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We construct a relativistic model field theory which yields an approximate SU(6) in variance. The Hamil-
tonian is Ho-{-H', where Ho is invariant under an inhomogeneous SL(6) with 36 translation generators PA* 
W is small, but it does not commute with the 32 unphysical PA ; and so its presence abolishes the problem 
of giving them a physical interpretation. Because of H', physical states involve a wave function of the un
physical momenta which, to a zeroth approximation, has no "spin-orbit" mixing and gives pure SU(6) 
states. Treating the small "spin-orbit" term as a perturbation leads to deviations from SU(6) symmetry. 
Other qualitative predictions of the model are: (a) that matrix elements should have an approximate SL (6) 
structure except insofar as they are sensitive to the detailed spectrum of intermediate states; (b) that the 
matrix elements should include "irregular" terms even in zeroth-order approximation; and (c) that there 
should be excited states which behave like approximately degenerate sets of incomplete SU(6) multiplets, 
and whose presence as intermediate states makes the model consistent with unitarity. The model does not 
include a parity operation, but the possibility of generalization to an inhomogeneous SU (12) group is briefly 
and incompletely discussed. The Wigner-Bargmann equations seem to arise naturally. 

1. INTRODUCTION 

IN spite of the successes of SU(6)1 and its relativistic 
generalizations,2-5 it seems impossible to construct 

a local, relativistic field theory which exhibits this type 
of invariance. The difficulty has been pinpointed by 
Wyld.6 Even without demanding locality, there tends 
to be trouble with unitarity.7 

In terms of a Lagrangian formulation, the trouble 
shows up in the Dirac kinetic energy a p , which is not 
SU(6)-invariant.8 One way out is to suppose that this 
term, for some reason or other, may be regarded as 
small, and used as a perturbation to give small correc
tions to SU(6).S Alternatively, it is not difficult to make 
the kinetic energy invariant by increasing the number 
of momenta from 3 to 35 or more4; but one then en
counters formidable problems of physical interpretation. 
The present paper seeks to answer the question: Can 
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one break the translational symmetry connected with 
the extra, unphysical momenta, and so abolish the 
interpretation problem, but at the same time retain an 
approximate SU(6) invariance? The answer suggested 
by our model is "yes". 

The model is as follows: The underlying broken 
symmetry is that of an inhomogeneous SL(6) group, the 
generators of the translations being chosen to transform 
as an Hermitian 36 representation of SL(6). The 
Hamiltonian is Ho+H'. H0 is constructed to be in
variant under the whole inhomogeneous SL(6) group. 
The natural way to attain this is to write H0 in terms 
of fields which are functions of 36-dimensional co
ordinate "vectors". Presumably most of the ordinary 
features of quantum mechanics may be generalized to 
this situation. This is so because the "vectors" have two 
important properties: (a) there is a single (sixth-order) 
invariant, and (b) "time-like" vectors may be defined. 
The little-group of a "time-like" 36-momentum is 
SU(6). Therefore single-particle eigenstates of H0 may 
be designated \p,s), where p is a "time-like" 36-
momentum whose invariant is fixed, and 5 stands for 
quantum numbers labelling the components of a par
ticular SU(6) representation. 

W has to break the 32 unphysical translational in-
variances. It inevitably breaks SL(6) invariance as 
well. But it can preserve the SL(2)XSU(3) subgroup, 
where SL (2) corresponds to the Lorentz group. For any 
36-momentum p. it is convenient to write p= (po*V,pna), 
where po is the energy, p the physical 3-momentum, and 
Pnai^O, * • *3, a— 1, • • -8) the 32 unphysical momenta. 
We shall also write q to stand for the pm* Assume that 
Hf is small, in the sense that its matrix elements are 
small compared with some mass M which is character
istic of Ho and which determines the spacing of the 
particle states ̂ described by HQ. Then, to a zeroth 
approximation, the chief effect of Hr will be to mix 
neighboring eigenstates; that is to say, ones which 
differ only in their values of q. Thus an eigenstate of 
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HQ-\-H' is approximately expressible as 

T.JdVqfs(q)\V,q;s). (1.1) 

In Sec. 3 we choose a simple form for H' and deduce 
a sort of Schrodinger equation for the wave function 
fs(q). The equation is the same as that for an harmonic 
oscillator in 32 dimensions, with the addition of small 
"spin-orbit" coupling terms. Aside from the scaling 
mass M, there is a dimensionless parameter X which we 
assume to be small, since Hf is small. Neglecting the 
spin-orbit coupling, the ground-state wave function is 

exp [ - (Poa2+pia2)/(6VWM*)~], (1.2) 

where i = l , 2, 3. If \<Kl, the "spin-orbit" terms are of 
order X compared to the main term, and their neglect to 
zeroth order is justified. To this approximation, the 
states^constructed from fs(q) are pure degenerate 
members of an 517(6) multiplet. 

