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We discuss extensively two-meson production processes in antiproton-nucleon annihilation at rest on 
the SU(6) model. For the orbital angular momenta in the initial and final states we take the s and the p 
wave, respectively. The effects of the SU(3)-invariant interaction and of the first-order 6,£/(3)-breaking 
interaction are taken into account. All the transition amplitudes are expressed in terms of five SU(6)-in-
variant amplitudes [seven in the case when the SU(3)-breaking effect is included]. These expressions could 
give a very convenient tool for a systematic analysis of the experimental results. We derive the relations 
between transition amplitudes and discuss several useful relations such as 

<r(pn -> 7r07r-)/kv=2<r(pn -> K°K-)/kK> 
a(NN -> 77co) /^= (9/25)*(fiN - * r,p)/k„, 

and 
<r(NN -> v<p) =<r(NN - » ij<p) =cr(NN -> p<p) =(r(NN->co<p) = 0 

(where use is made of the usual <a-<p mixing parameter and k is the relative momentum of the final two 
mesons). 

I 
1. INTRODUCTION 

N this article an extensive analysis of the annihilation 
of antiprotons on nucleons at rest into two mesons 

p+N-*Mi+M2 (1) 

is given in the SU(6) model.1 This process is of particu­
lar interest for the following reasons: 

(i) There are many experimentally allowed final 
states to relate in this framework, so that one can hope 
to obtain and to be able to check several significant 
predictions upon transition amplitudes to these 
states. 

(ii) The kinematics is "frozen" in the initial states 
and the total energy is constant, so that ambiguities 
usually associated with the interpretation of unitary 
symmetry predictions for dynamical processes are 
strongly reduced. 

Before entering into details, it is worthwhile to 
review briefly the predictions of the 5(7(3) symmetry 
scheme and of the 17(12) extension2 of SU(6). In SU{3) 
there are no significant relations for annihilation at rest 
into two mesons,3 unless some dynamical assumptions 
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are imposed.4 In pure U(12) the process is forbidden,5 

and there are no clear reasons as to what kind of break­
ing ("kinetons") one has to consider for letting it 
occur.6 (In any case, agreement with experiments is not 
achieved.) 

The process is forbidden also in the full symmetry 
limit by SU(6) but in this case the hypothesis of 
"minimal" breaking, which is very naturally suggested 
by the expression of the matrix element in the helicity 
formalism (see Sec. 2), turns out to be very likely for the 
discussion of the annihilation at rest. In a previous 
work7 this approach gave a very encouraging result for 
the particular case of two-pseudoscalar-meson produc­
tion in antiproton annihilation on proton. In this work 
we exploit it completely, considering all the possible 
initial antinucleon-nucleon states and all the possible 
final states which are composed of two 35-plet mesons. 
Although the annihilation of antiproton on neutron is 
experimentally much less known than that on proton, 
we find it to be of the greatest interest for a check of 
the validity of the model since in this case several 
simple relations, of direct physical meaning, can be 
obtained. 

2. CONSTRUCTION OF THE S MATRIX 

Throughout this paper, we take the initial state 
to be pure s wave consistent with the experimental 

4 K. Tanaka, Phys. Rev. 135, B1186 (1964). 
6 Y. Hara, Phys. Rev. Letters 14, 603 (1965); R. Delbourgo, 

Y. C. Leung, M. A. Rashid, and J. Strathdee, ibid. 14, 609 (1965): 
N. P. Chang and J. M. Shpiz, ibid. 14, 617 (1965). 

6 F. Hussain and P. Rotelli, Phys. Letters 16, 183 (1965). 
7 M. Konuma and E. Remiddi, Phys. Rev. Letters 14, 1082 

(1965). 
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data.8-10 By two mesons we mean two "primary" me­
sons, including all the resonances which belong to the 
35-plet. As s-wave nucleonium has odd spatial parity 
and all the relevant mesons have odd intrinsic parity, 
parity conservation requires that the final state be 
pure p wave. 

