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Some Aspects of Complex Angular Momentum and Three-Particle States 
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In this paper we try to gain some understanding of the problem of how complex singularities affect the 
continuation of multiparticle amplitudes to complex angular momentum / by examining a few simple pole 
contributions to a production amplitude. We find that in order to compute the effect of a three-particle 
state on a two-particle amplitude of definite signature the unitarity integral has to be considerably re
organized. This has the result of requiring us to deal with three different production amplitudes of definite 
signature, each of which provides a different continuation to complex / . We find also that the phase-space 
integrations which occur in unitarity-like equations must be performed over suitably deformed contours 
when / is complex. For integer angular momentum, of course, the deformation has no effect. We elucidate 
this situation by introducing doubly projected partial-wave amplitudes in which both the total and a sub-
angular momentum are projected out. 

INTRODUCTION 

RECENTLY Omnes and Alessandrini1'2 have ana
lyzed in detail the problem of continuing the 

angular momentum of three-particle amplitudes to com
plex values. They base their analysis on the Faddeev3 

equations for a nonrelativistic system and on a particu
lar generalization of the Froissart-Gribov continuation 
of a two-particle amplitude to arbitrary angular mo
mentum. One of the difficulties they emphasize2 is the 
existence of singularities of the three-particle amplitude 
at complex values of the cosines of the various scattering 
angles. 

In this paper we attempt to illuminate this aspect of 
the complete problem by studying the effect of a few, 
simple, pole contributions to a multiparticle amplitude. 
In fact these contributions are so simple that we are 
able to avoid a discussion of the very difficult problem 
of nonsense channels and infinite helicity sums. Indeed, 
we simplify the problem yet further by restricting our 
discussion to the effect of a three-particle intermediate 
state on the imaginary part of an elastic two-body 
amplitude. Doing so has two advantages: 

(i) We need consider only production amplitudes, 
with a consequent simplification of kinematics. 

(ii) We can relate the more difficult three-particle 
problem to one we understand better, namely, that of 
continuing the angular momentum of two-particle 
amplitudes. 

An additional reason for pursuing the following analysis 
is that we wish to use it in a later paper which discusses 
a very simple dynamical calculation of a three-particle 
Regge residue. 

In spite of these simplifications we are left with a 
nontrivial problem the resolution of which implies that 
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the continuation to arbitrary angular momentum must 
be performed in a manner slightly different from that 
suggested by Omnes and Alessandrini.2 I t becomes clear, 
also, that care must be taken in specifying the phase-
space integration contours in unitarity-type equations 
and that the continued partial-wave amplitudes are 
not, in a straightforward sense, unitary. 

I. KINEMATICS 

In order to have definite amplitudes to study we con
sider a model in which two scalar particles A and B, 
masses ntA and nis, can annihilate to produce three 
scalar particles, w mesons of mass m^ We shall suppose 
that the particles are distinct though the problem is 
hardly changed by making them identical. 

We are interested, then, in the processes 

A+B<->A+B, 

A+B<r^Tri+TT2+TZ, 

(1) 

(2) 

which correspond to the diagrams in Fig. 1. The ampli
tude describing process (1) is TAB(s,t,u) where 

s={pA+pBY, 
t={pA-pA'Y, 
u=(pA-pB')2, 

s-\-t-\-u= 2mA2+2ntB2, 

(3) 

and that describing process (2) is T(s; siyS2,s^h,t2,h) 
where 

ti=(pA-pi)2, 1 = 1 , 2 , 3 , (4) 

s*= (pj+pk)2, (t,i,A0 = perm(l,2,3) • 

I t is also convenient to define 

Ui^{pB-pi)2 (5) 

Of course, not all of these variables are independent; 
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(7) 

they are subject to linear relations, for example, 

s+h+t2+h=2mA
2+mB

2+Smir
2, (6) 

s+ti+Ui=Si+mA2+mB
2+m1r

2, i=l, 2, 3 . 

I t is convenient to define the cosines of various scat
tering angles. 

(1) In the over-all center-of-mass frame 

Z = pA'pA , 

Zi = pA'pi, 

Zi=pA'Pi, 

Zij~Pi' Pj • 

(2) In the (2,3) center-of-mass frame 

X%j = Q i ' <?/ > 

%i=$A-$i, (8) 

y %=&'&, 

where we use the symbol q rather than p in order to 
emphasize that the energies and momenta are evaluated 
in the (2,3), rather than the over-all center-of-mass 
frame. 

The energies and momenta of the particles in these 
frames are: 

(1) In the over-all center-of-mass frame 

pAo=(s+mA
2-mB*)/2(syi*, 

PA2 = \(s,mA
2,mB

2)/4s=pB
2, 

PBO= (s+mB
2-mA

2)/2(syi2, (9) 

pio^(s+mx
2-si)/2(syi2, 

where 

\(x,y9z) = x2+y2+z2— 2(xy+yz+zx); (10) 

(2) in the (2,3) center-of-mass frame 

qAo=(si+mA
2-~u1)/2(s1yi2, 

qA2=HshmA
2,u1)/4:Si, 

qB^{si+niB
2-h)/2(s1)V

2, 

qB
2=\(shmB

2,h)/4:Si, 

q20=q*o=(si)ll2/2, 

q22=qz2=si/4:~m7r
2, 

qio=(s-s1-mT
2)/2(s1)^

2, 

qi2=\(s,shmx
2)/4:Si. 