If the "spin-orbit" corrections are treated by per
turbation theory, "spin-orbit" mixing [that is, SU(6) 
impurity] is found to order X. Mass splitting of the 
5*7(6) multiplets is of order MX4. 

The "Schrodinger" equation for fs(q) also has excited 
solutions, separated from the ground state by energies 
of order AfX2. To zeroth approximation, the excited 
states look like degenerate sets of incomplete SU(6) 
multiplets. There are "orbital" contributions to their 
spin and 5*7(3) quantum numbers, and they are not 
pure 5*7(6) states. 

In Sec. 5, we suggest rules expressing the restrictions 
placed on physical matrix elements by the approximate 
51,(6) invariance of the underlying theory. Symmetry-
breaking terms involving the (physical) 4-momenta 
("spurions," "kinetons" or "irregular" couplings5) 
appear automatically in zeroth approximation. They 
are in no way expected to be small. The restrictions on 
matrix elements are not expected to hold in regions 
which are sensitive to the exact spectrum of inter
mediate states (near thresholds, etc.), but elsewhere 
they are expected to hold. This does not contradict 
unitarity, since excited intermediate states simulate the 
continua of states (depending on q) which would be 
SL (6)-invariant. 

The model discussed up to this point does not contain 
a parity operation, so only its qualitative features are 
expected to be physically relevant. To include parity, 
one must enlarge the inhomogeneous SL (6) group. One 
possibility is to go to an inhomogeneous 5£7(12).3 But 
the underlying space then is not sufficiently like 
Lorentz space for it to be clear how to formulate quan
tum mechanics. One may nevertheless ignore this lack 
of understanding, and attempt to formally generalize 
some features of the 5L(6) theory to SU (12). In Sec. 6 
this line of thought is pursued far enough to show that 
the Wigner-Bargmann equations3 (as well as "irregular" 
couplings) appear naturally in such a generalization. 

The consequences of our models are summarized in 
Sec. 7. 

2. THE INHOMOGENEOUS SL(6) GROUP 

We are going to adopt an inhomogeneous 51,(6) 
group as an underlying symmetry, broken by a small 
term Hf in the Hamiltonian. We summarize a few 
properties of this group, which are mostly to be found 
in the papers of Fulton and Wess, Riihl, and Bacry and 
Nuyts.4 

SL(6) is the group of 6-by-6 complex matrices of 
determinant 1. To construct its representations, one 
must distinguish between upper and lower, dotted and 
undotted indices. To define an inhomogeneous group 
we need a set of real commuting generators with 
specified 51,(6) transformation properties. The usual 
choice is the 36-fold Hermitean representation Pafr. Its 
eigenvalues will be written pap, and a conjugate space 
will consist of the Hermitean coordinates a^9. This 
choice has the following important properties: (a) There 
is only one invariant, the determinant d e t ^ or detx**3. 
(b) The momenta may be classified according to the 
signs of their matrix eigenvalues. In particular, a 
momentum with dztpap>0 and all eigenvalues positive 
(negative) may be termed "positive (negative) time
like." 

One can introduce a complete set of Hermitean 
matrices hA= (l,<r.-,X«,ovXa), (A = 0,1, • • • 35; f = 1, 2, 3; 
a= 1, • • •, 8) where ai are the Pauli matrices and Xa are 
the 5*7(3) matrices defined by Gell-Mann.9 A momen
tum may then be expanded 

pafi=T,ApA(hAU. (2.1) 

For a positive time-like momentum with detpQp=M6, 
we shall find it convenient to use the notation 

pA = (pO,pi,pOa,pia) = (j>0,V,P?a) = (p0,V,q) (2.2) 

0-1=0, 1, 2, 3), where po=po(v,q,M)>M. To second 
order in p and q, there is the approximation 

p<f^M+ {W+kP*<?+kpia2)/M. (2.3) 