Our approach is purely phenomenological, so we are 
interested only in the form of the 5 matrix which refers 
to process (1) in the momentum representation. For the 
spatial part it must behave like a vector in order to give 
the required | A81 = 1 selection rule for the transition. 
So it must be proportional to the meson relative mo­
mentum q, which is the only vector to hand. Conserva­
tion of total angular momentum requires it to be con­
tracted with a spin one (no other vectors are available), 
constructed from the spinorial part of the field operators 
of the four particles involved in the reaction (regardless 
of whether the final mesons do have spin or not). By 
indicating this spinor by X/, one gets 

S=OX/(a(q/M))/, (2) 

where 9, includes coupling constants and the 5 £7 (3) part 
of the field operators. 

It is convenient to introduce the "spurion" Q/ 
defined by 

e/=«a.(q/M))m«, (3) 
where /JL and v, M and N, and m and n refer to SU(6), 
SU(3), and SU(2) indices, respectively, the cor­
respondence being given, as usual, by fx= (M,m), etc. 
The hypothesis of "minimal" breaking is very naturally 
suggested by Eqs. (2) and (3) and can be stated as 
requiring that the SU(6) part of QX/ behave like a 
35-plet, so that formally SU(6) invariance is recovered. 
Thus, the part of the 5 matrix including this spurion is 
given by 

S<°> = £*</</&', (4) 

where the /»•/ are the SU(6) 35-plet formed out of the 
SU(6) part of the field operators of the particles in­
volved in reaction (1) and the at are 5 U (6) -invariant 
amplitudes. The summation index i is understood to 
run over all the possible terms. 

Treating the 35 meson states of the adjoint repre­
sentation MJ as different states of the same "particle," 
5(0) must be even under the exchange of the two 
mesons. As Q/ is odd under this operation and meson 

8 R. Armenteros, L. Montanet, D. R. O. Morrison, S. Nilsson, 
A. Shapiro, J. Vandermeulen, Ch. d'Andlau, A. Astier, J. Ballam, 
C. Ghesquiere, B. P. Gregory, D. Rahm, P. Rivet, and F. Solmitz, 
Proceedings of the International Conference on High Energy Nuclear 
Physics, Geneva, 1962 (CERN Scientific Information Service, 
Geneva, Switzerland, 1962), p. 351. 

9 G. B. Chadwick, W. T. Davies, M. Derrick, C. J. B. Hawkins, 
J. H. Mulvey, D. Radojicic, C. A. Wilkinson, M. Cresti, S. 
Limentani, and R. Santangelo, Phys. Rev. Letters 10, 62 (1963). 

10 M. Cresti, A. Grigoletto, S. Limentani, A. Loria, L. Peruzzo, 
R. Santangelo, G. B. Chadwick, W. T. Davies, M. Derrick, 
C. J. B. Hawkins, P. M. D. Gray, J. H. Mulvey, P. B. Jones, 
D. Radojicic, and C. A. Wilkinson, Proceedings of the Sienna 
International Conference on Elementary Particles (Societa Italiana 
di Fisica, Bologna, Italy, 1963), Vol. I, p. 263. 

field operators commute, the /»•/ must also be anti-
symmetrical for the exchange. Therefore, in general, 
Mc?(l) and M7

S(2), which describe the two mesons, are 
contained in it in the form 

MJ(l)My
B(2)-My

8(l)M0P(2). 

Up to here parity conservation, total angular-
momentum conservation, and Bose statistics require­
ments are satisfied. As far as charge-conjugation in­
variance is concerned, let us observe that an SU(6) 
multiplet, in general, has no simple transformation 
properties under C. If, on the contrary, we take the 
operator R to be defined by11 

R=Ce*'s*, (5) 

where 52 is the second component of ordinary spin, we 
see that any SU(6) multiplet goes into its transpose 
under R except for a possible appearance of phase 
factor for the baryon field which can be disregarded in 
the present case. The relevant part of I if in Eq. (4) is 
an 5 £7(3) scalar times an 527(2) triplet Xn

m. In order to 
satisfy charge-conjugation invariance, the 5Z7(3) part 
must be invariant under C. The 5/7(2) part %w

m, on the 
other hand, goes into — Xm

n under e**82, so that C 
invariance is satisfied11 by the /*•/ which go into their 
transpose with a change of sign under R. 

