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The recoil-proton polarization in elastic high-energy electron scattering on protons has been measured in
order to check the validity of first Born approximation in this reaction. The transverse polarization is pro-
portional to the imaginary part of the second order term (two-photon exchange term). 950-MeV electrons
produced by the Orsay Linear Accelerator were scattered in a liquid-hydrogen target at about 90° c.m.
The recoil protons were analyzed by a magnet system. Their polarization was then measured in a polar-
imeter constituted by a carbon scatterer and 4 spark chambers. The two transverse components of the
polarization have been calculated by a method derived from maximum likelihood. The component per-
pendicular to the scattering plane was found to be 0.0404-0.027. The transverse component in the scattering

plane was found to be 0.000+40.028.

I. INTRODUCTION
A. The Two-Photon Exchange Term

O far electron-nucleon scattering has been analyzed
using the Rosenbluth formula! for the elastic cross

section. In this formula it is assumed that only one
virtual photon is exchanged between electron and
nucleon, as illustrated in Fig. 1. Then the cross section
is proportional to a?= (¢%/%c)>

As pointed out by Drell and Fubini,? the higher order
corrections are expected to be small because of the
weakness of the electromagnetic coupling constant.

The largest corrections proportional to of would be
due to the interference between the one-photon and the
two-photon terms. Figure 2 gives the relevant Feynman
diagrams with two virtual photons. Among these, M1
and M2 contribute only to the radiative corrections,
which are calculated straightforwardly. On the other
hand, M3 and M4 imply a two-photon exchange be-
tween electron and nucleon. They cannot be accurately
calculated at large momenta because of the lack of
knowledge of mesonic effects. For example, resonances
in the BeV region can produce an enhancement of M3
and M4 amplitude, compensating partially the weak-
ness of the electromagnetic coupling constant.

Experimentally it is extremely interesting to in-
vestigate effects due to these two-photon exchange
terms. First, they can affect the linear dependence of
the cross section on tan*(6/2), which appears in the
Rosenbluth formula when the momentum transfer is
held constant and the scattering angle @ is varied. But
Gourdin and Martin® and Flamm and Kummer* pointed

Fic. 1. First-order Feyn-
man diagram.
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out that appreciable departure from the linearity can
only occur at small angles 6. Effectively up to now, no
deviation has been observed even at small angles.5:

Second, one can try to detect a difference in the cross
sections for electron-proton and positron-proton elastic
scattering. Here the difference is directly proportional
to the real part of the two-photon amplitude. Browman,
Liu, and Schaerf? obtain for a transfer squared of 19.5
F-2 a ratio ny/n_=1.084-0.04.

Third, one can measure the polarization of the recoil
proton. This polarization is proportional to the inter-
ference between the real part and the imaginary part
of the total scattering amplitude, that is, neglecting the
higher order terms, to the imaginary part of the two-
photon exchange term, since the first-order amplitude
is real.

We may notice that the last two methods, unlike
the first, give answers directly proportional to the total
magnitude of the two-photon effect and then may be
considered as more sensitive.

The recoil-proton polarization, owing to the con-
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Fi16. 2. Second-order Feynman diagram with
two virtual photons.
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servation of parity in electromagnetic interactions, must
be perpendicular to the scattering plane.

Several authors?#® have tried to estimate the order
of magnitude of the two-photon terms. Guerin and
Piketty,® using the isobaric model of Gourdin and
Salin® in order to evaluate the contribution of the
virtual Compton effect, have calculated the proton
polarization. They found a polarization less than 0.01
for electron energies up to 1 BeV.

B. Accuracy of the Polarization Measurement

From what has just been said, it is seen that the
polarization is probably of the order of 0.01 or less,
that is, from an experimental point of view, very weak.
So, the more accurate the experimental measurement,
the more interesting the result.

The accuracy of the measurement relies on two
things: the number of analyzed events and the smallness
of the systematic errors.

Sixty thousand pictures of the spark chambers have
been taken; 20 000 have been retained for trajectory
measurements. Finally, 10 000 have been used in the
polarization calculation.

We have tried to limit the experimental errors to a
0.01 level. In order to do so, the directions of the
trajectories have been measured with an accuracy of
0.05°.

Another cause of error is the uncertainty A4 on the
analyzing power A. The corresponding error on P is
given by AP/P=AA/A. One sees that if P is weak, it
is not necessary to know A4 with great accuracy. In our
case where we used a carbon scatterer, the analyzing
power was known to 59,

C. Choice of Kinematical Parameters

The 950-MeV electrons were scattered at a scattering
angle 8 c.m.=91.2° corresponding to a transfer ¢?=15.4
F~2. In this choice two considerations were taken into
account:

(1) The recoil proton energy of 324 MeV corre-
sponds to a good value of the analyzing power (about
0.6). For higher proton energies it becomes very weak
and one must slow down the protons before analysis
which means a loss of counting rate through nuclear
interactions.

(2) Two parasitic reactions are associated with the
one of interest. They are!*

vHp— ot
et+p— e+ p+a.

8 S. D. Drell and M. Ruderman, Phys. Rev. 106, 561 (1957).
% F. Guérin and C. A. Piketty, Nuovo Cimento 32, 971 (1964).
10 M. Gourdin and P. Salin, Nuovo Cimento 27, 193 (1963).
ﬂn We will discuss later the protons produced by the Compton
eitect.
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The associated protons are strongly polarized and must
then be separated from the elastic protons.!? In our
condition the maximum momentum of these protons is
29, smaller than the elastic one. So, a magnetic sepa-
ration is then possible. This separation would be more
difficult at smaller proton angle or large incident energy.