II. SIGNATURE AND TWO-PARTICLE 
UNITARITY 

Before discussing signature and three-particle ampli
tudes we would like to emphasize those properties of the 
two-particle phase-space integral which permit the 

(ID 

FIG. 1. Reactions considered 
in the text. 

definition of unitary elastic scattering amplitudes of 
definite signature. If the elastic scattering amplitude is 
written as a function of energy and scattering angle, 
unitarity implies that 

A*TABW(S,Z) 

= i{2irY fdp(2) TABMM)TABW(S-,Z") , (12) 

where 
1 

dp(2)= d±pA
f,dHB"h(pA"2-niA

2) 
( 2 T T ) 6 

XKpBf2~mB
2)b^{pA+pB-pA

n-pB,f), ( 1 3 ) 

Z'^PA'PA", z'f = pAr>pAf, 

and A2 indicates the two-particle contribution to the 
s discontinuity of TAB. Of course, Eq. (12) holds for 
the symmetric and antisymmetric parts of the ampli
tude separately. Since we intend to use the symmetric 
part for illustration we have taken advantage of this 
and added an s superscript (for symmetric) to TAB. Thus 

TAB^Ksrf^iTABisd + TABis, - « ) ] . (14) 

If TAB has the analytic structure required by the 
Mandelstam representation, then 

TAB^(S,Z) = KTAB(+KS,Z)+TABW(S, - * ) ] , (15) 

where 

,(+) (s,z) 
1 /-00 dz' 

7rJ2R Z'-Z 
-/(*,*'), (16) 

so that the amplitude of definite signature TAB
(-+){s,z) 

has singularities only in the right-half z plane. 
By substituting Eq. (15) into Eq. (12) and by identi

fying, on both sides, those terms giving rise to singu
larities in the right-half z plane, we can deduce that 
r iB

( + ) (5 ,z) is unitary. That is, 

A 27W+ ) (s ,z) 

= i{2irY !dp(2) TAB<+KS+,Z')T<+\S-,Z") . (17) 

In determining the position of the 2-plane singularities 
of the various terms we make use of the result that the 
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FIG. 2. Simple pole 
t> contributions to the pro-
' a duction amplitude. 

integrals 

/ 
dp(2) TABM(S+, ±Z')TAB^(S-, ± S " ) (18) 

produce right-half z-plane singularities, while the inte
grals 

/ 
dp{2) TABM(S+, ±Z!)TABM(S-, =*=*") (^) 

produce left-half s-plane singularities. The upper and 
lower signs preceding z' and z" are to be taken together 
in both (18) and (19). We can sum up these results by 
saying that when the factors in the integrand have either 
both right- or both left-half s-plane singularities then 
the unitarity integral itself has a right-half z-plane 
singularity. Whereas, a right-left or a left-right combina
tion produces a left-half s-plane singularity. I t is this 
property of the two-particle phase-space integral which 
allows us to construct unitary elastic scattering ampli
tudes of definite signature. Since it is these amplitudes 
we use to define the partial waves of definite signature it 
follows that they also are unitary for arbitrary angular 
momentum. 

When we go on to discuss three-particle states we will 
find that singularities do not combine within the three-
particle phase-space integral in such a simple way. In 
particular a left-right classification cannot be set up to 
predict the effect of combining two singularities. I t is 
the lack of this property which causes some of the com
plication in continuing the angular momentum. 

III. SIGNATURE AND THREE-PARTICLE 
UNITARITY 

In this section we wish to examine the effect of those 
pole contributions to the production amplitude T repre
sented by the diagrams in Fig. 2 together with those 
obtained by permuting (1,2,3). That is, we suppose, 

r = i l i ( M i ) + ^ » ( / i , « i ) + ^ » ( M 8 ) , (20) 
where 

Aifaud^Gi/imt-ti+Ti/itf-Ui). (21) 

If the particles were identical then, of course, the various 
masses and residues would be independent of i. 

Perhaps it is worth emphasizing that we do not regard 
Eq. (20) as providing a good approximation to T. Our 
main point is that a correct theory of complex angular 
momentum should at least be able to take into account 
the contributions included in Eq. (20). 

I t is convenient to think of the amplitudes as func
tions of the cosines of scattering angles, so that, we 

will write 
Ai(ti,Ui) = Ai(zi). (22) 

Each Ai, of course, also depends on s and Si and has a 
pole in both the left- and right-half **• plane. 