There are eighteen 35-plet which can be constructed 
out of the product of the 56-plet Ba^y (to which the 
antiproton belongs), the 56-plet B^y (to which the 
nucleon belongs), and the two meson 35-plets Mf(\), 
Mf(2). Imposing the condition that they are odd under 
the exchange of the mesons and odd under transposition 
of the 5/7(6) indices, we have the following five terms 
Iifl

v which contribute to Eq. (4): 

/ i / = 5 a ^ ^ ( j f M S ( 1 ) i | f / ( 2 ) ^ M / ( i ) i i f / t 5 ( 2 ) ) , 

/2/-[5a^^(M7
5(l)ilfa^(2)-ilfav(l)M7

8(2)) 

-5fl^Tfl^(Jlfr(l)Jlf/(2)--Jf | l*(l)Jlfan2))], 

V = 5 « f c ^ W ( 1 W (2) - My 0-W(2)), 

and 

7 5 /=[^^HM/(l )Ma' ' (2)-M/( l )M/(2)) 
-B^yB^(M^(l)M,y(2)~Mlly(l)M^(2))2. (6) 

The term I\ is the contribution of a singlet 1 baryon 
pair and a 35-plet meson pair. The terms I2,13,I A, and 
I5 include the contributions of initial 35 and final 35, 
initial 35 and final 405, initial 405 and final 35, and 
initial 405 and final 405, respectively. Here one should 
mention that, to obtain contributions from pure ir­
reducible multiplets, the trace parts must be subtracted. 

11 The notion of R inversion was first introduced by F. J. Dyson 
and N. Xuong, Phys. Rev. Letters 14, 655 (1965). The conclusion 
about the transformation properties of the transition matrix for 
the process is the same, but our argument is different from theirs. 



B 1 3 2 0 M . K O N U M A A N D E . R E M I D D I 

TABLE I. S U (2)-invariant transition amplitudes S{MIM2)I,J expressed in terms of the 5 U (6)-invariant amplitudes a» and 5;. 
Use is made of co and (p defined in Eq. (15). The listed coefficients have been multiplied by the factor 9vZ 

° ( 7 n r ) n 

°{KK)n 

°{KK)oi 

'{lT<p) 11 

1(7TC0)ll 

1 ( x p ) io 
1(7rp)oi 

H^rfoi 
1(i?co)oi 

1{vp)n 

'{Km ii 

'{Km oi 
'{Kmoo 

'{Rm a 
'{Km io 
'{Kmoi 
'{Kmoo 

'{<P<p)oo 

'{u<p)oo 

1 (coco) oo 

Hprfio 
x(pco) io 

° ( p p ) l l 
2 (pp) 11 

H P P ) oi 
'{pp) 00 

°(X*K*)n 
'{K*m n 
*{K*m ii 
'{K*K*)n 
'{K*K*)oi 
'{K*K*) oo 
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0 

0 
0 

0 

0 

0 
0 

0 

0 

0 

0 
0 
0 
0 

0 
0 
0 
0 

- 7 2 ^ 

0 

-72v3 

0 

0 

0 
0 
0 

- 2 1 6 

0 
0 
0 
0 
0 

- 7 2 V 6 

#2 

20 

- 1 0 
6 

0 

0 
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0 

0 

0 

0 

0 
6v3 
0 

-18v3 

0 
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0 
-18V3 

0 

0 

-36V3 

0 

12^ 

20v3 
0 
0 

- 1 0 8 

-10v3 
0 
0 
6V6 
0 

- 1 8 V 6 

a3 

T̂o 
5 

- 3 

0 

10 

6v3 
6v3 

0 

-2v3 

10/V5 

5vl 
-3V3 
- 3 v 2 

9v3 

5\2 
3v3 
3\£ 
9V3 

0 

0 

- 1 8 \ £ 

0 

6v3 

50/V3 
20(5/3)1/2 

0 
- 5 4 

--25/V3 
0 

- I O ^ ) 1 / 2 

3V6 
- 6 
-9V6 

#4 

2 
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- 3 

0 

0 

2v3 
0 

0 

0 

0 

0 

0 
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0 

0 
- 3 v 3 

0 

0 

-6V3 

0 
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0 

- 1 8 

0 
0 

0 
- 3 V 6 

a5 

0 

0 
0 

0 
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0 
2v3 

0 
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10/-VST 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