II. EXPERIMENTAL APPARATUS
A. General

The experimental arrangement is shown in Fig. 3.
A 950-MeV electron beam struck a liquid-hydrogen
target. The protons recoiling in a horizontal plane at a
mean angle §=40.3° were momentum-analyzed by a
magnetic spectrometer with a 19, resolution. We
selected protons in a 1.69, momentum band centered
on the elastic peak. These protons entered into a polar-
imeter where their transverse polarization was measured
by letting them scatter in a carbon block. The tra-
jectory of each proton before the carbon block was
determined by two spark chambers. In each spark
chamber we measured the coordinates of one trajectory
point with respect to the laboratory system. Then a
trajectory was determined by two points. The two
spark chambers were 60 cm apart in order to get an
accuracy of 0.05° on the direction. In the same manner
the trajectory after the carbon block was determined
by two other spark chambers 60 cm apart.

B. The Beam and the Target

We used the electron beam of the Orsay Linear
Accelerator in the “1-GeV” target room. Its energy
was 950 MeV. A slit in the magnetic deviation system
limited the energy dispersion to 19%,.

The beam was focused on a liquid hydrogen target
of a type designed by Walker et al.'* The beam spot
obtained on the target was about 5 mm in diameter.
The target cell was 10 cm long, 4 cm wide, 6 cm high;
the walls were made of 1 cm brass. The entrance and
exit windows were made of 60-u aluminum. Two pieces
of 5-cm brass close to the target cell reduced the
counting rate due to protons emitted from these two
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F16. 3. Experimental setup.

2 R. Querzoli, G. Salvini, and A. Silverman, Nuovo Cimento
19, 53 (1961).

18 T, K. Walker, J. P. Burg, and V. Round, Nucl. Instr. Methods
22, 138 (1963).



POLARIZATION OF RECOIL

windows. The protons scattered at an angle §=40° left
the target through a third window which limited the
useful target length to 4 cm.

A secondary electron monitor was placed behind the
target for measuring the beam intensity.

C. The Spectrometer

The spectrometer was made of two quadrupole lenses
and a uniform-field bending magnet. The aperture
and the length of the quadrupole pole faces were 20
cm and 30 cm, respectively. The maximum field gradient
was 1 kG/cm. The length of the bending magnet mean
ray was 2.50 cm and its radius of curvature was 4.33 m.
The pole gap was 7 cm.

The center of the first quadrupole was 1.8 m away
from the target and it was divergent in the horizontal
plane. The second quadrupole was convergent in the
same plane. With this choice the beam height at the
entrance of the bending magnet was small enough to
pass through the magnet pole gap. The distance between
the two quadrupole centers was 1.35 m and their
horizontal focal lengths were —0.9 m and 1.5 m,
respectively. The uniform-field magnet bent 845-MeV/¢
protons horizontally through 42° towards the electron
beam. The angle between the pole edges and the central
proton trajectory was 7° Multiple scattering in the
spectrometer was reduced by a helium bag.

The spectrometer focal line was 1.6 m behind the
exit face of the bending magnet. Kinematically the
elastic proton energy varies with its scattering angle,
so the momentum resolution on the focal line is limited
by the spectrometer horizontal aperture. This aperture
was determined by a slit in front of the first quadrupole.
For a 19, resolution this aperture must be less than 1
cm. Taking into account this kinematical energy
variation, a straightforward first-order calculation
shows that elastic-proton trajectories are focused on
another focal line, called focal line “with compen-
sation.”’ In our spectrometer this focal line was 0.9 m
in front of the ordinary focal line. Thus the momentum
resolution on this focal line “with compensation” is
independent of the spectrometer horizontal aperture
and is the same as for a zero aperture. So we could use
a large-aperture slit, 4 cm wide and 12 cm high, in
order to increase the counting rate. These slit dimen-
sions are determined so that no proton trajectory hits
a magnet pole piece. The momentum resolution ob-
tained on a focal line is also limited by the target
magnification. This is another advantage of the focal
line “with compensation” where this magnification is
rather smaller than on the ordinary focal line, when the
former is nearer the magnet exit face. Thus in our
spectrometer the target magnification was only 0.11
and we could use a relatively long target length of 4

1 T, C. Bizot, J. M. Buon, J. Lefrancois, J. Perez-y-Jorba, and
P. Roy. Compt. Rend. 260, 1617 (1965).
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Fi16. 4. Proton spectrum on the focal line “with compensation”
in a small scintillation counter.

cm. Finally the spectrometer solid angle was 1.6 msr
and the computed dispersion on the focal line “with
compensation” was 8X10~% cm™. The spectrometer
design was experimentally checked by the floating-wire
method and by measuring the spectrum of protons on
the focal line “with compensation” with the help of a
small scintillation counter. Figure 4 gives this spectrum
and shows that a 197, momentum resolution is achieved;;
that resolution is sufficient for a good separation of
elastic and inelastic protons.

D. The Carbon Scatterer and the Counters

The analyzing scatterer was placed 1.5 m behind the
spectrometer, Fig. 3. It was a carbon block 20 cm long,
18 cm wide, and 18 cm high. Passing through this carbon
block the protons were slowed down from 300 to 170
MeV.

The protons were detected and the spark chambers
triggered by an assembly of 8 scintillation counters.
These were made of SPF plastic scintillator connected
by light pipes to 56 AVP phototubes. The scintillator
dimensions are given in Table I.

TasLE L. Scintillator dimensions.

