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The scattering of an electric charge from a magnetic monopole is discussed in a way which explicitly 
incorporates conservation of angular momentum. The Dirac quantization condition for the physical charges 
is derived from the correspondence principle and the requirement of rotational invariance. The same dis­
cussion shows that the initial and final states of the scattering reaction contain an extra spin, which cannot 
be associated with either particle alone. In the classical nonrelativistic theory it is known that such an extra 
spin appears, and that it may be identified with the angular momentum of the electromagnetic field. A 
quantized version of this nonrelativistic spin theory is obtained and shown to be equivalent to the Dirac 
theory based on a singular vector potential. The spin approach gives an interesting perspective on the rela-
tivistic monopole problem. Among the standard ^-matrix postulates, that of crossing symmetry must be 
modified or abandoned if a relativistic theory is to succeed. 

I. INTRODUCTION 

IN 1931 Dirac1 introduced the hypothesis of a new 
particle, the magnetic monopole. Such a particle, 

for which there is no experimental evidence,2 would be 
a source of magnetic field corresponding to a point-
charge source of electric field. He argued that if the new 
particle were to fit into conventional quantum me­
chanics, it must satisfy a quantization condition 

eg/fic=n/2, (i.D 
where g is the charge of the monopole, e is the electric 
charge of any other particle, and n is some integer. It 
follows immediately from this condition that all electric 
charges are integer multiples of a smallest charge, if 
even one monopole exists. Thus, the existence of mono-
poles would "explain" the quantization of charge. 

A semiclassical derivation of (1.1) was given by 
Wilson,3 who noted that for a static system of a charge 
and a monopole there is an angular momentum in the 
electromagnetic field, 

• / 
s= (Swc)-1 / dh rX (EXH) = (eg/c)A, (1.2) 

where fi is a unit vector from e to g. Quantizing s in 
units of \% recovers (1.1). 

The relation of Wilson's argument to Dirac's has 
remained obscure. In this paper, I show that the spin 
approach is indeed relevant and permits much insight 
into the quantum problem. In Sec. II, we shall see that 
general principles of quantum mechanics require the 
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presence of an extra spin in the initial and final states 
for scattering of a spinless monopole from a spinless 
charge. The same considerations also yield the Dirac 
quantization condition. Section III gives the non­
relativistic theory and demonstrates that the extra spin 
may be identified with the classical spin of Wilson. The 
relation to Dirac's formulation is made clear. Finally, 
in Sec. IV are found certain constraints on the un­
developed relativistic theory of charge-monopole 
scattering. 

II. THE CORRESPONDENCE PRINCIPLE 
AND THE S MATRIX 

Let us examine the consequences of some minimal 
requirements on a quantum theory of monopoles. For 
large impact parameter b, we may calculate the scatter­
ing angle in the impulse approximation. The force is 

F(r,v)=(*vA)XgrA2, 
giving 

Apt 
-00 

^F(voH-b,v0) 

= (2eg/bc)voXb. (2.1) 

If we write the final momentum p' in polar coordinates 
(0,<p) with the initial momentum p=juVo as axis, we may 
invert (2.1) to read 

h~-{2eg/cpe)0y (0«1) (2.2) 

where $ is a unit vector in the direction of increasing 
azimuthal angle <p in a right-handed coordinate system. 

The quantum-mechanical scattering of a spinless 
charge from a spinless monopole for an incoming plane 
wave must lead to an asymptotic scattered wave of the 
usual form, 

l U t t ~ («*'/')/(*, *>), (2.3) 
p=M. 

The logarithmic radial factors familiar in the Coulomb 
problem are not expected because the force here falls 
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off as r~z when the scattered particle is far away com­
pared to its impact parameter. 

If an incoming wave packet is constructed, applica­
tion of the method of steepest descent leads to a rela­
tion4 between the impact parameter of the wave packet 
and the angle of scattering 

b=(Vka) i , (2.4) 

where / = \f\ eia, Vk represents the gradient with respect 
to the initial wave number, and _L symbolizes the part 
of the resulting vector perpendicular to k. The parallel 
part contributes to a "time delay"5 which does not 
concern us here. We may rewrite (2.4) in terms of 6 
and <p as 

b = (k'-kf'kk){\/k)da/d cosfl 

-0(l/ksin6)da/d<p. (2.5) 

Comparing with (2.2), we obtain for 0<<C1: 

a~(2eg/hc)<p. (2.6) 

To appreciate the significance of this strange azi-
muthal dependence of the scattering amplitude we must 
turn to the well-known implications of rotational in­
var iance in quantum mechanics. Consider a transition 
from initial to final state described by an amplitude 
(o\T\i). If the resulting transition probability is to be 
invariant under rotations, we must require 

| (0\T\i)\ = | (Ro\T\Ri)\ = | (olR^TRli)]. (2.7) 