From unitarity we deduce that the contribution of the 
three-7r-meson intermediate state to the s discontinuity 
of TAB is 

AsTAB(sJz) = i(2wy / dp{3) T(s+,s1+,s2+,S3+,zhz2,zd) 

X r(^_ , < yi_^2-^3- ,2 i>2 / ^3 / ) , (23) 
where 

1 
dp(3) = d*pid*p3fiPp*8(p1*-mie

2)6fa2-mie*) 
(2TT) 9 

Xd(p*2-tn*2)5^(pA+pB-pi-p2-pz) • (24) 

Equation (23) holds for the symmetric and antisym
metric parts of the various amplitudes separately. 
Adding an s (for symmetric) superscript, we deduce that 

A8riiB
(*)(j,») = f(2ir)4 / dp(3) rw( j+ j s1+iS2+,sz+,zhz2,Zs) 

X r w ( j _ ; s-i,s^^iWfr'), (25) 
where 

T^s)(s; shs2,S3,zi,z2,Zz) = i[T(s; shs2,sd,zhz2,z8) 

+ T(s; si9 s2, sz, —zh —z2, —SB) ] . (26) 

In our case because of Eq. (20) we have 

T<B)(s;si,S2,sz,zi,z2,zz) 

= 4 i W ( « i ) + ^ ( l ) W + 4 s ( , ) W , (27) 
where 

Ai^\zi) = \Ui(zi)+Ai(-zl)-]. (28) 

The analytic structure of A allows us to write 

Ai^(zi) = KAiW(zi)+Ai^(-^'], (29) 

where Ai(+)(zi) contains only right-half £»-plane singu
larities. That is, 

G- T • 
AiM(zi)= _ % , >— \ : , (30) 

where 
nti2—Ufa) fXi2—Ui(—Zi) 

life) = » i 2 + « » T 2 - 2pAopio+2pApiZi, (31) 

Ui(zi) = mB2+mT
2—2pBopio—2pApiZi. 

If we substitute Eq. (29) into the right side of Eq. (25) 
and identify those terms which produce singularities in 
the right-half z plane, we find, 

A^TAB^Ks}z) = i(2Ty^fdp(3)A1^\z1)T1(+\z1\z2\z,,) 

+ jdp(3)AS+K*dTiM(z1W,**') 

+ jdp(3)A^(zz)T3^(z1\z2\zz
/)\ , (32) 
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where we have suppressed the dependence on (s,si,s2,ss) 
and 

T2
(+KzhZ2,zz) = AS+\-z1)+A2^(z2)+A^(-Zz), (33) 

Ts^(zhz2,zz) = A1^(-z1)+A2^(-zz)+Az^(z8). 

In obtaining this result we have made use of the fact 
that the integrals 

Jdp(3)Ai(zi)Ai(z/), (34a) 

/ dp(3) AiizMA-z/), i*j (34b) 

produce right-half z-plane singularities and that the 
integrals 

jdp(3)Ai(zi)Ai(-z/)9 (35a) 

/dp(3) Ai(z<)As(z/), i^j (35b) 

produce left-half z-plane singularities. 
To prove these statements it is simplest to regard the 

contributions to the integrals as the s discontinuities of 
various Feynman amplitudes.4 Diagrams representing 
typical contributions to (33a) and (33b) are shown in 
Fig. 3. The amplitudes corresponding to these diagrams 
have been intensively studied.5-7 In general they satisfy 
the Mandelstam representation with only an (syt) double 
spectral function. We shall ensure that this is so by 
requiring that 

mi>mA+MTy fXi>mB+mr (36) 

FIG. 3. Unitarity diagrams. 

4 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 
5 R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C. 

Taylor, J. Math. Phys. 2, 656 (1961). 
6 V. N. Gribov and I. T. Dyatlov, Zh. Eksperim. i Teor. Fiz. 42, 

196 (1962) [English transl.: Soviet Phys—JETP 15, 140 (1962)]. 
7 J. N. Islam and Y. S. Kim, Phys. Rev. 138, B1222 (1965). 

k \ _ J L _ ^ 

a 
FIG. 4. Unitarity diagrams. 

though these conditions are not crucial to our analysis. 
It follows therefore, that the Feynman amplitudes and 
their s discontinuities have singularities only in the 
right-half t plane. Since 

t(z)=-2pA*(l-z), (37) 

the same statement holds for the s-plane analytic struc
ture. The remaining contributions to (34a) and (34b) 
are subject to a similar analysis except that it turns out 
that they are functions of (s,u(—z)). Typical diagrams 
are shown in Fig. 4. Again, the fact that the correspond
ing Feynman amplitudes and their s discontinuities 
have singularities only in the right-half u plane implies 
that the same is true of the z-plane singularities, since 

«(—z) = mA
2+mB2—2pAopBo+2pA

2z. (38) 

Of course the integrals (35a) and (35b) can be ana
lyzed in exactly the same way with the results stated 
above. The reason for having to use an equation such 
as (31) was mentioned at the end of the previous section, 
namely, that the singularities of the production ampli
tude cannot be classified into two types. For example, 
when either A2(—z2) or Az(—zz) is taken along with 
Ai(zi) in the three-particle phase-space integral the 
result is a function with right-half z-plane singularities. 
Consequently, singularities of both these amplitudes 
might be thought to be of the same type as those of 
A i(zi) and, therefore, as each other. However, when 
taken together in a phase-space integral they produce a 
left-half s-plane singularity which would suggest that 
they were of opposite type. Clearly, then, a simple 
classification is not possible. 