Height Width Thickness
Counter (cm) (cm) (cm)
SC1 7.5 2 0.5
E, E;, E; 7.5 0.3 0.5
SC2 5 9 1.5
SC3 5 2.5 1.5
SC4 17 17 1.0
SC5 18-cm-diam 1.5
disc

Counter SC1 was placed on the focal line “with
compensation” and counter SC2 was placed just in
front of the second spark chamber CH2. A main co-
incidence between SC1 and SC2 detected elastic protons
in a 1.69, momentum band. A ladder counter made of
three small counters E1, E2, E3 was used to center the
elastic peak on the 1.69, momentum band. It was
placed 10 cm behind the focal line “with compensation.”
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Counter SC4, just behind the carbon block, detected
the protons leaving the carbon block. Counter SCS,
just in front of the big spark chamber CH4, detected
protons not scattered in the carbon block. Counter
SC3 limited the width of the incident proton beam on
the carbon block and prevented some nonscattered

protons from passing outside of the counter SCS5.

E. The Spark Chambers

Spark chamber CH1 was placed just behind the focal
line “with compensation,” and spark chamber CH2 in
front of the carbon block. Spark chamber CH3 was
placed just behind the carbon block and spark chamber
CH4 60 cm behind CH3.

CH1, CH2, and CH3 were small 6-gap spark cham-
bers, 17 cm wide and 17 cm high. The plates were made
of 1-mm aluminum and were placed in grooves which
were milled 5 mm apart in walls of a Lucite box. Two
15-cm-diam windows made of 170-u Mylar allowed the
entrance and the exit of protons. CH4 was a 9-gap
spark chamber, 70 cm wide and 70 cm high. In order
to perform a range measurement of the protons plates
were made of 3-mm aluminum or copper, spaced 1 cm
apart. A 6-mm copper plate was placed in front of the
chamber. Thus elastic protons were stopped in the
chamber plates and the last spark of a proton track
gave the stopping plate. The four chambers were filled
with a mixture of 999, neon and 19} argon.

Each chamber was photographed on two sides. 8
pictures of the 4 spark chambers were obtained on the
same frame (24 mmX36 mm) through an assembly of
16 flat mirrors. The film advance system of the camera
was triggered by the same pulse as the spark chambers.

Fiducial marks were drawn on the sides of each spark
chamber and were photographed at the same time as the
sparks by lighting them with small flash spots.

F. Electronic Circuitry

A block diagram of the electronic circuitry is shown
in Fig. 5. The main coincidence 12 between SC1 and
SC2 gave the counting rate of elastic protons entering
the polarimeter. Three coincidences between each
counter of the ladder counter and the main coincidence
enabled to center the elastic peak on the polarimeter
axis. A coincidence between SC3 and SC4 detected good
protons entering and leaving the carbon block. A scat-
tered proton in the carbon block was thus detected by
a coincidence 12345, and spark chambers were triggered
on that coincidence pulse. We used coincidence circuits
of a type designed by Barna e al.® A blocking circuit
prevented the 12345 coincidence pulse from triggering
spark chambers during the camera dead time (approxi-
mately 1 sec).

The 12345 coincidence pulse triggered four 5C22

15 A. Barna et al., Nucl. Instr. Methods 7, 124 (1960).
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Fic. 5. Block diagram of the electronic circuitry.

thyratron pulsers. Each spark chamber’s high-voltage
plate was connected to a condenser (1000 pF for CH1,
CH2, CH3, and 2000 pF for CH4). The other plates
were connected to the ground by small resistors. Each
pulser shorted the high-voltage side of the condensers
of one spark chamber.

G. Shielding

Because of the small duty cycle of the accelerator
(3X1079), a large background was observed around the
spark chambers. To reduce this background to a small
enough level, thick shielding was needed: The liquid
hydrogen target was shielded by 10-cm-thick lead and,
behind the target, the electron beam passed inside a
helium bag, up to the target room exit. We also shielded
the exit of the bending-magnet gap against particles
scattered in the pole pieces. The polarimeter was placed
in a shelter with 1-m-thick heavy concrete walls and a
30-cm-thick concrete roof. Inelastic protons passing
outside the counter SC1 were prevented from entering
the spark chambers by stopping them in a 12-cm-thick
brass wall around counter SC1. We thus obtained less
than one background spark in each gap of the big
spark chamber per picture.

III. EXPERIMENTAL PROCEDURE
A. Alignment of the Spark Chambers

In each chamber we choose to measure the coordi-
nates of a point of the particle trajectory located in the
median plane of the first gap of the chamber. In order
to do so one must measure the coordinates of the corre-
sponding spark with respect to fiducial marks in the
spark chamber, and also the coordinates of the fiducial
marks of each chamber with respect to the laboratory
system.

With the usual small-angle approximation for the
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optical system, the relation between the coordinates x,
v of a point in the first-gap median plane and the coordi-
nate &’ of its image on one spark-chamber view on the
film is of the form

&' = (x+By+v)/ (@x+B8'y+").

The 5 unknown parameters (8, v, o/, 8/, v’) correspond
to the position of the optical center of the lens camera
(two parameters) and the position of the film plane
(3 parameters). To measure these “unknown’ parame-
ters one must photograph 5 fiducial marks, located in
the first-gap median plane. The position of these marks
(ABCDE) is indicated in Fig. 6. Five other marks
(A1 B1 C1 D1 E1) in the last-gap median plane allowed
us to calculate also the direction of the trajectory in a
spark chamber with respect to the AA1 and BB1 lines.
The direction obtained in this way is far less precise
than the computed direction obtained by measuring
the coordinates of two points in two successive spark
chambers. Thus we only check the agreement between
these two direction determinations.

In theory, once the coefficients 8, v, o/, 8/, ¥’ have
been determined on one photograph for each spark-
chamber’s view, one needs to measure only one fiducial
mark in each view at the same time as the spark track;
in practice the 5 marks were photographed about 10
times at the beginning and the end of each film and the
result of the measurements averaged. Furthermore,
both marks A and B were photographed at the same
time as the spark (this allowed us to correct for film
stretching).