12\£ 

0 

4v3 

16v3 
4V15 
0 

- 6 0 

0 
0 
0 
0 
0 
0 

h 
0 

0 
0 

0 

0 

0 
0 

0 

0 

0 

0 
0 
0 

~108v3 

0 
0 
0 

-108 \£ 

144^ 

0 

- 7 2 ^ 

0 

0 

0 
0 
0 

- 2 1 6 

0 
0 
0 
0 
0 

36V6 
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- 1 0 

- 1 0 
6 

0 

10 

6\3 
6 ^ 

0 

- 2 v 3 
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-10V2 

6v3 
6v2 

-18V3 

-10v2 
-6V3 
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-18V3 

0 

0 
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0 
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50/v3 
20(5/3)1/2 

0 
- 5 4 

5 0 M 
0 

20(5/3)!/2 

- 6 A / 6 

12 
18V6 

All these terms induce full symmetry in SU(3). A 
first-order breaking of the SU(3) part can be taken into 
account substituting dM

N in Eq. (3) by 

TMN= 

Defining, as previously, 

1 
0 
0 

0 
1 
0 

0 
0 

- 2 

and writing 
r/=7V(<r•(q/|<7l)V^ 

(7) 

(8) 

(9) 

it is easily found that the allowed /*/ are the same as 
in Eq. (6). The total S matrix is 

S=S^+S (i) (10) 

3. THE TRANSITION AMPLITUDES 

By taking matrix elements of S, Eq. (10), we obtain 
the transition amplitudes for the process (1) expressed 
as linear combinations of ten S U (6) -invariant ampli­
tudes di and hi. The terms in b2, b±, and 65, however, are 
easily seen to give the same contributions as a2, a\, and 
#5 and can be disregarded. 

The initial state can have isospin 1=0, 1 and spin 
5in=0,1 (for the s wave, these are also the values of the 
total angular momentum / ) . Since / and / are con­
served, it is convenient to label the transition ampli­
tudes with these quantum numbers. They completely 
specify the initial state but not, in general, the final one, 
for which the final spin S must also be given. Therefore 
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we use the S U (2) -invariant transition amplitude 
8(M1M2)I,j, 

which refers to the production of the mesons M1 and 
M2 in the channel I and / with total final spin S. 

In Table I, the S U (2) -invariant transition ampli­
tudes are given in terms of the S U (6) -invariant ampli­
tudes. One can derive from them the transition ampli­
tude referring to particular charge, spin, and orbital 
angular-momentum final states by using standard 
SU(2) techniques with any consistent phase convention. 
(See Appendix A for our phase convention.) 

The total rate for the production of M\, M2, on the 
other hand, is most simply obtained by squaring and 
summing the appropriate SU (2) -invariant transition 
amplitudes as listed in Table I over all allowed quan­
tum-number eigenstates (without any additional factors 
for final spin and isotopic-spin dependence apart from 
those coming from the decomposition of initial pp state 
into isotopic-spin eigenstates), and then multiplying by 
the final-state density. If we are interested in relative 
magnitudes rather than in absolute rates, the phase 
space can be effectively assumed to be the final 
momentum.12 

4. USEFUL RELATIONS AND DISCUSSIONS 

From Table I it is possible to derive all the relations 
between the SU (2) -invariant transition amplitudes—or 
transition amplitudes for particular charge, spin, and 
orbital-angular-momentum states. As there are 33 
SU (2) -invariant transition amplitudes, depending on 
just five SU(6)-invariant amplitudes (seven if breaking 
terms are taken into account), one can easily work out 
28 relations (26 with the breaking terms) between them. 