It follows immediately that there is no way of organ
izing the complete production amplitude into one of 
definite signature which may be used along with its 
complex conjugate to compute the contribution of a 
three-particle state to the imaginary part of TAB

(+)(s,z). 
In other words it is not possible to construct unitary 
production amplitudes of definite signature. The analy
sis of this section suggests, instead, that it is necessary 
to construct three such production amplitudes 7Y+), 
2Y+ \ ?y+ ) , which are to be used along with incomplete 
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amplitudes of definite signature, Ai(+\ A2
(+\ Ad

(+) in 
computing the effect of three-particle unitarity. Further
more, the natural method of projecting out partial waves 
varies from one amplitude to another. We discuss this 
in the next section. 

It is worth pointing out that the results of this section 
imply that, whenever three-particle states are taken 
into account, there are necessarily two-particle ampli
tudes (and therefore trajectories) of both signatures. To 
assume the opposite leads immediately to the existence 
of a unitary production amplitude of definite signature. 
This state of affairs we expect to remain true even in the 
nonrelativistic limit. 

An exception to these remarks does arise, however, 
when one of the three incomplete amplitudes A{ 
vanishes, for example Gz=Tz=0, and the other two 
have poles of opposite kinds, for example, ri=G2=0. 
In these circumstances it is easy to show that all of the 
allowed unitarity integrals have singularities only in the 
right-half z plane. When the T mesons are identical, of 
course, this situation does not arise. 

IV. PARTIAL WAVES 

For integer angular momentum we define partial 
waves of the production amplitude T in a manner 
consistent with the definition of Omnes and Ales-
sandrini.1'2'8 That is, we have 

In our case, of course, there is at most one nonzero 
helicity index M because the production amplitude is 
invariant under rotations about the initial-state space 
momentum, which is chosen to lie along the space-fixed 
z axis. 

The rotation R which carries the space axes into a set 
fixed in the final state may be parametrized by Euler 
angles <p, 0, \f/. The meaning of these angles depends on 
how the final-state axes are chosen. Guided by the 
structure of the unitarity-like equation (31), we shall 
choose the final-state z axis along p̂  for the amplitudes 
T{(+) and A^+) (i= 1, 2, 3). In each case we shall choose 
the x axis to lie in the plane of the three final-state 
space momenta. 

As an example, we discuss the projection of 7Y+). In 
this case we have 

£l=COS0, 

*i=*i*«-( l-s i2)1 '2^-*! ,2)1 '2 cos^, (40) 
^3 = ^ 1 3 + ( l - 2 l 2 ) 1 / 2 ( l - ^ 1 3 2 ) 1 / 2 C O S t A . 

The amplitude does not, of course, depend on <p. 
The first step in the projection is to define an ampli

tude which describes the production of particles 2 and 3 
8 D. Branson, P. V. Landshoff, and J. C. Taylor, Phys. Rev. 

132, 902 (1963). 

with a helicity M along pi. That is we define 

1 r** 
r iV + ) (* i )=— / dte-w+T^iz^zs). (41) 

2ir Jo 

If we apply this procedure to ^4i(+) we obtain zero unless 
M=0. It follows then from the structure of Eq. (31) 
that we shall only need the case M= 0 for 7Y+) also. In 
calculating this function we encounter integrals of the 
form 

1 r27r df 

2irh &+^i2-(l-2i2)1 /2( l-^i22)1 / 2cos^ 

= [>fe,-2i2,si)]-1 / 2 , (42) 
where £2>1 and 

k(x,y)z) = x2+y2+z2—2xyz— 1. (43) 

Using this result, we find on performing the projection 
that 

1 1 Gi rx ] 
7Yo(+)(*i) = + 

2pApl> fl—Zl fl— 3lJ 

1 
+ {GalX^-Sia,*!)]-1 '2 

2pAp2 
+r2[*(f2, -*i2,*i)]-1/2} 

+ r3[£(r3,-*13,2l)]-1/2}, (44) 
where 

^i=(mi2—mA
2—fnr

2+2pAopio)/2pApi) . * n 0 //ieN 

fc=l, 2, 3. (45) 
U= (fii2—mB

2—M1
2+2pBopio)/2pApi, 

From Eq. (44) we can see that the si-plane singu
larities of ri>0

(+) are at the points 

2i=-^i2&±i(l-2i22)1 / 2fe2- l)1 / 2 , (46) 

«l=-«1 8f8=fci(l-0182)1 / 2(&2-l)1 / 2 

together with those obtained by replacing J by f. 
Clearly, then, this function has the complex singularities 
referred to by Omnes and Alessandrini.2 Their position 
in the complex plane is controlled mainly by zu and zu, 
which in turn depend on the energy and sub-energy 
variables (̂ ,̂ 1,̂ 2,̂ 3). When zi2 and zu are negative they 
lie in the right-half si-plane. When either 312 or zu 
becomes positive they lie in the left-half z\ plane and 
when the value + 1 is attained at least some of the 
singularities come together on the negative real axis. 
These singularities are illustrated in Fig. 5. 