The position of the fiducial marks of a given chamber
with respect to each other was determined accurately
with a cathetometer and a high-precision spirit level.
The typical error in a series of measurements was of the
order of 0.05 mm.

The positions of the chambers with respect to a
general laboratory system were determined before and
after each run with the help of a theodolite and a
cathetometer. The reproducibility of the measurements
for lateral or wvertical displacement was better than
0.05 mm. Longitudinal distances along the spectrometer
axis were measured with a ruler; the errors were thus
roughly 5 mm. During these alignments, and during the
data-taking runs, the temperature of the chambers was
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measured in order to correct for thermal expansion of
the spark-chamber Lucite boxes.

B. Adjustment of the Electronics

We first adjusted delays in the counters forming the
main coincidence 12. A gate circuit was opened with
this coincidence and we sent the pulses from each
counter, through this gate and a stretcher, to a pulse-
height analyzer. We then adjusted the high voltage on
each phototube in such a way that no proton signal was
lower than the coincidence threshold (1.5 V). We
adjusted the delay for each counter in order to form
the different coincidences. Since the counters are far
less sensitive to general room background than the
spark chambers, the amount of shielding we disposed
around the apparatus decreased the counter background
to an extremely low level. We could thus use a rather
large resolving time for the coincidences (2r=10 to 20
nsec) and still keep the random coincidences to an
extremely small value (less than 0.19).

The only counter the efficiency of which was critical
was SC4; this is due to the fact that particles scattering
to the right will pass closer to the SC4 phototube and
will give a bigger signal than those scattering to the
left. This effect could have caused a false asymmetry,
if the efficiency of the SC4 counter had not been 1009,
by selecting preferentially events scattered to the right.
Inefficiency in counters placed before the carbon block
cannot cause such an asymmetry; inefficiency in the
anticoincidence counter SC5 would increase the number
of scanned events, but again cannot cause false asym-
metry since these false events are rejected in the scan-
ning procedure.

During all our runs we have checked permanently
the spectrum in counter SC4, Fig. 7, and we estimate
that its efficiency was at all times greater than 0.997.

C. Checks on the Proton Beam

The momentum of the proton beam at the focal line
“with compensation” is given in Fig. 4. We observed
on the high-energy side a relatively uniform background
which corresponded roughly to the empty target back-
ground of 7 mesons or protons and probably to a small
amount (0.5%) of the so-called “ghost” protons from
reactions:

Y+p—o wt4n
)
attp—atd-p.

Below the elastically scattered proton peak we de-
tected recoil protons from the #° electroproduction or
photoproduction. From this spectrum, we calculated
that the maximum admixture of recoil protons from the
7 production, in the 1.69, momentum band we used
during the data-taking runs, was less than 0.19,. Using
the same spectrum and the cross section given by
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Stiening et al.!® we calculated an upper limit of 0.159,
on the contamination of recoil protons from Compton
scattering:

Yt+p—v+p.

During the data-taking run we permanently measured
the counting rate of the main coincidence 12 and the
coincidences between 12 and each of the small counters
E1, E2, and E3. This allowed us to keep the elastic
peak centered in the 1.6%, momentum band determined
by SC1 and SC2.

We also measured during our runs the counting rates
in the different coincidences. These are listed in Table
II.

IV. PICTURE SCANNING AND POLARIZATION
COMPUTATION

A. Scanning

The scanning of the 60 000 pictures obtained in the
experiment requires two operations:

(a) a selection of the pictures;

(b) for the selected pictures, the measurement of
spark coordinates and the computation of the
parameters of the proton tracks.

(a) Selection of the Pictures

In a good picture, we must see the proton track in
both views of each spark chamber.

The pictures will be measured if there is one track
and one track only in each chamber. There are few
pictures with no track in the small chambers but about
309, of the pictures show no track in the big chamber
CH4: a proton can be scattered outside this chamber
or can be lost by nuclear reactions in the counter SC4
or in the copper plate in front of the chamber. There
are also about 159, of the pictures showing more than
one track in the chambers. One of the tracks comes from

16 R. F. Stiening, E. Loh, and M. Deutsch, Phys. Rev. Letters
10, 536 (1963).

voits

a normally scattered proton but the other belongs to a
background particle or to an unscattered proton coming,
before the triggering pulse, during the chamber sensitive
time. As we cannot follow a track from one chamber to
another, these pictures must be discarded.

It would be helpful to reject pictures corresponding
to an inelastic carbon scattering with a carbon excitation
energy greater than 10 MeV, since the analyzing power
is not the same for the carbon levels at excitation ener-
gies of 15 MeV or more as for the levels excited at less
than 15 MeV. We would deduce the carbon excitation
energy from the range measurement performed in the
big chamber CH4. But we have found during data
analysis that some gaps of chamber CH4 had a rela-
tively small sparking efficiency (709%). This gives an
error on the measured range of some protons and an
error on the carbon excitation energy. We have found
also that the inefficiency of some gaps varies from one
place to another. If we do not put a limit on the carbon
excitation energy this inefficiency does not introduce
any bias into the polarization measurement, as we re-
quired to see at least two sparks for the tracks going
beyond the third gap in chamber CH4, and as the
probability of seeing less than two sparks under these
conditions is extremely small. But if we put a limit on
the carbon excitation energy, some events would be
rejected wrongly by gap inefficiency and if this varies
from one place to another a bias would be produced.

In order to remove this bias and to reduce the number
of events giving an inelasticity of more than 10 MeV,
we reject events in which the proton stops before the
fourth gap of the chamber CH4. Eighteen percent of
the pictures are excluded by this criterion.