Here we list only the simplest ones: 

° ( ™ ) n = - 2 ° ( i ^ i i , (ID 

iMoi^-Vivp)*, (12) 
1(^)n=1(p^)io=1ferfoi=0, (13) 
1(co^)00=0. (14) 

[Use is made of the usual oxp mixing parameters13,14 

<o=(l/\3)co8+(f)i/Vi, 

*=-(f)1/WKi/>fl)«>i, 
where co8 and <pi are the members of an SU(3) octet and 

12 This is related to the explicit form of Eqs. (3) and (8). If one 
uses q instead of q / |g | , an extra factor q2 appears. On SU(6) 
grounds only, one cannot decide what explicit form of phase space 
is to be used. 

13 J. Kalckar, Phys. Rev. 131, 2242 (1963); J. J. Sakurai, ibid. 
132, 434 (1963); S. Okubo, Phys. Letters 5, 165 (1963). 

14 In the SU(6) model if we treat the mass operator as the sum 
of (1-1) in 1 and (8«1) in 35, we obtain exactly the same mixing 
parameters as those of Eq. (15). The (8«1) contribution in 35X35 
gives a shifting from these values. T. K. Kuo and T. Yao, Phys. 
Rev. Letters 13, 415 (1964); M. A. B. Beg and V. Singh, ibid. 13, 
418 (1964). 

singlet, respectively.] The relation (11) is valid only in 
the case of complete SU(3) symmetry, while the rela­
tions (12), (13), and (14) are satisfied even including 
the S£7(3)-breaking terms bi and b%. 

All the transition amplitudes appearing in Eqs. 
(11)-(14) have a direct physical meaning in the sense 
that the transition amplitude referring to definite 
isotopic-spin state is completely described by just one 
S U (2) -invariant transition amplitude (final spin and 
total angular momentum are uniquely fixed) so that 
proportionality between the amplitudes directly gives 
proportionality between cross sections. For the other 
processes this is not the case, in general, as they are 
described by various SU (2) -invariant transition ampli­
tudes. For completeness we give the relations among 
them in Appendix B. 

The proportionality (11) includes, for example, the 
triangular relation 

{w+w-\pp)-{K+K-\pp)+{K°K0\pp)==0 (11a) 

and the relation 

{ir0T-\pn)=-^{K0K-\pn), (lib) 

which can be rewritten as 

<j{pn—>7r°7r~) kv 
= 2—. (lie) 

a(pn-^K°K-) kK 

Equation (11a) seems to be well satisfied by the experi­
mental data as was discussed already.7 The propor­
tionality (lie) should be particularly useful for a more 
direct experimental check of the relation (11). The 
relevant data, not available now, are strongly desirable. 

The relations (12) and (13) lead us to 

a(NN-> 7)0)) 9 kn0) 

— = , (12a) 
<T(NN-±r)P) 25fc„p 

a(NN^T<p) = a(NN^p<p) = a(NN^7)<p) = 0. (13a) 

These also could be easily checked experimentally. 
Present data,15 however, are very ambiguous: ir<p 
production has been observed, thus showing a certain 
violation of the above prediction; the upper limit 
for the ratio a(NN —>Tw)/a(NN—->Tr<p), on the other 
hand, is much larger than one due to the large back­
ground of continuously distributed 37r events, although 
no co's have been detected with certainty. Equation (14) 
is not useful, since a(NN —>oxp), just above the 
threshold, is practically suppressed by phase space. 

As a last remark we want to stress that the validity 
of the predictions of the present paper can hardly be 
checked by expressing them as relations among SU(2)-

15 V. E. Barnes, K. W. Lai, P. Anninos, L. Gray, P. Hagerty, 
E. Harth, T. Kalogeropoulos, S. Zenone, V. Dore, G. Moneti, and 
V. Valente, Proceedings of the 12th. Annual International Con­
ference on High-Energy Physics, Dubna 1964, (Atomizdat, Mos­
cow, 1965); L. Bertanza (private communication). 
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invariant transition amplitudes except for very simple 
cases. This is due to the large experimental errors, to the 
difficulty in deducing SU (2)-invariant transition am­
plitudes from cross sections, and to the arbitrariness in 
fixing their relative phases. We think that more definite 
data, which are anyhow needed, and a systematic %2 

test using Table I on them would unambiguously decide 
to what extent the present scheme is supported by 
experiment. 