Having performed the helicity projection the next 
step is to multiply by d0M

J(zi) and integrate from — 1 to 
+ 1. Since we have M=0, the completely projected 

TM(J)--
8W 

T®0M
J(R)dR. (39) 

2pA 

-{G3[&te,-Zl3,2l)]-1/2 
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partial wave of interest is, for integer / , 

1 /-i 
ZV+>(.7)=- dz1T1>0^(z1)PJ(z1). (47) 

2 J L I 

In order to continue to complex / we use essentially the 
same generalization of the Froissart-Gribov prescription 
suggested by Omnes and Alessandrini,2 namely, 

Tlt0^(J)=- [ dz1T1,0^(z1)Qj(z1), (48) 
wi J c 

whether the contour C is indicated in Fig. 5. Note that 
we have arranged the cuts attached to the singularities 
of 2Yo(+)(£i) so that this definition is possible so long 
as neither zi2 nor ziz is + 1 . Of course, we can deform the 
contour C so that it encloses the singularities and cuts 
of Ti>0

w(zi). It follows immediately that 

I 2V+>(/) | < i ^ l ' l / - > o o , (49) 

where K is a constant and \^w. Furthermore X only 
attains the value w when either z\2 or zu is + 1 , at which 
points the singularities of T1)0

(+)(zi) come down onto 
the real axis and pinch the contour C. 

The definition adopted by Omnes and Alessandrini2 

differs from this one in that they, in effect, choose 
7Yo(+)6zi) so that its discontinuities all lie in the right-
half z\ plane. Under certain circumstances (zu, zu both 
negative) this definition coincides with the one we have 
adopted. As z\2 or zu increases, however, we permit the 
singularities of ri)0

(+)(zi) to penetrate the left-half 
z\ plane while they, effectively, define a new function 
with these left-half plane singularities folded back into 
the right-half plane. Of course, both continuations 
coincide with the physical amplitude when / is an even 
integer. 

The advantage of the Omnes-Alessandrini definition 
is that the resulting amplitude has asymptotic behavior, 
for large / , which is less divergent (in general) than the 
amplitude we define. Our reason for preferring the 
definition we have adopted is that it is this continuation 
which enters, via unitarity-like equations derived from 
(31), into the evaluation of the three-particle discon
tinuity of the continued two-particle partial-wave ampli
tude. 

Finally we obtain an explicit formula for Tlt0(
+)(J). 

We express it in terms of the partial waves of the in
complete amplitudes Ai

i-+){zi). Define, for integer / , 

1 /-i 
A^(J)=- / <*W + ) (S<)PJ (** ) , (50) 

2 ./_i 

which can be continued to complex / by means of the 
equation 

1 
A^(J)= lGiQj(^+TiQJ(U)~]. (51) 

FIG. 5. Complex singularities in the Z\ plane. When Zi2« —1 their 
position is Ai, A2 and when z i 2 « + l their position is # i , B^ 

It is now a simple matter of applying the theorems about 
analytically continued rotation matrices, developed by 
Omnes and Alessandrini,2 to verify that 

ri>0(+)(/) = ^1(+)(/,^1) + ^2(+)(/ ,V 2)P /(-^l2) 
+A^(J,s,s8)Pj(-z13), (52) 

where we have explicitly exhibited the dependence on 
(s,si,s2,ss). The presence, in Eq. (52), of the Pj func
tions, makes clear what we already know from the 
analytic structure of Tij0

(+)(zi), namely, that this con
tinuation has bad asymptotic behavior (^ei7rJ) when 
either zu or zu is + 1 . 

Formulas for the partial waves of the other production 
amplitudes can be obtained similarly, for example, 

T2/^(J) = A1^(J,s9s1)PJ(-z12)+A2^(J,s,s2) 
+AB™(J,s,s*)Pj(-zn), (53) 

the final-state z axis being chosen, in this case, along p2. 

V. THREE-PARTICLE DISCONTINUITY FOR 
PARTIAL WAVES 

For integral values of the angular momentum the 
discontinuity formula becomes 

A 37W+)(J» 

= i(2ir)4 J dp(3) 4i<+>(/,vi)ri,o(+>(/,*; si,*,*) 

+ Jdp(S) A2^(J,s,s2)T2,o^(J,s; shs2,ss) 

+ J d^S) A^(J,s,s8)T3^(J,s;s1,s2jsz)\ , (54) 

where 
1 f1 

TABm(J,s)=- dzTAB^(s,z)Pj(z) (55) 
2J_i 

and 
1 7T2 

dp(3)= ds\ds2. (56) 
(27r)94* 
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s ^ C a V m / 

FIG. 6. Boundary of the (si}sz) physical region. 

For complex / , of course, TAB(+\J,s) is continued by 
means of the usual Froissart-Gribov prescription. 

The phase-space integration is carried out over the 
inside of the curve 

+ (Sl- 2m,2) (s2~ 2m/) (sz- 2m/) = 0 (57) 

which is illustrated in Fig. 6. 
Unfortunately it is not possible to continue Eq. (54) 

to arbitrary / as it stands because, while the left side 
satisfies the conditions of Carlson's theorem and in fact 
vanishes as / becomes infinite, the right side contains 
contributions which do not satisfy the conditions of the 
theorem. This is because zu, 213, 223 attain the value + 1 
on regions of the phase-space boundary. For example, 
that part of the curve (57), for which 212== + 1, is indi
cated in Fig. 6. 

