + 3 ] ) = - (6/25)e(r>)lp,lp. (1) 

Here (r2)ip,ip, the expectation value of r2 evaluated with 
lp radial functions, has a magnitude (f2)ip,ip~10~25 

cm2. Therefore the desired enhancement must come 
from outside the Is and lp shells, and thus is most 