After the completion of this work, we became aware 
of another paper16 on this subject, in which a part of the 
results presented above for pp annihilation is reported. 
The spin dependence of the transition amplitudes, how­
ever, is not completely specified: If allowance is made 
for suitable multiplication factors, their results agree 
with ours. 
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APPENDIX A 

Although the decomposition of the most widely used 
SU(6) multiplets in terms of particle field operators is 
well known, no explicit phase convention is at present 
available in the literature, so that we feel it worthwhile 
to cover this point. 

In the SU(6) symmetry we find the explicit relations 
between components of tensors T^...^'" and the field 
operators of the particles in any irreducible representa­
tion, in the following way. We use isotopic spin / , U 
spin, ordinary spin S, hypercharge, and charge opera­
tors defined by 

I+=AiF, I-=A*t*, h-hUn^-A^), 

U+=A2i^i U-=AtP, Uz=i(A*%**-A9W, 

S+=AN1
N\ S-=AN2

m, SZ=KANIN1-AN2
N*), 

Y^AxP+Arft-lA^, 

Q=\(2Arfi-Arf'-A3/O , (Al) 

where ART
S* with R, S= 1, 2, 3 and r, s= 1, 2 represent 

the generators of SU(6) and satisfy the commutation 
relations 

ZA^A^d/AS-dM/, 
and Ay^—0 [as usual, p= (R,r) etc. and summation is 
understood over repeated indices]. 

16 W. Alles, E. Borchi, G. Martucci, and R. Gatto. Phys, 
Letters 17, 328 (1965). 

Generally, tensors must satisfy suitable symmetry 
and trace conditions in order to correspond to irre­
ducible representations: for 35-plet and 56-plet these 
are 

W - ° ' (A2) 

Let us write state vectors and field operators as 
I ̂ i,m) and \f/i,m, where i and m correspond to the magni­
tude and the component of some generalized angular 
momentum—say I—relating to an SU(2) subgroup of 
SU(6). We have 

{*i,m\U=(*itm\m (A3) 
and 

< ^ , w | / + = < ^ ^ 1 | [ ( i + m ) ( i - m + l ) ] 1 / 2 . (A4) 

The relation (A4) fixes the relative phases of the state 
vectors in accord with the Condon-Shortley17 phase 
convention. 

These relations can be rewritten as 

Uhfa.ml = — *#»,» , (A5) 
and 

[ / + > ^ i J=- [ ( i+w) ( f -w+l ) ] 1 /V< .« - i - (A6) 

The commutation relations between generators A„p and 
arbitrary tensors J,

MV...a •̂•• are given by 

C^/,r^...^---]=V^..^-'-+5/^...^---+.. • 
-b.*Tf9...#~--bfTf».°>-~ . (A7) 

The starting point for building up the required cor­
respondence between the field operators <pj (j now runs 
over all the members of the multiplet) and the tensor 
components T^...0^" is to take some nondegenerate 
weight (one of which for instance is the highest weight18) 
and then to pick up the corresponding field operator and 
tensor component which are simply proportional. A 
proper use of Eqs. (Al) and (A5)-(A7) enables us to 
find out all the other relations between cpj and T^...^'". 
The normalization is fixed by the condition 

£ E |ZV..*"T=EI«IS. (AS) 

By using such a method one can explicitly express 
MS and B™* in terms of their SU(6) content. We 
define the field operators of antibaryons by 

B^B***, (A9) 

where the right-hand side stands for the Hermitian 
conjugate of B™c. Again using the same method, we 
find the following result on phase convention. 

17 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1935). The 
widely used table of Clebsch-Gordan coefficients by A. H. Rosen-
feld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirt, 
and M. Ross [Rev. Mod. Phys. 36, 977 (1964)] follows the phase 
convention in this book. 