Using numerically the same matrices hAi we shall write 

x^=j:AxA(hA)W, (2.4) 

xA=(t,x\x0a,xia). (2.5) 

The representations of 5L(6) may be designated by 
a pair of integers (mfn) corresponding to the multi
plicities of the representations of two SU(6) groups. In 
this notation, pa$ is a (6,6*). Parity (defined, say, as the 
operation of reversing the sign of all 35 "space" axes) 
would involve (m,n)-^(n,m). Since (6,6*)?^(6*,6), 
there is no parity operator. The situation is different in 
5Z(2), because 2*= 2 for 5*7(2). In SL(6) a parity 
operation would exist if the momentum were chosen as 
a(20,20*) (since 20=20*); but in that case there would 

8 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
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be many invariants formed from a momentum, and it 
would not be obvious how to formulate quantum 
mechanics. 

We want a Hamiltonian Ho+H', such that HQ has the 
complete inhomogeneous SL (6) symmetry. We assume, 
without detailed verification, that such an Ho may be 
constructed by using Lagrangian field theory, the fields 
being functions of the 36 xA with x°=t playing the role 
of time. There will exist, for instance, a 36X36 stress 
tensor ®AB(%), such that 

PA= [d™x@A0(x), (2.6) 

where d?*x=dxl- • • dx*5. The causality condition, pre
sumably, is that two fields commute unless their 
separation is positive or negative time-like. 

The state vectors may be classified by the invariant 
M6 of their momentum and a symbol r denoting a 
representation of the little group. Since a positive time
like momentum becomes, in its rest frame, a multiple 
of the unit matrix, the little group is SU(6). Thus a 
single-particle state vector may be written 

| M ; M ; r ; s ) , (2.7) 

where s stands for the quantum numbers of a component 
of the SU(6) representation r. 

SL(6) contains the subgroup SL(2)XSU(3), where 
SL (2) can be identified with (the covering group of) the 
Lorentz group. The notation (j>o,pi; poa,pia)= (p^p^a) 
corresponds to labelling according to the transformation 
properties under this subgroup. In the "rest frame" 
(p=0, pm=0), one may choose s to include J , Jz and u, 
where u is a set of SU(S) quantum numbers, and J is the 
ordinary angular momentum defined by the rotation 
subgroup of SL(2). 

For certain representations r of SU(6), these quan
tum numbers (/ , J 3 and u) are sufficient to label the 
states. These representations include r = 3 5 , 56, 56*. In 
their rest frame, such states may be written 

|Af ;0 ,0 ; r , / , / 8 ,«> . 

In a general reference frame the same number of quan
tum numbers suffices; b u t / , Jz must be replaced by 
J'y Jz, which have a slightly more complicated defini
tion. The ensuing discussion is limited to SU(6) multi-
plets with the above property, otherwise complications 
concerned with mixing would be encountered. In 
particular, the representation 405, which has been 
proposed for the higher meson resonances, contains two 
vector octets, and so would require special consideration. 

3. THE SYMMETRY-BREAKING 
HAMILTONIAN 

The formalism of Sec. 2 leads to an exact SL(6) 
symmetry, but it suffers from the presence of 32-
momenta (or coordinates) which appear to correspond 

to nothing physical. Therefore we put a small term Hf 

into the Hamiltonian to break the unwanted transla-
tional invariances. I t seems to us that, even if H1 is 
quite small, it completely abolishes the problem of 
physical interpretation. 

In more detail, W must have the following properties: 

(i) I t must not commute with the unphysical 
PA(A = 4, . . . 35 ) . 

(ii) I t must preserve the subgroup SL(2)XSU(3). 
[We do not wish to complicate the discussion by break
ing SU(S) at the same time as SU(6), but of course this 
possibility should be examined.] 

(iii) Hf must give rise (see Sec. 4) to a "Schrodinger 
equation" for the physical states which possesses some 
discrete eigenvalues. I t is probably physically necessary 
for all the eigenvalues to be discrete. Our model has this 
property too. 

The simplest H' we have been able to construct which 
meets all these requirements is 

H'=X4Af2 / < F * 0 / (x) V»v (x), (3.1) 

where 
V^ (x) = x»axva— Ig^x^x^1. (3.2) 

In these equations &/ is a subtensor of the symmetric 
stress tensor &A

B defined in Sec. 2. I t is a function of the 
fields. V^ix) on the other hand depends explicitly on the 
unphysical coordinates, and so it breaks the unwanted 
translational symmetries. A tensor V^ rather than a 
scalar V seems to be necessary to satisfy condition (iii) 
above, by making the "potential" in the "Schrodinger 
equation" have a definite sign. The identification of 
© / with the stress tensor serves to restrict the form of 
its matrix elements. I t may not be necessary. 