In Fig. 8, we see that the number of events with an
inelasticity of 15 MeV or more is less than 6%,. In the
histogram, the computed inelasticity may be larger
than the real one because if a proton does not give a
spark in the last gap of its range, its computed energy
will be less than its real one.

As the fourth gap had a very small inefficiency and
as only a few protons stop in the plate just behind, this
procedure gives a very small bias.
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F1c. 8. Histogram of the recoiling C®2 excitation energy AE.

The rules for discarding a picture before the measure-
ment are then (1) no track in one spark chamber;
(2) more than one track in one spark chamber; (3) a
track stopping before the 4th gap of the big chamber
CH4.

(b) Measurement of the Pictures

In every film we measured the selected pictures and
also pictures of the 5 fiducial marks. On these we meas-
ured the coordinates on the film of the images of the
5 fiducial marks for each spark-chamber view. As we
have seen, this is enough to determine the relation
between the coordinates of a spark track point with
respect to fiducial marks and the coordinate of its image
on the film. About ten pictures of the 5 fiducial marks
were measured on each film in order to reduce the
measurement errors.

On the selected pictures we measured on each spark-
chamber view the coordinates of the images A and B
of the two fiducial marks, and the coordinate of the
track-point image located in the median plane of each
chamber’s first gap. From these measurements we
computed the coordinates x, y of that point with respect
to a reference system bound to the spark chamber.

As the position of the chamber’s fiducial marks had
been measured we deduced the coordinates of the four
points (one in each spark chamber) in the laboratory
system.

As a check we measured also for each view the angle
between the proton track and the bisector of the images
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of the AA1 and BB1 lines (Fig. 6). This determines the
proton track direction projected on each view and will
be only used as a check.

Then we computed the parameters of the track:

(1) The angle 6 between the proton track before the
carbon block and its track after the carbon block (Fig.
9) which is approximately the scattering angle. The
small difference is due to multiple scattering.

(2) The angle ¢ between the vertical direction and
the normal to a plane parallel to these two tracks. This
plane is also approximately the scattering plane.
Polarization of the protons would result in an asym-
metry in the observed values of ¢.

(3) The scattering point in the carbon block.

(4) The minimum distance p between the two tracks.
The smallness of p is a check on the coplanarity of the
two tracks.

(5) The limits ¢; and ¢2 of the possible angles ¢.
For some scatter points and scattering angles 6, not
all values of ¢ can be observed in pictures because there
are some values of ¢ which correspond to a scattered
proton track, passing either outside the counter SC4
or inside the anticoincidence counter SC5. The ob-
servable values of ¢ in these pictures are thus limited to
an arc (¢1, ¢2). An error on the position of the counters
SC4 and SCS5 introduces an error on the limits ¢; and
¢2 and we get a false asymmetry in the observed ¢
values. In order to suppress such an asymmetry in the
computation of ¢; and ¢, the counter SC4 was replaced
in the calculations by a larger imaginary counter and
the counter SCS by a smaller imaginary counter.

(6) The energy W of the protons if its scattering
angle in the target had been exactly 40.3°. W is com-
puted by taking the intersection of the track with the
focal plane “with compensation.”

(7) The scattering energy E of the proton on the
carbon nucleus. E is obtained by the intersection of the
proton track with the focal plane “without compen-
sation” and by taking account of the energy loss in
carbon before scattering.

(8) The inelasticity AE of the carbon scattering. AE
is computed from E and the proton range after the
carbon scattering.

(9) Aa; to Aag. Aca; is the angle between the pro-
jection of the computed proton track and the measured
direction in the jth view. The computed track is the

vertical direction

f Y

roton trajectory

before the carbon block

proton trajectol

carbon block after the carbon block

Fi1c. 9. Geometrical representation of the track parameters.
The line A’ is parallel to the proton trajectory A before the carbon
block.
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one calculated from the coordinates of the two points
in two successive spark chambers. On the other hand
the direction in the jth view was independently meas-
ured in the scanning as we have seen before.

The measurements were done with a scanning table
purchased from the Société Frangaise des Appareillages
de Télécommandes connected to a read-in-read-out 026
puncher from IBM. The projected pictures were nearly as
big as the chambers. The resolution was 0.1 mm in X and
7/1000 rad for the angle. The linearity in X was better
than 0.1 mm/1 m. The 22 000 pictures gave 110 000
punched cards (5 per event). The reconstruction of the
event was done with the UNIVAC 1107 of the Faculté
des Sciences d’Orsay. The results were registered on a
magnetic tape which was used as input for the polari-
zation computation program.

B. Polarization Computation
The program is divided in two parts:

(a) asecond selection of the events from the parame-
ters of the track in order to reject bad events;
(b) the estimation of the polarization.

(a) Selection of the Events
We give here the criteria for successive rejections.

(1) Rejection of an eveni in which one of the Aa is
bigger than a limit Aao. Figure 10 shows the histogram
of one of the 8 obtained angles Aa. In the neighborhood
of 0 the distribution is Gaussian and is due essentially
to the error in measuring the tracks. The average of Aa
would be zero if there were no bias in the scanning. In
fact the average A is only 3)X1073 rad, that is, 0.1 mm
on the coordinates of a point or 0.1 mm on the relative
position of A and Al. We choose Aao=>5¢, where o is
the standard deviation of the distribution: 4600 events
are so rejected. Sixty percent of the rejected events
come from a A« in the third chamber. They are caused
by protons scattering in that spark chamber or in the
counter SC4.

(2) Rejection of an event with a p bigger than 15 mm.
Figure 11 gives the distribution in p. Near 0 it is a
normal distribution with a 4-mm standard deviation.
This distribution is due essentially to multiple scattering
in carbon.