The resolution of the difficulty involves replacing the 
simple, fiat, phase-space integration contour by one 
which is suitably deformed around some of the singu
larities of the integrand. When / is an integer these 
singularities vanish and the integration contour can 
resume its standard shape. I t is convenient to under
stand this resolution by considering as we do in the next 
section, a doubly projected partial-wave amplitude. 

VI. DOUBLY PROJECTED PARTIAL WAVES 

The three-particle phase-space integration may be 
written 

dp(3) = 
( 2 T ) « 

(*l/2-wiT)2 

dsl —— Y — — ) / dQ1dQ2Z, 

(58) 

all center-of-mass frame and dS223 is the same for q2 in 
the (2,3) center-of-mass frame. In terms of the Euler 
angle ((pflrf) we can write 

d&i=dcosdd<p = dzid(p, JS223=dx^dx//. (59) 

The fact that the Euler angle \p can be used in both 
frames of reference is due to the fact that they are 
related by a Lorentz transformation along pi which 
leaves \p invariant. Notice that d023 involves an integra
tion over %n and therefore over one of the subenergies. 

If we use Eq. (58) in order to evaluate the first term 
on the right side of Eq. (31) we find that it becomes 

i(2wy i dp(3)A: (+) 

(2TT)* 

(s,shzi)Ti 

(*l/2-T O r)2 

4mjr2 

ds 

where 

J4V+>(Vi,zi) = 
1 f 

z i ) = — / 7Y+)(>; shS2,shzi,Z2,z3)dQ23-
4 x i 

(60) 

(61) 

We can interpret Eq. (61) as creating an amplitude 
M"i(+) which describes the production of the pair (2,3) 
not only with zero helicity along pi but also with zero 
relative angular momentum in their own center-of-mass 
frame. The most general amplitude of this type with 
helicity M and angular momentum L would be gener
ated by inserting the spherical harmonic YLM(%\2$) as 
a factor in the integrand of Eq. (61). 

The reason for considering this type of amplitude is 
that the positions of its 21-plane singularities are rela
tively stable under variations of si. For the particular 
mass conditions we have imposed, Eq. (36), they remain 
on the positive real z\ axis for physical values of si. 

We can verify this by examining the effect of the pro
jection just described on the various terms of 7Y+ ) . I t 
has, of course, no effect on .4i(+)Cvi,2;i) which con
tributes, unmodified, to Mi(+K The effect on the other 
incomplete amplitudes may be illustrated by applying 
the projection to one of the poles of ^42

(+)(s,.?2,£2), for 
example the term, 

r 2 / 0x2 2 - ^ 2 ) . (62) 

Since the projection is made in the (2.3) center-of-mass 
frame, it is convenient to express the pole term as 

1 
(63) 

where 

where dQ% is the differential solid angle for pj in the over-

2qBq2 V2+J2 

i?2= dd22—mB2—m7r
2+2qBoq2o)/2qBq2. (64) 

The result of doing the projection is F(si,ti), given by 

F(sx,h)=(T%/2qBq2)Q*(m). (65) 



A S P E C T S OF C O M P L E X A N G U L A R M O M E N T U M B 1375 

FIG. 7. Singularity 
curves of F(si,h). 
The touching point 
between the curves 
is P. 

The singularities of F(si,ti) as a function of h occur when 

V2= ± 1 (66) 
and 

g*=0 . (67) 

In terms of si and t± these equations become 

m2 (si+mB
2— h)2+si (/x2

2— % 2 - mr
2) {si+mB

2— h) 

+si£k dj,22,ntB2,mT
2)+Si<rnB

2~] = 0 , (66') 

A(*I,WBVI) = 0 . (67r) 

The former curve (660 is a hyperbola in the (shti) plane 
and the latter (670 is a parabola. They touch at the 
point 

si = (M22— mB
2— m2)2lmB

2, 

h=W— mr
2)2/mB

2. 

Those parts of the curves which are singular on the 
sheet of interest are illustrated in Fig. 7. We can see 
that for SiKiixi—m^—m^Y/ms2, F(shti) has singu
larities at ti=ti(±\ the two roots of Eq. (660, 

^i (± ) = Si+mB
2+Si (ju2

2— mB
2— mir

2)/2mr
2 

=fc [>i {si- W ) X W^B2,m2) J i2/f2m2. (69) 

The attached cut may be chosen to lie between the 
singularities. For s{> (fjL22~-mB

2—/mir
2)2/mB

2, these two 
points remain singular and the larger root of Eq. (670 

t= (S^+MB)2 (70) 

also becomes singular. The additional cut may be chosen 
to lie between this singularity and t=h(~K I t follows, 
then, that for s{>4mv

2, the singularities of F(si,ti) lie 
on the positive real h axis and therefore on the positive 
real z\ axis. 