This implies 

{o\RrlTR\i) = ei*^{o\T\i). (2.8) 

The phase $(R) may not depend on | o) or | i) if (2.7) is 
to hold for arbitrary wave packets. Writing R—RiRi, 
we have, by successive application of (2.8), 

* ( 5 a « i ) = * ( ^ i ) + * ( « 2 ) . (2.9) 

Any rotation may be written in the form 

R1=R2R1-'R2-\ 

and so <£ is identically zero, or 

(olR-'TRli^iolTli), 

Rr*-TR=T. (2.10) 

If we call J the generator of rotations on \i) or \o) 
(assumed the same for both), then J is conserved, 

[ J , r>o , (2.ii) 
and we may think of J as a conserved total angular 
momentum. 

This brings out an important distinction between 
classical and quantum theory. In a classical theory with 
an arbitrary force law there is no reason to expect a 
conserved total angular momentum, even if energy and 

4 See, for example, M. Froissart, M. L. Goldberger, and K. M. 
Watson, Phys. Rev. 131, 2820 (1963). 

5 E . P. Wigner, Phys. Rev. 98, 145 (1955); M. L. Goldberger 
and K. M. Watson, ibid. 127, 2284 (1962). 

linear momentum are conserved. In quantum theory, 
general invariance requirements, combined with the 
linearity of the theory, guarantee the existence of a J 
which commutes with the S matrix. As a result, some 
classical theories might have no quantum analog, and 
others might have a quantum analog only for a re­
stricted class of parameters, in order to permit the 
existence of a conserved quantized total angular 
momentum. The latter case obtains in the problem at 
hand. The usual ground for conservation of angular 
momentum in classical theory is the existence of a 
rotationally invariant Hamiltonian. We shall see that 
there is such a Hamiltonian for this problem, but that 
it has a very peculiar nature. Quantization of the angu­
lar momentum appearing in the Hamiltonian leads to 
the Dirac condition. 

Returning to (2.6), suppose for the moment that the 
initial and final states are described, as is usual, only by 
the momenta of the colliding particles. Then (2.10) 
implies that (0|jT|i) depends only on k«k' and k2, or 
equally well, on E and 0, where E is the energy. This 
would contradict (2.6), which shows that f=(o\T\i) 
depends on <p. Thus, an extra factor % must be intro­
duced, which depends on some parameter other than 
the momenta. If we call L the generator of rotations on 
the momenta, i.e., the orbital angular momentum, and 
s the generator of rotations on the new parameter in x> 
then J = L + s may be the conserved angular momentum 
in (2.10). Matrix elements of T between states with 
different z components of s, m and m'9 will have a <p 
dependence a= {m—m')ip. Since {m—m') is an integer, 
we obtain the Dirac quantization condition that 2eg/foc 
is an integer. This argument, then, gives a necessary 
condition for the existence of monopoles, but does not 
show that the condition can be satisfied. 

One might think that the argument above is un­
necessary, that continuity of the wave function requires 
the Dirac quantization condition in (2.6). As we shall 
see in Sec. I I IC, this is not the case. 

Note that the spin s may not be identified as the 
intrinsic spin of the new particle, the monopole. If the 
monopole had a spin of magnitude S, then the maximum 
value of \m—mr\ would be 2S, and (2.6) would imply 
eg/ftc<S. By using projectiles of arbitrarily large charge 
e, one could always violate this condition. Thus, s may 
not be attached to either particle alone, but depends on 
both. 

We may summarize the assumptions and conclusions 
of this section thus. 

If (1) the quantum-mechanical theory of charge-
monopole interaction reproduces the large impact 
parameter, small-angle scattering implied by the classi­
cal Lorentz force law, and (2) the differential cross 
section is invariant under rotation of the initial and 
final momenta through the same angle, then: (1) the 
initial and final states may not be described merely by a 
product of wave functions for freely moving charge and 
monopole; an additional factor corresponding to an 
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extra spin s is required; and (2) the product of charges 
must obey the Dirac condition. 

In the following section, we shall find that the extra 
spin s may be identified with the classical-field angular 
momentum of Wilson, in a nonrelativistic theory. By 
treating s as an independent variable, we shall obtain a 
rotationally invariant Hamiltonian in a post hoc 
justification of the existence of a conserved total 
angular momentum. 