18 See, for example, M. Konuma, K. Shima, and M. Wada, 
Progr. Theoret. Phys. (Kyoto), Suppl. 28 (1963), Sec. 5. 
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The phase convention for these tensors coincides with 
that of Condon-Shortley for isotopic spin, U spin, 
and ordinary spin when we take {\B}} and 

{ ( - i ) Is+Y+Sz \B)} 

as the bases of baryon and antibaryon states. Fixing the 
contents of the field operators of the meson 35-plet as 

(P+Vo 

M--
v2 

V-i 

P-Vo 

y/2 
with 

P=> 

7TU 1) 

—+— 
v2 V6 

7T+ 

K+ 

X 

x° v 

v2 V6 

K? 

Kr 

Ro 

2 
71! 

V 6 . 

Vi= 

'PC «8< <Pli 

v2 V6 VJ 

v+ 

p» 

p r "si <pu 

v2 \/6 v3 

#; ! 

if;*0 

isTi*+ JC,*0 
2 ^!i 
-MM+-—. 

V6 VJJ 
(where the lower index for vector nonet stands for the 
spin component), the phase convention of mesons 
coincides with that of Condon-Shortley when we take 
the bases {| K+), \ K°)}, {-]*+), |*»>, \T~)}, {\V)} and 
{ — | i t 0 ) , | i t - ) } for the isotopic-spin multiplet states 
and (k-) , | i t - )} , {\K*)9 l ( | ^ > - ^ h » , -\S?)h 
{-hWW+lv))} and {|iT+>,|ir+>} for the Z7-spin 
multiplet states. Forjvector mesons, we can simply 
substitute K—>K*, K—>K*, w—»p, 77—>co8 and no 
extra phases are required for ordinary spin. 

These considerations are a direct extension of the 
case of the SU(3) model19 and can be generalized to any 
higher symmetry scheme. 

APPENDIX B 

In Sec. 4 six relations [Eqs. (11)-(14)] are listed. In 
this Appendix we derive and discuss briefly the other 

19 M. Konuma and Y. Tomozawa, Nuovo Cimento 33, 250 
(1964). 

relations. 

Class (i) Charge-conjugation relations : 

1 ( ^ i P * ) i o = - 1 ( ^ * ) i o , 
l(KK*)o 1 (##*)<> 
1(^^*)oo= 1( i t^*)oo. 

Class (M) Vanishing amplitudes: 

1(iT*Z*)11=1(pp)oi=0. 

(Bl) 

(B2) 

(B3) 

(B4) 

CB5) 

Class (iii) Relations among amplitudes which can 
be easily determined from the experimental data. (This 
means that the final two-meson states have only one 
set of values of / and S for definite / . ) 

5 1 M n - 5 v 5 1 ( 7 r p ) o i + 4 v 3 1 ( ) ; p ) i 1 = 0 , (B6) 
1 ( ^ p ) i o - 2 1 M o i + 1 M i o = 0 , (B7) 

3 ° ( " ) u + 8 °(KR)oi+3 1(TTP)IO=0. (B8) 

There is another relation which involves l(cp<p)oo. As the 
<p<p production is, however, energetically forbidden and 
the relation is implicitly included in Table I, we do not 
list it. 

Class (iv) Proportionality between amplitudes in 
the previous class (iii) and others: 

2 H i ^ * ) i o = - 1 M i o . (B9) 

Class (v) Triangular relations which involve two 
amplitudes in the class (iii): 

i(KK*U=2^°(KK)n 

+ (l/v3)°(iLfiOoi, (BIO) 

+t(5)1/210?p)n, (Bll) 

(1/5V2) '(KK*^ - (1/3V2) '(KK^oi 
= - i HM*)oi== -^(!)1/22(ir*i£*)n 

= A 1M11+(l/20v5) ifopjn. (B12) 

There are five other relations involving the amplitudes 
°(K*K*)n, K M * ) i o , \(K*K*)n, °(PP)II , and HPP)OO. 

These are more complicated and seem to be rather 
useless. As these relations are included in Table I 
implicitly, we omit them. 

Of the above relations, Eqs. (12)-(14), (B1)-(B7), 
(BIO), (B l l ) , and the part of the proportionalities 
between strange-particle channels in Eq. (B12) are 
valid even in the case of an SU(3) breaking interaction. 
The other relations become weaker and more compli­
cated with the breaking terms and we refer again to 
Table I for them. 