The events with p bigger than 15 mm correspond to
an error in scanning or to plural scattering in the carbon
block. Five hundred events were rejected in this way.

(3) Rejection of evenis with a W outside the range
318-329 MeV. Figure 12 shows the distribution in W.
SC1 selects the events with W in the range 318-329
MeV. Five events were outside this range and rejected.

(4) Rejection of events with a scattering angle in carbon
less than 8°. Figure 13 shows the distribution in . There
is a maximum at 6=10°. The cross section decreases
with increasing 6 and, on the other hand, almost all the
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Fic. 10. Histogram of one A« angle.

events with §<10° trigger the anticoincidence counter
SCS5 and are not registered.

We reject the events with < 8° because the analyzing
power of the carbon is poorly determined in this range
since multiple and plural scattering introduce error in
its computation: thus 2200 events are rejected.

(5) Rejection of events scatiered outside the carbon
block. Figure 14 shows the distribution of the abscissas
of the scattering point. We reject 2500 events scattered
outside the carbon block (in the plates of a spark cham-
ber or in a counter).

(6) Rejection of events for whick the observable values
of ¢ are limited by the two imaginary counters. We have
seen (Sec. IV A) that there are two imaginary counters
replacing the coincidence counter SC4 and the anti-
coincidence counter SC5. It may happen for some
incident tracks, scattering points and scattering angles
0 that the observable values of the ¢ angle were limited
by one of these two imaginary counters. It may also
happen that these values are limited by both imaginary
counters. For computational convenience we reject
these 1500 events.
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Fic. 11, Histogram of the minimum
distance p between the proton tra-
jectories before and after the carbon
block.
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(b) Polarization Computation

There are 9223 nonrejected events out of the 22 000
measured ones. Of these, 5083 events have ¢ values not
limited by any imaginary counter (we call them “com-
plete-arc” events). The other 4140 events have ¢ values
limited to an arc (¢1, ¢2) by one imaginary counter (we
call them “incomplete-arc’” events). We can set these
two event groups together by putting ¢,=0 and ¢.= 2w
for the first-group events.

For computing the polarization, we apply the maxi-
mum-likelihood method to the analyzed events. The
probability density f;(¢) for the azimuthal angle ¢ of
the 7th event is

1+4:(X sing+Y cose)
2014 A (X singi+ ¥ cosyi)]’

file)=

where A ;is the analyzing power for the ith event, X and
Y are the values of the horizontal and vertical com-
ponents of the transverse polarization,

wi=3(¢s— ¢1) for the ith event,
Yi=1(o1+ @) for the ith event,

;= (sinw,-)/w,; .
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Fic. 13. Histogram of the angle 6
between the proton trajectories before
and after the carbon block.
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The maximum-likelihood method gives
N A;sing;
x| :
i=1 L1+ A4,(X sing;+ Y cose;)

A N sing&i :I
— =0,
1+ A (X singi+Y cosy)

N A cose;
| .
=1 L14A4,(X sing;+Y coses)

A ms cosi; :|
— = O
14-Am:(X sing,+Y cosy)

We then make two approximations:

(1) We take the power series of both equations up
to the first order in X and V, getting

X Xi A2 (sin?pi—n sin®;)
+V 3 A &(sing; cosp;—n sing; cosy;)
=2 Ai(sing;—n; sing;) ,
X 3 A2 (sine; cosps—nd sinyg; cosy;)
+V X A2(cos?pi—n? cos)
=>; Ai(cosp;—n; cosy;).

2% 26 o indegrees

(2) We replace the coefficients of X and ¥ by their
expectation value in the zeroth order in X and Y,
obtaining

aX+0V =) ; As(sing;—n; sing;) ,
bX+CY= Zl Ai(COSgai-—‘m COS!,&,’) y
with
a=%3; A2(N\i—ps cos2yy) ,
b=7% > APy sin2y;,
c=% 2i AZ(\itpi cos2yi),
)\172 1'— 77’52 )
Mi= i COSw;—n2.

The second approximation allows us to compute the

bias of the estimation and its standard deviation. The

bias is of second order in X and V.
We find

X=0.000, Y=0.040.

The sign is given according to the Basel convention!7;
P is defined positive in the sense of the vector

n=k,xk,/|k.xk,|,
17 Proceedings of the Inlernational Symposium on Polarization

Phenomena of Nucleons, Basel, 1960, edited by P. Huber and
K. P. Meyer [Helv. Phys. Acta Suppl. 6, (1961)].
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where k, and k, are the momenta of the incident
electron and recoil proton, respectively.

C. Error Estimation

(a) Statistical Error

This is the standard deviation computed from the
method of estimation: we find that to the zeroth order

in X and ¥, we have
2(X)=c/(ac—b?), o2(¥V)=a/(ac—0b?).

The neglected coefficient of ¥ in ¢?(Y) is very small
(it should be zero if we consider only the complete-arc
events). We find, then,

a2(X)=0.021, o*(V)=0.021.

(b) Error in the Analyzing Power
There are three sources of error:

(1) The error assigned to 4; in the analyzing power

tables of Peterson!®; we took
AA/A~5Y,.

(2) The error in measuring 8 due to multiple scat-
tering in the carbon block. We obtain

AA/A~5%, (89 for 8~8°, 49, for §~11°).

(3) The error coming from the events in which the
carbon nucleus is left in an excited level higher than
10 MeV. We saw that we had less than 69, of such
events. As the absolute error is of the order of 0.1 for
these events, we get, then, on the whole, A4/A4 =0.99.

Adding these three errors quadratically, we get:

AAJA=19,.

Taking ¥=0.04, we get from this error
AY=0.003.