III. NONRELATIVISTIC THEORY 

A. The Classical Case 

The equation of motion6 of a charge e with mass JJ, in 
the field of a fixed monopole of charge g is 

M r=(^A)rXrA 3 . (3.1) 

It follows immediately that v= \i| and |L| = |rXjur| 
are constants of the motion. Thus, in the revolving 
plane containing the two charges, with L as instantane­
ous normal, the charge moves in a straight line with 
uniform velocity whose magnitude is v. The distance of 
the line from the origin is the impact parameter b. This 
yields the relation 

r=[(tf)2+J*]1/2. (3.2) 

The problem is reduced to finding the motion of the 
revolving plane. To do this, recall the spin s introduced 
in Sec. I, s= (— eg/c)r. Taking J = L + s , one may deduce 
from (3.1) and this definition that 

dJ/dt=0, dJ-s/dt=0, dJ*L/dt=0. (3.3) 

All that remains is to compute the time dependence of 
co, the azimuthal angle of s about J. With the help of 
(3.1)-(3.3) we obtain 

co= (Z*+*W/if*= {eg/pc cos^){l / [« 2+6 2 ]} , 

coty=s/L=eg/jjivbc, 
leading to 

co (oo) = egw/vbfic cos\f/=x/sin^. (3.5) 

Finally, the polar scattering angle 0 and differential 
cross section are given by 

cos0= — cosY+sin2i/' cos(7r/sin^), 

da (eg/'avc)2 sim/'/cos4^ 
— = ^ — - . (3.6) 
dQ 12 sin^[l — cos (7r/sin^)]—ir sin (TT/SUI^) | 

The motion is on the surface of a cone, with axis J and 
half-angle \f/. The cross section at small 6 is like that for 
the Coulomb scattering from a fixed charge e'=gv/c. At 

6 The classical trajectory has been treated, for example, by 
H. Poincare, Compt. Rend. 123, 530 (1896); M. Fierz, Helv. Phys. 
Acta 17, 27 (1944); I. R. Lapidus and J. L. Pietenpol, Am. J. 
Phys. 28, 17 (1960); G. Nadeau, ibid. 28, 566 (1960). Note that 
this calculation applies equally well to the motion of a charge and 
a monopole of finite mass if r is taken as the relative coordinate, 
and /x, as the reduced mass. 

large angles da/dti has integrable singularities, with a 
cumulation point at 6=T, which occur because 6 is a 
bounded oscillating function of b"1. In geometrical 
terms, the charge spirals around the cone more and 
more often as b goes to zero, and can scatter through 
the same polar angle for several different trajectories. 

Since there is a conserved total angular momentum, 
it should not be surprising that there is a Hamiltonian 
formulation of the problem. Consider 

H=p*/2»+ (J2-s2)/2Mr2. (3.7) 

Since L and s are perpendicular, this is precisely the 
kinetic energy of the charge. However, we may interpret 
H as a Hamiltonian, provided s is taken as an angular 
momentum with independent degrees of freedom, obey­
ing the Poisson-bracket relation, 

{siySj} = — eijkSk. (3.8) 

The equations of motion become 

i={H9T)={l/»)\j>-(tXs)/f*l, 

p={F,p} = - ( l / ^ 2 ) [ p X s ~ 2 ( p X s ) . r r ] , 

s= -dl/dt= (LXs)/V2= (JXs)/V2 , 

df/dt= (LX/0/V2+ (sXf)/fxr2= (JXr)/>2 . (3.9) 

It follows immediately that if the condition s= (—eg/c)f 
is imposed at one time it will remain true, and all the 
unwanted terms in (3.9) will disappear. 

In Part B, the Hamiltonian (3.7) will be used in the 
quantum problem to obtain a solution along the lines 
required by Sec. II. 

B. Quantum Theory for the Spin Hamiltonian 

For the quantum case, we interpret the momentum 
operator in (3.7) as p=— iitV, and the spin s as a 
quantum-mechanical angular momentum hs with the 
commutation relations sXs=is . Since H is positive 
definite, there are no bound states,7 and we need only 
determine the scattering solutions of H^=E$r. First, 
note that 

[s^,£T]=0. (3.10) 

This may be deduced from the fact that J = L + s , and 
L generates rotations on f while s generates rotations 
on s. Therefore, J leaves s • f invariant; since H contains 
only J2 and operators on r, (3.10) follows. However, if 
the ratio of L«s to L2 in H were changed, (3.10) would 
be false. 