I t is hardly to be supposed that (3.1) and (3.2) give 
the true form of the symmetry-breaking mechanism. 
We adopt them as a simple model, hoping that some of 
the conclusions are more general than the model. Pre
sumably the possibility of a spontaneous breakdown of 
symmetry ought to be explored. 

In the ensuing discussion, we shall need matrix 
elements of Hf between the single-particle eigenstates 
of Ho (2.7), 

< M ;* | t f ' | p ' ,<7 ' ; /> 

= X W 2 ( M ; 5 | 0 / ( O ) | p ^ ; ^ ) 

X / d^x F ^ ^ e x p p C p - p O - x + i ^ x a - ^ ' x a ) ^ ] 

= X 4 M 2 ( M ; . | 0 / ( O ) | M
/ ; / ) 

X (2T)*W(v-v')V%(i(d/dq'))5V(q-qf), (3.3) 

where labels M and r have been omitted from the state 
vectors for brevity. For the matrix elements of © / we 
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have, from Eq. (2.6), for the special case q=q', 

(27r)35(p; q; j | e ^ ( 0 ) | M ; *'>S3(p-p')532(?-Y) 
==(M;^I^MIP'^/;^)? 

or 
(2 , r ) "< M ; *|e„°(0)|p,g; s')=2p0pfidss, , (3.4) 

using "relativistic" normalization of the state vectors. 
Since the time component occurring in Eq. (3.4) is in 
fact the projection along an arbitrary time-like direc
tion, we must have 

(2TT) 3 5 < M ; S\ 0 / ( 0 ) | M ; s') = 2p»p*5ss,. (3.5) 

4. PHYSICAL STATE VECTORS 

Assume that the spectrum of eigenstates of HQ con
tains, among others, single-particle states separated by 
energies of the order of some characteristic mass M. We 
shall take the same mass M to be the mass of a particu
lar state under consideration. Assume farther that the 
matrix elements of Hf are small compared with M. Then 
the most important effect of Hf will be to mix states 
which have neighboring values of q but otherwise 
identical quantum numbers (in so far as the other 
quantum numbers may be compared when the q's 
differ). Further, the ground states of H0+H' will be 
formed mainly from small values of q. The effect is 
similar to that of a weak central potential on an other
wise free particle: it breaks the translational symmetry 
and alters the form of the original continuous spectrum. 
The way the spectrum is changed depends upon whether 
the potential is attractive or repulsive, etc. We shall 
shortly see that the choice (3.1), (3.2) for H' corresponds 
to an harmonic-oscillator potential, which produces a 
spectrum of discrete states only. 

For these reasons, we seek an approximate eigenstate 
of Ho+H' of the form (taking p = 0 ) . 

\E; r,JJz,u) = J z d V fAq')\M; 0,?'; r,s'), (4.1) 

satisfying 

(H0+H')\E; r,JJz,u)~E\E; r,JJhu). (4.2) 

Equation (4.1) is just (1.1) written more completely in 
the notation of (2.7). Now insert (4.1) into (4.2), take 
the scalar product with (M; 0,#; r,s\ and use Eq. (3.3). 
The derivatives of the delta functions in (3.3) are 
removed by integrating twice by parts. Using (3.5), one 
finally obtains the equation 

2po(E-po)fs(q) = 2\*MZp0W™(id/dq)fs(q) 
+ 2 \ W 3 £ s ^ a ( < 7 ; s,s')(dfs>(q)/dpra) 

-\*M*Z.>B(q;s/)fAq), (4.3) 
in which 

i o M a = ( V 5 / - k p % * ) 
Xl(d/dpr»Xq,s\ 0P.(O) | < ? ' / > ; W , (4.4) 

and 

XLWdpf»adpm'){q,s\ 0pff(O) | <?'/>]«=«' • (4.5) 

Since Am and B are dimensionless we assume them to 
be of order unity. Then the orders of magnitude of the 
three terms on the right-hand side of (4.3) are in the 
ratio 