18'Y, Z. Peterson, University of California Radiation Laboratory
Report No. UCRL-10622, 1963 (unpublished).
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(c) “False Asymmeiry” Errors

They come from an error in the measurement of a
parameter of the proton tracks. More precisely, the
false asymmetry comes from the fact that some events
are improperly rejected or analyzed. In order to produce
a false asymmetry, the error must depend on the
azimuthal angle ¢.

(1) Error on the coordinales of a point of the track. We
must take into account only the systematic error. The
sources of error are:

(a) Errors in measuring the relative position of the
fiducial marks drawn on the chambers: less than 0.05
mm.

(b) Errors in measuring the chamber positions in the
laboratory system: less than 0.05 mm.

(c) Errors coming from the optical aberrations: we
found that the coordinates of the picture of a high-
precision ruler verify a homographic relation with an
error less than 0.1 mm.

(d) Errors in picture scanning: A film was scanned
independently by different persons and we computed
the distribution of the difference between the two
scannings. Table IIT gives the mean and the standard

TasLE II. Coincidence counting rates.

Counting rate

Coincidence (per sec)
12 9
34 3.7
12345 0.45
12345 with dead time 0.25

of the camera

deviation of these differences for both coordinates X
and ¥ of the four chambers. As there were 20 scanners
we think that the final error is less than 0.1 mm.

(e) Errors coming from the thermal expansion of the
chambers: We corrected the expansion of chamber
CH4; the error due to the expansions of the little
chambers is of the order of 0.1 mm for a variation of
10°C. As these 5 errors are independent, we may add
them quadratically and we obtain 0.2 mm for the errors

TaBrLe ITI. Average and standard deviation of the difference
between two measurements of four points X and ¥ coordinates,
one point in each of the 4 spark chambers CH1 to CH4. These two
measurements were obtained by two different scannings of the
same film made by two different persons.

X Y

Standard Standard

Average deviation Average deviation
Chamber (mm) (mm) (mm) (mm)
CH1 0.06 0.35 0.24 0.36
CH2 0.11 0.31 0.06 0.36
CH3 0.11 0.73 0.15 0.78
CH4 —0.05 0.74 0.05 0.70

PEREZ-Y-JORBA, AND ROY

on the X and ¥ coordinates. For the Z coordinate the
error is due essentially to the measurement of the
position of the chambers. It is about 5 mm.

In order to estimate the resulting error on the
polarization, we computed the polarization for a fic-
titious displacement of the chambers of 0.2 mm in OX
or 0.2 mm in OY or 5 mm in OZ. Doing this computation
successively for the three coordinates of the four cham-
bers and adding the resulting deviations quadratically,
we found that the error on the X and ¥ components of
the polarization due to an error in the coordinates is
0.0146.

(2) Errors on the position of the imaginary counters.
The effect of imaginary counters must be more severe
than the effect of the real ones in rejecting events: We
must make sure that an event rejected by a physical
counter will have been, a fortiori, rejected by the
imaginary one. But the imaginary counter must not
be too different from the physical one if we do not want
to lose too many good pictures. Two checks were used
to verify the accuracy of the fictitious counter position:

(2) We made maps of the events in the planes of the
fictitious counters in order to see that they did intersect
the real counters (Figs. 15 and 16).

(b) We computed the polarization for a displaced
imaginary counter. As long as it does not intersect a
physical one, the computed polarization does not vary,
but the number of analyzed events does, appreciably.
On the contrary, when the imaginary counter cuts the
physical one, the polarization varies very much but
the number of analyzed events in nearly constant (Fig.
17). We estimate the error corresponding to the fic-
titious counter position to be less than 0.003.

(3) Error due to an inefficiency of the physical counter
SC4. We saw that the efficiency of SC4 is better than
0.997. As we have always tested this efficiency, we can
tell that the polarization error from this source is less
than 0.006.

(4) Error due to an inefficiency of the 4th gap of the
chamber CH4. We measured the inefficiency of this gap
for protons stopping behind it, we found 98.39,--0.19.
We measured also the asymmetry of the inefficiency
with respect to the vertical median plane of the cham-
ber ; we found —0.060-+0.082 instead of —0.088+0.084
computed from the value of the ¥ polarization. The
asymmetry caused by the inefficiency of the fourth gap
is then —0.0015+0.0014. As there are only 879 of the
events which stop in the fourth gap, the correction due
to the ¥ polarization is —0.00024-0.0002 ; we neglected
the correction. It would be greater for the X polari-
zation: —0.0014-0.0002. We neglected it also and took
account only of the corresponding error: 0.001.

(5) Error coming from the selection of the pictures. A
bias may be introduced by the scanning selection of
pictures. In order to reduce and test this bias the
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selection was done twice by different operators. Then
we estimated the error introduced to be less than 0.001.

(6) Error coming from the rejection of events in Aa.
To reduce this error, we scanned once more the events
rejected in this way. We estimated the error to be less
than 0.002.

Table IV shows the estimated values of the different

“false asymmetry” errors. Adding quadratically all
these errors, we find 0.0165 for the ¥ component of the
polarization and 0.018 for the X component.

(d) Parasite Particles

To these three computed errors we must add a fourth
one coming from the omission of some corrections to the
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POLARIZATION OF RECOIL

TaBiE IV. Bias on the polarization component ¥ from
different “false asymmetries.”

(1) Error on the coordinates of the track points: 0.015
(2) Error on the position of the imaginary counters: 0.003
(3) Inefficiency of the physical counter SC4: 0.006
(4) Inefficiency of the chamber CH3: 0.003
(5) Error due to the selection of pictures: 0.001
(6) Error due to the rejection of events in Aa: 0.002

value of the ¥ component of the polarization. Indeed in
the proton beam there are few particles which do not
come from an elastic scattering e-p. These are:

(a) Particles which did not come from the hydrogen
in the target. They contributed 0.39%40.079, of the
total counting rate.