Using (3.10), we may look for a solution which follows 
the classical analogy, obeying 

s-Wr= (-eg/he)* (3.11) 

which entails the Dirac quantization condition. The 
general case is treated in the Appendix, and we may 

7 But see Ref. 23. The absence of bound states was noted by 
Dirac, Ref. 1. 
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confine ourselves here to the case s== (fi/2)v, i.e., spin \. 
We take as incident wave 

*ino=e« ' ( j ) . (3.12) 

Since the Hamiltonian (3.7) leads to essentially 
constant phase shifts for arbitrarily high I, this incoming 
wave requires interpretation. The meaning is that wave 
packets constructed from the "plane-wave" solutions 
will take the form 

¥ (0 = e~
iHt lim eiHre-iH0T^imi, (3.13) 

r—»—oo 

where H0 is the kinetic energy alone. In practice this 
means that matching of \p to \pinQ is accomplished by 
evaluating Bessel functions from their asymptotic forms 
(kf^>l) for arbitrarily high /, and matching coefficients 
of e~ikr. 

Partial wave expansion gives 

*inc=Z {2l+l)ilji{kr)Pl(kcosB)XU9 (3.14) 

in standard notation, with 

*•-©• 

Converting the expansion to states of definite / gives 

*in„= E {(X+l);x[Pxix+*'iWx+i]X„ 

+P+1 sin6» a- $tI\'j\-iPM-i }>+&•}, (3-15) 

X = / - § . 

Examination of (3.7) shows that the true radial-wave 
function for a given J is jt(kr), with q given by 

5 + l = [ ( / + l ) 2 - ^ 2 ] 1 / 2 = C a + l ) 2 - i ] 1 / 2 . (3-16) 

Using the asymptotic form 

j f ( Z ) -> 2 - i s in ( 2 - fx /2 ) , (3.17) 

we match incoming waves to obtain ^ from ^ i n c : 

* = £ (~l)x^3i ,C(X+D(Px-Px+i) 

+ism6><r-^(P/+Px+i/)]Xw 

= 2 sin(0/2) £ ( - \)H-«jqW+P^) 

Xexp[i(o-/2).#]Xw, (3.18) 

The last step follows from the identity 

( A + l ) ( P x - i V ) = 2 sm2(0/2)(iY+Px+1'). (3.19) 

Thus, the exact solution is a spinor which always 
points in the inward radial direction. In fact, one may 
verify directly that (3.7) is diagonalized in the spin-J 
space by transformation to the radius-based coordinates: 

H' = expp (or/2) • 06~]H exp[ - i (a/2) • 0B~] 

-fi2\\ l r 1 
= -d r

2 H— dd smdde 
2fjL [r r2 Lsin0 

L-id,+$*9(l-co&)j\ } . (3.20) 
sin20 J J 

This Hamiltonian is identical with that of Dirac, (3.26), 
for the case eg/hc= db | , provided az is taken as az= =Fl. 
This is what we should expect from the angular-
momentum interpretation, since a positive product of 
charges corresponds to an inward radial s. 

To obtain the scattering amplitude, we look at the 
outgoing wave: 

*scatt= (<5<*r/r)F= (eikr/ikr)sm(0/2) 

Xexpp(or/2).#]Xw£ (-l)*-*(iY+Px + 1 ' ) . (3.21) 

For small 0, only the asymptotic summand is significant, 
yielding 

F ( 0 « l ) « - i sin(0/2)expp(o/2)- 06~]XU 

x £ (-i)(d/dcosd)(Pi+Px+1) 
x=o 

= -expp(o-/2) • fdJiXuleg(v/c)/2^ sin2(0/2)], 

f(6«lJ<p) = Xd^Xu=-e^\f\ 

= -e2i^l^*{d<r/dti)liK (3.22) 

As one examines this solution, it is helpful to consider 
the asymptotic behavior of the wave function. At first 
glance, the "interaction term" (2iur2)-1(a'L+J) appears 
to fall inversely with r2. However, for a plane wave eikz, 
the orbital angular momentum is ktXz, and the inter­
action falls only as r~l for directions perpendicular to 1 
This agrees with the crudest classical reasoning since 
the Lorentz force falls as r~d along a particle trajectory, 
but only as r~2 in orthogonal directions. If we look for 
an "asymptotic" \(/a which satisfies the Schrodinger 
equation through terms of order r^Efa, then eikz must 
be multiplied by a modifying factor. In the analogous 
Coulomb case, that factor is an imaginary power of 
(r— s).8 Here it turns out to be 

exp[- i («r /2) .#] , 

precisely the quantity required to transform H to H'} 

8 L . I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1949), p. 116. 
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the Dirac Hamiltonian (3.20). By inspection, this new 
H produces no terms of order r~l when acting on eikz. 
The initial condition that a plane wave come in from the 
—z direction requires an additional factor so that \f/a 

becomes ei(peikz. This azimuthal dependence may be 
checked against the explicit form (3.18), where it comes 
from the factor 

exp[>(cr/2)-£]. 