The remaining contributions to M^+)(s,shzi) may be 
analyzed in the same way and the same conclusions 
drawn. Consequently, we have verified the statement 
made above about the positions of the singularities and 
cuts of M^+\ 

For integer values of / we can complete the double-
projection procedure and define 

MS+KJ&si)-
2 J - i 

I t can be continued to arbitrary values of J by the 
Froissart-Gribov prescription 

Afi<+>(7, ,V i ) = - : / 
iri J c 

dz1M1(s,shz1)Qj(z1). (72) 

Again C may be deformed around the singularities and 
cuts of Mi(+)(s,Si,Zi) and from what we have pointed 
out about their position we can deduce that, for large J, 
the partial wave Mi(+) (J,s,Si) is bounded by Ke~y ReJ, 
where K is a constant and 7 > 0 . 

I t is clear from Eq. (60) and corresponding trans
formations of the other contributions to the right side 
of Eq. (31) that we can write, for integral / , 

A8ZW+>(/s 

i r< 

(2*)*]*. 

.( . l/2-m i r)2 T2piq2 

dsi 
( 2 i r ) * . / w ( W l )

1 / 2 

X^i ( + ) ( / ,^ ,^ i ) l f i ( + ) ( / ,^^ i )+other similar terms. (73) 

Furthermore, since both sides have continuations to 
arbitrary / which obey the conditions of Carlson's 
theorem, Eq. (73) remains correct for arbitrary J. How
ever, the comparison between the two types of partial 
wave, which we undertake in the next section, shows 
how we can use Eq. (73), which uses doubly projected 
amplitudes, to deduce the correct modification of Eq. 
(31), which uses singly projected amplitudes. 

VH. COMPARISON BETWEEN SINGLY AND 
DOUBLY PROJECTED PARTIAL WAVES 

For integral / , the relationship is straightforward, 
we have 

16w2J 

X T^+)(s; SI,S2,SB,ZI7Z2,ZH)PJ(ZI) . (74) 

Using expressions (59) for the differential solid angles 
we find 

Af i<+>(/: 

1 /-i 

2 7_i 
dxi2 TltQ<+)(J,s; shs2,sz), (75) 

so that the (2,3) relative angular momentum can be 
projected out last. The relationship between xn and 
(si,S2) is 

#12= (s2+Si—2q10q2o—2mv
2)/2q1q2 (76) 

so that 
dxi2=ds2/2qiq2. (77) 

Therefore, 

dziM^isfy^Pjizi). (71) MS+KJ,* 
I /.s2(+) 

, * ) = — ds2Tito<+'>(J,s; si,s2,sz), (78) 
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FIG. 8. Integration contour deformed around 
singularities of the integrand. 

where S2(±) are the largest and smallest roots of Eq. (57), 
that is, 

s2
(±) = 2m2-\-\ (s— si— m2) 

± § [ ( * - 4m.2)X (s,shmf)/sijl*. (79) 

If sc is the value of s± for which S2(+) attains a maxi
mum, then, as indicated in Fig. 6, when 4wT

2<^i<^c, 
neither 212 nor 213 attain the value + 1 for any of the 
physical values of S2* It follows, therefore, that, when 
4mv

2<si<sC9 Eq. (78) may be continued to arbitrary 
values of / since both sides satisfy the conditions of 
Carlson's theorem. However, if Si>sc, 212 becomes + 1 
when ^2=^2(+) and 213 becomes + 1 when $2=S2C~). 
Under these circumstances the right side of Eq. (78) 
fails to satisfy the conditions of Carlson's theorem so 
that it cannot be used, as it stands, for arbitrary J. 

The way to overcome the difficulty is to notice that 
Mi(+)(/,^^i) is an analytic function of si. If we con
tinue both sides of (78), therefore, from values of si near 
4m,r2 to values greater than sc we should be able to 
deduce an expression for Mi(+) (J,s,si) with s± in this 
latter region. In making the continuation we will have 
to allow for the necessity of deforming the integration 
contour around the singularities of 7V+) (/,,?; Si,S2,Sz). 

If we refer back to the definition of AiW(J,s,Si) 
[Eq. (51)] we see that it can be written 

4*(+) ( / , v 0 = (fiApiVBiM (J,Vi), (80) 

where B^+) (J,s,S{) is an analytic function of Si at points 
where pi vanishes. It follows, then, from Eq. (52), that 
Tito

(+)(J,s; Si7S2,Sa) is singular when 

5 2 = (^1/2— m^Y, 

$ 3 = ( s 1 / 2 — W , r ) 2 

(81a) 

(81b) 

and also at points on the boundary curve, Eq. (57), 
where 212=+ 1 and 213= + 1 . The singular curves (81) 
both touch the edge of the physical region when Si=sc, 
as shown in Fig. 6. 

As si is continued towards the value se, the end point 
of the integration contour in Eq. (78) s2

(+) moves 
towards the singularity (81a) while ^2C_) moves towards 
(81b). In order to avoid a coincidence of the end points 
with singularities of the integrand we reach values of 
si beyond sc by continuing clockwise in the complex 
Si plane round this point. Both ends of the integration 

contour become deformed round their respective singu
larities. For simplicity we discuss only the deformation 
of the contour attached to 52

(+) which is illustrated in 
Fig. 8. The deformation at the other end is, of course, 
quite similar. 