(b) Recoil protons in Compton scattering; y+p —
y+p. We saw that we had less than 0.159, of such
particles.

(c) Recoil protons from photo- or electroproduction
of 7 on hydrogen. We estimated that we had about
0.19, of such particles.

(d) “Ghost” protons, approximately 0.5%,.

We cannot compute the corrections to the ¥ com-
ponent of the polarization due to particles (a)-(d), as we
did not measure their polarization. Thus we considered
them as errors and we added the different errors
quadratically, obtaining 0.006.

When we added quadratically all the errors we
obtained the total error on the X and ¥V components of
the polarization 0.027 for the ¥ component and 0.028
for the X component.

Number of accepted events

9400
9200
9000
8900

F1c. 17. Polariza-
tion component Y
and the number of
accepted versus the
counter CF2 diame-
ter.
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"0.08.
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19 20 21 22 23
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(e) X Tests

We divided the 9223 analyzed events in different
groups according to the value of one computed parame-
ter of the tracks, and we checked the reproducibility
of the polarization as a function of these parameters
by a X2 test. By doing so for every parameter, excluding
of course the azimuthal angle of carbon scattering, we
obtained Table V. All the tests may be considered as

TaBiE V. Table of the values of the x? function.

Degrees
X component ¥ component of
Parameter X2 POC>X?) X2 P(>x}?) freedom
o 10.78 0.45 13.90 0.18 10
w 6.32 0.60 4.38 0.85 8
[/ 10.62 0.10 6.14 0.40 6
Abscissa Z
of the
scattering 0.72 0.95 495 0.25 4
point
b1-P2 0.95 0.30 5.45 0.02 1
Scanner 21.65 0.50 13.65 0.92 22
Film 32.64 0.32 25.12 0.70 20

satisfactory except the ¢;— @aX? test.

We divided the events into two groups: ‘“complete
arcs” and “incomplete arcs”; we found 0.003-£0.027
for the first group and 0.1102£0.037 for the second
group, with a X2 corresponding to a probability of 29.

We must first notice that in computing 14X2) the
probability of finding one of them corresponding to a
probability less than p is

g=1—(1—p)";
that is, for =0.02, ¢=0.25.

But as this is not enough to rule out the possibility
of a systematic error, we made some more tests.

We calculated, for instance, the polarization by
varying the radius of the imaginary counter. We
calculated also the polarization for events which are
in the neighborhood of the limit between the ‘“complete-
arc” group and the “incomplete-arc” group. We
checked also that the ‘“complete-arc” events were as
sensitive as the incomplete ones to any false asymmetry
bias—for example, to a chamber-alignment error. We
calculated also the polarization of these two events’
groups displacing artificially a chamber by 2 mm.

All these tests were negative. As we can exclude an
error in the program (the polarization of a group of
“complete-arc” events does not vary if we transform
them artificially into ‘“incomplete-arc’), we can say
that the probability of a systematic error is very small
and we conclude that the discrepancy was purely
statistical.
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Some Consequences of the Proposed C and T Violations in
Electromagnetic Interactions*

G. FEINBERG
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The model in which C and T are violated in the electromagnetic interactions of hadrons is considered
further. It is shown that in this model, the nucleons should have electric dipole moments of order 107 cm Xe,
comparable to the present upper limit for the neutron electric dipole moment. The effect of mixing between
7° and X°(960) on the decays #° — w%*e~, X0 — n%te™, and X0 — y%te~ is discussed, and some estimates for
the branching ratios are presented. It is found that the branching ratios of these to all »° and X° decays

may be about 19,.

I. INTRODUCTION

ECENTLY! it has been proposed that the CP-
violating decay? K;— 2m occurs through a com-
bination of the CP-conserving weak interaction, and a
P-conserving, CP-violating term in the electromagnetic
interaction of the hadrons. In this paper, some conse-
quences of this model are pointed out. These concern
the electric dipole moments of the baryons, and some of
the proposed direct tests of the C-violating electro-
magnetic interaction. The first of these points involves
only the assumption that the source of the CP violation
is electromagnetic. On the other hand, the analysis of
electromagnetic decays of hadrons involves some as-
sumptions about the SU(3) transformation properties?®
of the C=-41 electromagnetic current K, Some
remarks are also made about ways to distinguish elec-
tromagnetic C violations from strong C violations.

II. ELECTRIC DIPOLE MOMENT OF BARYONS

The existence of an electric dipole moment (EDM)
for the neutron or proton would be an indication of CP
violation for some interaction. It has been pointed out*
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that such a dipole moment could be generated by a
weak, CP-violating, AS=0, four-baryon interaction. In
the presence of such an interaction, one would expect
the EDM of a nucleon to be approximately

d~eGpm p sinf~ (10~ sinf) cm Xe, ¢))
where sind is a phase angle measuring the CP violation
in weak interactions. In the absence of a detailed dy-
namical argument to the contrary, one considers the
small magnitude of the ratio (K;— 2r)/K1— 27) as
indicative of the size of sind. Then one would expect
that if the CP wviolation is an intrinsically weak
interaction
sing< 1072,

and

)
d<102 cmXe.

This conclusion is insensitive to the existence or non-
existence of intermediate bosons.

Suppose,! however, that a term K,, even under 7,
occurs in the electromagnetic current of the hadrons.
Suppose further that the matrix elements of K, are
comparable to these of the regular electromagnetic
current J,. Then provided only that there are weak,
P-violating, AS=0, four-baryon interactions, as experi-
ment seems to indicate,’ one would expect the nucleon
to get an EDM of order

d~eGrmz~10"" cmXe,

©)
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