Acting on a function ei<p g(rfl), H diverges for 0=0. 
Thus, ypa must vanish on the positive z axis. In fact, it 
must go to zero as fast as 0. The result is that \f/a is only 
a reasonable asymptotic form if it is evaluated outside 
a cone 0<0O, and correction terms become small for 
kr6Q^>1. More simply put, the excluded region is a 
cylinder of radius p about the positive z axis, with 
kp2>l. This is reasonable because particles with impact 
parameter b<Kp are scattered significantly. The zero 
in ^ at 0=0 may be verified explicitly from (3.18). 
For fixed r and large q~ J, the spherical Bessel func­
tion jq(kr) takes the form j~(e/y/2)(2J+l)~l 

[ekr/(2J+l)y* A crude bound on sin(0/2) (Px'+Px+i') 
= (2/+l)^-.i/2,i/210 is found from \dJ\ <CJ622J,11 where 
C is a constant. Substituting these expressions in (3.18) 
gives the behavior near 0=0, \\p\<Cr6 for fixed r. 

This statement seems inconsistent with the divergent 
expression for / , Eq. (3.22). However, that expression 
was obtained with the assumption that all Bessel func­
tions could be evaluated in the large-r asymptotic 
region. That assumption is only valid for J<£kr, and 
therefore the series for / will really be cut off at J~kr. 
To see the effect of such a cutoff, let us look at the 
generating function 

(l+*-2a*)-1'*=£ &P\(x). 
x=o 

The truncated series for / may be estimated as the 
derivative with respect to 0=cos-1# of the generating 
function, with z taken as, say, (10)~llkr. This means 
that terms with \^kr will be suppressed by a factor XJJ. 
The resulting condition for / to agree with (3.22) is 
kr$2^>l. This is even stronger than the condition krd^>l 
that a plane wave be an asymptotic solution, but that 
is not surprising, since (3.22) diverges at 0=0, while 
a plane wave does not. The exclusion of krd2<l from 
the domain of expression (3.22) for / may be ex­
plained intuitively as follows. The differential cross 
section, and thence the scattering amplitude, diverge 
at small 0. This divergence corresponds to trajectories 

9 The spherical Bessel function is related to the ordinary Bessel 
function by jv(z) = (ir/2z)l^Jv+i/2 (z). For the asymptotic form 
see M. Abramowitz and I. A. Stegun, Handbook of Mathematical 
Functions, National Bureau of Standards Applied Mathematics 
Series-55 (U. S. Government Printing Office, Washington, D.C., 
1965), p. 365. 

10 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.), 7, 426 
(1959). 

11 See M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1957), p. 53. 

far away from the z axis, but, if 0 goes to zero for fixed r, 
the trajectory touches the z axis and should not lead to 
a divergence. It is worth noting that corresponding 
constraints apply to the interpretation of conventional 
asymptotic expressions for the Coulomb scattering 
wave function.8 

We have obtained a nonrelativistic theory consistent 
with the requirements of Sec. II. In Part C, we shall 
compare this theory with the Banderet12 solution of 
Dirac's equation for charge-monopole scattering. 

C. Quantum Theory with a Vector Potential 

Dirac's discussion1 of the quantum problem depends 
on the introduction of a singular vector potential to 
represent the field of a fixed monopole, 

A=g(0/r)tan(0/2). (3.23) 

This potential obeys the relations 

VXA= (gr/r2), (0^TT) 

/ A-Jx=-47rg, (3.24) 
J c 

where C is a small circuit about the line 0=7r. Thus, A 
corresponds not to an isolated monopole charge, but 
rather to a magnetic flux line extending from zero to 
infinity along the negative z axis, a long thin dipole. The 
charge-monopole interaction is introduced through the 
usual substitution V —•> V— (ie/hc)A. Since the z axis 
holds no special significance, one should be able to turn 
the dipole line in any way without changing the physical 
results. On making such a change, one finds that the 
wave function \//' which obeys the same equations as \p, 
but in terms of the new potential A', is 

^'(x) = { e x p [ ( ^ / f c ) / W . (A'-A)]ty(x). (3.25) 

We require the phase factor to be well defined. For 
paths which do not enclose the singular lines of A or A', 
the phase is well defined, since VX(A'—A) = 0. How­
ever, paths which encircle either singular line once lead 
to a phase change A$===b4jr(eg/fa). This must be a 
multiple of 2w; hence, the Dirac condition follows. 