In Fig. 8, the cut which lies between 52=^2(+) and 
S2=(sll2—m7r)

2 arises from the cut l_^2i2<°° of the 
functionPj(—212).The cut lying between $2= (sll2—mir)

2 

and S2= {sl,2-\-m1T)2 arises from the singular factor (j>%)J 

of AzM(J,s9S2). The integration contour passes above 
the former of these cuts through the latter onto the 
second sheet of p2 and back down to $2(+), which is non-
singular on this sheet. From an examination of the 
effect of continuing 212 and p2 along the integration 
contour it can be verified that part of the integration 
contour, which lies outside the physical region, can be 
reduced to a simple integration from s2

(+) to (sll2—mir)
2 

with an integrand 

£2
(+)

 (JWJPAWPA-ZU)- (e-t'ptypjOto)! 
= ~ ^ 2

( + ) (/,V2)2/TT sin7r/<2/(212). (82) 

If we had continued anticlockwise round sc, we would 
have obtained an «y2-contour with the complex-conjugate 
deformation. However, we would have been able to 
reduce the result to the same simple integration as 
above, thus confirming what we already know, namely, 
that Mi(+) (J,s,si) does not have a singularity at s=.sc. 

We continue to use Eq. (78), then, to compute 
M^+) (J,s,si) even for values of Si>sc, provided we take 
into account the deformations at the ends of the S2 con
tour. It is obvious, particulaly from Eq. (82), that when 
/ is an integer the deformation has no effect and is, 
therefore, optional. 

If we interpret the phase-space integration [Eq. 
(56)] as 

1 /7T 2 \ r(sl/2~™^2 

dp(3) = ( - ) / ds! 
( 2 T T ) 9 W . / W 

2(+) 
ds2 (83) 

and insert it into the first term on the right side of 
Eq. (54) with the S2 contour deformed in the above 
manner we see, immediately, that this term reduces to 
the first term on the right side of Eq. (73) even for 
complex J. If, then, we deform the phase-space integra
tions of the other contributions to this equation similarly 
in an appropriate way we will have constructed the 
desired continuation to arbitrary values of angular 
momentum. This completes our discussion. 

VIII. CONCLUSIONS 

In this paper we have tried to gain some understand
ing of the problem of continuing multiparticle partial-
wave amplitudes to arbitrary angular momentum. To 
simplify the problem we consider the effect of a three-
particle intermediate state on the imaginary part of a 
two-particle elastic scattering amplitude. 
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We were led immediately to consider how this three-
particle state affects the two-particle amplitudes of 
definite signature. Of course, an extensive understanding 
of the analytic structure of the relevant production 
amplitudes is necessary for a complete solution of this 
problem. However, we considered only the effect of a 
few simple pole contributions to these amplitudes. The 
result was still nontrivial for we found that it was not 
possible to construct a unitary production amplitude of 
definite signature. I t follows that taking into account 
three-particle states makes it necessary to discuss 
amplitudes (and, presumably, trajectories) of both 
signatures. 

Nevertheless, unitarity-like equations were obtained 
but they involved three different production amplitudes 
of definite signature matched, in the phase-space 
integral, with related incomplete amplitudes also of 
definite signature. In the exact case we would not expect 
to achieve a reorganization of unitarity quite as simple 
as our equations. However, we do believe that the idea 
of there being three different production amplitudes of 
definite signature will be useful in this case also. 

We projected out partial-wave production amplitudes 
(for integer angular momentum) using the same tech
niques as Omnes and Alessandrini. The natural choice 
for the z axis in the three-particle state was along the 
space momentum of one of the particles but a different 
particle was appropriate for each of the three amplitudes. 

Continuation in angular momentum was achieved by 
using a generalization of the Froissart-Gribov technique 
very similar to that suggested by Omnes and Ales
sandrini. Of course, we obtained three different analytic 
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continuations and they were all involved in the con
tinuation of the unitarity-like equations for the two-
particle partial waves. 

All three of the continuations suffer from the defect 
that there are regions on the boundary of the physical 
region for which they fail to satisfy the conditions of 
Carlson's theorem. However, we were able to overcome 
this difficulty by showing that they are to be used along 
with carefully deformed phase-space integrations when 
the angular momentum is complex. For integer values 
the deformation is irrelevant. The necessity for using 
deformed phase-space contours we expect to remain in 
the general case. 

We demonstrated the above result by introducing 
doubly projected partial-wave amplitudes. These were 
defined by projecting out, first, not only the helicity 
but also the orbital angular momentum of one pair of 
the three particles. Afterwards the total angular mo
mentum is projected out. The reason for introducing 
this type of amplitude was that performing the first two 
projections creates an amplitude whose analytic prop
erties as a function of the remaining scattering angle are 
rather satisfactory. They permit the doubly projected 
amplitude to be continued to complex angular mo
mentum in a manner which satisfies the conditions of 
Carlson's theorem. For this reason we believe, also, that 
these doubly projected amplitudes will have a role to 
play in a complete theory. 
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