This gauge or dipole line invariance has more than 
formal significance. As pointed out most forcefully by 
Aharonov and Bohm,13 a flux line which is not penetrated 
by the charge may still affect scattering. In particular, 
the diffraction pattern of an electron wave passing on 
either side of a flux line shifts by one fringe each time 
the enclosed flux changes by 2whc/e.u Thus, the dipole 

12 P. P. Banderet, Helv. Phys. Acta 19, 503 (1946). 
13 W. E. Ehrenburg and R. E. Siday, Proc. Phys. Soc. (London) 

B62, 8 (1949); Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 
(1959); 123, 1511 (1961); W. H. Furry and N. F. Ramsey, ibid. 
118, 623 (1960). 

14 This has been verified experimentally by G. Mollenstedt and 
W. Bayh, Naturwiss. 49, 81 (1962). An analog experiment using 
the Josephson effect in superconductors was done by R. C. 
Jaklevic, J. J. Lambe, A. H. Silver, and J. E. Mercereau, Phys. 
Rev. Letters 12, 275 (1964). 
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line would have an observable effect without the Dirac 
condition on the flux 4:wg. There is, then, a close con­
nection between the rotational invariance argument of 
Sec. I I and the gauge-invariance argument here. Note 
that if we omit these invariance conditions and allow a 
given line to be a line of observable singularity, then the 
wave function may be discontinuous or undefined for 
paths encircling this line. The resulting Hamiltonian 
would be an acceptable operator, but it would not 
describe the scattering of a charge from a magnetic 
monopole. To adopt the language of Dirac,1 there would 
be a "string" attached to the monopole, and the orienta­
tion of the incoming beam relative to the string would 
influence the scattering, thus violating rotational in­
variance. A specification of "monopole" position would 
require determination of a line, not a point. There would 
be an uncountable number of degrees of freedom, and 
the "monopole" would not be a particle in the usual 
sense. Thus, without the quantization condition, 
Dirac's H is appropriate for scattering from an infinite 
dipole with one end at the origin, but not for scattering 
from a monopole particle. This discussion explains why, 
in Sec. II , continuity in (p could not be required ab initio 
but only as a consequence of rotational invariance. 

Let us examine the solutions of Dirac's equation1 

when the quantum condition is obeyed: 

m2/2ix=H= (l/2fi)(p-(e/c)Ay 

h2 f l l r 1 
= j - d r

2 H — de sinOde 

2fjL[r r2Lsin0 

-(-^-^(l-costf))2 , 

s=eg/he. (3.26) 
For s=%> this agrees with (3.18). The solutions of 
(3.26) are obtained by separation of variables as16 

^jm=jq(kr)eim*ds„m,s
J(e), 

? + i = [ ( / + i ) 2 - - s 2 ] 1 / 2 , J^\s\} \s-m\ (3.27) 

where j q , again, is a spherical Bessel function, and dJ is 
a rotation function or helicity amplitude. 

Banderet12 obtained a scattering solution for a wave 
going in the negative z direction by requiring no <p 
dependence and insisting that the incoming wave be 
formally equal to 18(1—costf)^)"-1 e~ikr, as would be 
true in ordinary scattering theory. His solution is 
completely equivalent to (3.18) and its generalization 
in the Appendix. One might be disturbed about the 
argument of Sec. I I about <p dependence, but a little 
thought shows that the analogue to (2.4) in the presence 

15 These solutions were obtained by I. Tamm, Z. Physik 71, 141 
(1931) and by M. Fierz, Helv. Phys. Acta 17, 27 (1944). The radial 
equation is easily solved. The angular equation is best solved by 
recognizing that it is a special form of the differential equation for 
rotation functions. See, e.g., A. R. Edmonds, Angular Momentum 
in Quantum Mechanics (Princeton University Press, Princeton, 
New Jersey, 1957), p. 65. The earlier authors, following Dirac, 
tacitly assumed eg— — \eg\.I assume the opposite. 

of a vector potential is 

a' = a— {e/he) A-dx. (3.28) 

This yields 
a'^0, z —>+oo 

a ' - - (2eg/Ac) <p, z - » - oo (3.29) 

%——z. 

The relation (3.28) in fact both justifies and general­
izes Banderet's requirement of no cp dependence in his 
solution. The natural requirement is that a be inde­
pendent of <p for the incident wave. For a wave traveling 
in the positive z direction, this implies a^ {2eg/hc) <p, so 
that one obtains 

a ' ~ 0 , z~>— cc, 

<*'~+(2eg/hc)<py z - H - o o , (3.290 

k=+z. 
To recapitulate the results of this section, the non-

relativistic quantum problem of charge-monopole 
scattering may be solved consistently with the require­
ments of Sec. I I . Two approaches may be used, the 
Dirac method and the spin method. The two methods 
are completely equivalent. The Dirac technique pays 
the price of introducing an interaction which appears to 
be singular along a half-line, but in return it avoids the 
redundancy of the (2s+1)-component spin formalism. 
The Dirac wave function is obtained by a rotation of 
the spin wave function to radius-fixed axes. 

IV. RELATIVISTIC PROBLEMS AND 
CONCLUSIONS 

Unfortunately, there is no present relativistic theory 
of charges and monopoles (i.e., including antiparticle 
annihilation reactions).16 However, the results of Sec. I I 
imply conditions on such a theory which illuminate 
difficulties in recent attempts to construct one. 

In order to see this, we must pay attention to the spin 
in the initial and final states in the reaction 

e+g->e+g. (4.1) 

First of all, could this spin belong to a new particle? 
Clearly it could not. Aside from the fact that no energy 
or momentum is lost by the two charges, the require­
ments of unitarity forbid one to consider the spin as an 
independent degree of freedom. We have already seen 
that, at least at small angles, the scattering is dominated 
by the off-diagonal spin matrix element (—s\T\s). If 

16 Dirac (1948, Ref. 1), and N. Cabibbo and E. Ferrari [Nuovo 
Cimento 23, 1147 (1962)], have constructed field-theoretic 
equations of motion, but there has been no progress in obtaining 
even approximate solutions. Banderet (Ref. 12) discusses the 
relativistic problem in the sense of using relativistic kinematics for 
the Dirac electron. 
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the spin were an independent variable, then the optical 
theorem would fail because the spin-diagonal forward 
scattering amplitude would be negligible compared to 
the infinite total cross section. Because of the infinity, 
the optical theorem here only has meaning in terms of a 
limiting process for the unitarity relation at nonforward 
angles. However, this does not alter the conclusion that 
the unitarity relation applies to the amplitude with <p 
dependence factored out, and thus that the extra spin 
cannot belong to a new particle. The implication of this 
argument is that the azimuthal dependence of the 
amplitude is the only consequence of its spin structure, 
which in turn must be considered as purely kinematic, 
and not a reflection of additional physical variables in 
the problem. The spin may be defined in the center-of-
mass frame for the reaction, with the standard trans­
formations used to describe it in other Lorentz frames. 

The usual 5-matrix theory17 for particle reactions has 
several important postulates, including Lorentz in-
variance, unitarity, analytic dependence on the in­
variant variables of the reaction, and crossing sym­
metry. The last of these states that the amplitude for 
reaction (4.1) may be analytically continued to give the 
amplitude for the crossed reaction 

e+e-*g+g. (4.2) 

In conventional problems, for which all spins are 
associated with specific particles, there are well-known 
procedures for relating the direct to the crossed ampli­
tude. However, reaction (4.1) involves an extra spin 
which one would not expect to appear in (4.2). Thus, 
the crossing relation will not take a simple form, if it 
holds at all for this case, because the kinematic structure 
is different for direct and crossed reactions: "Naive" 
crossing symmetry must fail for charge-monopole 
interactions. 

This result is consistent with other considerations. In 
a theory with a conserved parity operator P, the 
monopole g must reverse charge under P.18 If g has no 
other internal quantum numbers, then P on g is like 
PC on other particles, where C is particle-antiparticle 
conjugation. It is easy to see that this definition implies 
that there is no contribution from one-photon inter­
mediate states to reaction (4.2). Thus, although there 
is a pole at zero momentum transfer in the direct 
channel, there is no pole at zero mass in the crossed 
channel. Once again we have a sign that crossing sym­
metry fails for this reaction. For monopoles (or charges) 
with spin, the 1—7 contribution might be nonzero, but 
it is peculiar that the crossed-channel pole should de­
pend on the particle spins, while the direct channel 
pole (determined by the correspondence principle) does 
not. 

17 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 
Benjamin, Inc., New York, 1961). 

18 This is seen most easily by requiring that the Lorentz force 
law (3.1) remain unchanged by parity inversion. See L. I. Scruff, 
Am. J. Phys. 32, 812 (1964). 

Recently, Zwanziger19 and Weinberg,20 in somewhat 
similar ways, attempted to build a monopole theory, at 
least for the small-angle scattering. Zwanziger found 
an amplitude with unacceptable analyticity properties. 
Weinberg, with a more restrictive definition of his 
theory, found an amplitude which was not Lorentz-
invariant. Both theories seem to incorporate crossing 
symmetry. From the point of view of this work, the 
inconsistency of these theories could not have been 
predicted, but their incompatibility with small-angle 
charge-monopole scattering was assured by the implicit 
incorporation of crossing symmetry. Indeed, the ampli­
tudes obtained do not even give the differential cross 
section correctly. 

In conclusion, we have seen that our present knowl­
edge of monopole theory may be derived from the 
correspondence principle and rotational invariance in 
5-matrix theory. One finds that the Dirac quantization 
condition holds for the renormalized or physical charges. 
Also, among the standard postulates of relativistic 
^-matrix theory, at least that of crossing symmetry 
must be modified for monopoles. Thus, if monopoles are 
found, at least a small revolution in present theoretical 
methods will be required to deal with them. If they do 
not obey the Dirac condition, even standard quantum-
mechanical postulates will have to be questioned. 
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APPENDIX 

Let us find the solutions for nonrelativistic charge-
monopole scattering for arbitrary integer values of 
2s=2eg/hc. 

The incoming wave is 

^inc=EK2/+l)fyi(*r)Pi(co^)jc(w=j) 

= Ez(2Z+l)iIii(*r)</,0W|/,0(g)>|v(fi)>, (Al) 

where the arguments f and z specify the axes of quanti­
zation of mi or ms, as the case may be.21 Since s-f 
commutes with H, we may write the projection of \pin0 

on states in which the magnetic quantum number of s 
is specified in the radial direction: 

(m(r)\tinc)=Y.i{2l+l)ilji(kr) 

X(/,0(f) | / ,0(^))^,m(r) |v©). (A2) 

If we also select states of definite / , then the angular 
part of the Hamiltonian will have a specific value for 

19 D. Zwanziger, Phys. Rev. 137, B647 (1965). 
20 S. Weinberg, Phys. Rev. 138, B988 (1965). 
21 Pi(cosO) = dool(0) = (lfi(r)\lfi(z)). See Rose (Ref. 11), pp. 

52, 60. 
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each / : 

(m\Pj\h™)=i:i(2l+l)ilji(kr)C(J,l,s;Q,m) 

X C (J,l,s; 0,5) (J,m (f) | J,s (z)>, (A3) 

where the C's are vector coupling coefficients.22 

Using28 

Hj 
2M 

T1 7 ( / + l ) - 5 2 -

2fx 
(A4) 

we can match i/'jne with the incoming part of eigenstates 
o f # : 

(m\Pj\<P)=i:i(2l+l)(-iyC(J,l,s;0,m) 
XC(J,l,s; 0,s)i-"e^-m^dm,/(e)jq(kr), (A5) 

q+i- ••L(J+iy-s>J' 

where we have used the standard definition of the rota­
tion functions or helicity amplitudes dm,s

J{6).2* With 
the help of the sum rule25 

Zi(2l+l)C(Jls;s0)C(Jls;m0)(-iy 

= ( 2 / + l ) ( - l ) J - ' « m f - . , (A6) 
22 E. P. Wigner, Group Theory (Academic Press Inc., New York, 

1959), Chap. 17. 
23 This is simply the quantum version of (3.7). The use of s2 

instead of s ( s+ l ) maintains agreement with the Dirac Hamil-
tonian. The distinction does not affect small-angle scattering, but 
it does maintain the positive definite character of H f or / = s. This 
is the lowest value of / consistent with the boundary condition 
s-f=— s, since s-r — J-r. 

24 Wigner (Ref. 22), Chap. 15; Edmonds (Ref. 15), Chap. 4; 
Rose (Ref. 11), Chap. 4; Jacob and Wick (Ref. 10). 

25 Rose (Ref. 11), pp. 41-42. 

we finally obtain 

(m(f)\ip)=e2is^m,-s 

XZj(2J+l)(-iy-H-«jq(kr)d-s,/(d), (A7) 

which is equivalent to the Banderet12 solution, and 
yields the correct small-angle behavior: 

i~s(z)\f\s(z)) « e2is«[(-\)-s/2ik~] 

XE,(2 /+l ) (*__, , / (0) 
eg(y/c) 

= i{—\ye
2^eglhc)<p . (A8) 

2 ^ 2 sin2 (0/2) 

The last expression is derived, following Banderet, by 
recognition of the coefficients in the expansion 

( l - cos^ ) - 1 = | E / ( 2 / + l ) C ^ _ S ( / ( ^ ) , 

C, -L d cos6>(l-cos^)-W_S)/= C O - K - l ) 2 ^ 1 . (A9) 

The integral Cj is obtained from successive integration 
by parts with the help of the Rodrigues formula,26 

d-SiS
J(co$rlx) 

(-l)J+sdJ-s(l-x)2s(l-x2)J~s/dxJ~s 

= . (A10) 
2J(J-s)l(l-x)s 

Of course, the caveat in the text about the inter­
pretation of the asymptotic scattered wave applies also 
to (A8). The required condition is krd2^>s. 

26 Edmonds (Ref. 15), p. 58. 