M2:Mq:q2, 

where q is a measure of the range of values of q over 
which fs(q) varies appreciably. If we assume that 
q<^M, the second and third terms on the right-hand 
side of Eq. (4.3) may be neglected, as a zeroth-order 
approximation. This is the neglect of the "spin-orbit" 
coupling referred to in the Introduction. The approxi
mated equation may then be solved, and the consistency 
of the assumption q<£M verified. For the same reasons, 
we insert the approximation (2.3) for p0. Using Eq. 
(3.2) to substitute for F00, the zeroth approximation 
to (4.3) is 

(E-M)fs(q) = l(p0a
2+Pia2)/(SM) 

-h\*M*(d2/dp0a
2+d2/dpia

2)lfs(q). (4.6) 

Equation (4.3), with its approximate form (4.6), is 
the "Schrodinger equation" mentioned in the Intro
duction. Since it is written in momentum space, the 
differentials constitute the "potential." I t is now clear 
how the forms of (3.1) and (3.2) were chosen to give an 
attractive potential in (4.6). A scalar V(x) in Hf would 
inevitably have given a potential of indefinite sign 
because of the Lorentz metric. 

Eq. (4.6) is just the Schrodinger equation for an 
harmonic oscillator in 32-dimensions. The ground-state 
solution was given in (1.2), and its energy is 

E=M+32X*ilf /v/6. (4.7) 

Thus to zeroth approximation, we have an unsplit 
SU(6) multiplet, whose spin and SU(3) quantum 
numbers are given by the original quantum numbers s, 
with no "orbital" admixture (it is consistent with the 
approximations already made to disregard the distinc
tion between / , Jz and J', Ji made at the end of Sec. 2). 

Expression (1.2) gives the wave function in the 
Lorentz frame p = 0 . In a general frame, (1.2) becomes 

e x p [ - (p'a2-pW»a)/(6^\2M^, (4.8) 

where 

Pa^rpmWpJr11*, 
Pva^pta-Pvpa'ip^)-1'2. 

The excited-state energies are separated from (4.7) 
by multiples of (f )1/2XW. The first excited wave func
tions may be written 

PM). (4.9) 

In order to discover the spin and SU(3) content of these 
states, observe that pm transforms like an SU(6) 35 



A P P R O X I M A T E S U P E R M U L T I P L E T M O D E L B1419 

with its vector singlet (pi) missing. Thus, ^ fs(q) 
represents a 35, the excited states (4.9) correspond to 
the content of 35X35, but with the following spin-
SU(3) states missing, (1,1), (3,1), (5,1), (3,8), (1,8), 
(3,8), (5,8)—a total of 3X35=105 missing states. 
[Here (n,m) denotes states of spin multiplicity n and 
SU(S) multiplicity m.~] Similarly, the first excited state 
corresponding to a 56 consists of the content of 35X56 
but with the following 168 states missing (2,8), (4,8), 
(2,10), (4,10), (6,10). In the zeroth approximation, all 
the first excited states are degenerate. Apart from this 
degeneracy, the excited states are not expected to 
exhibit any SU(6) properties, both because the multi-
plets are not complete and because there are "orbital" 
contributions to the spin and SU(3) quantum numbers. 

We now mention briefly the sort of corrections to be 
expected from the "spin-orbit" terms A^a and B in Eq. 
(4.3). If these terms are treated by perturbation theory, 
it is consistent at the same time to expand (4.4) and 
(4.5) in powers of q/M. Thus the "spin-orbit" potential 
effective to first order is proportional to q/M, and so the 
first-order correction to the wave function contains the 
same factor. Take the example of a 35. In the non-
relativistic limit, the SU(6) spin state may be repre
sented by a traceless 6X6 Hermitian matrix 

35 

A=l 

where S A= (S i,S a,S ia), and the HA were defined before 
Eq. (2.1). The zeroth-order wave function may be 
written F (q2)S, and then the first-order correction must 
have the structure 

^ ( ? 2 ) [ { ^ } - T r { ? , 5 } ] / i f , (4.10) 
where 

35 

q=E hAqA and qA = (0,pa,pia). 
i 

The expression (4.10) exemplifies the "orbital" con
tributions to spin and *S*Z7(3) which are generated by 
the "spin-orbit" parts of the potential. 

Corrections to the energy-levels of the Schrodinger 
equation (4.3) appear only to second order in q/M, and 
are therefore of order \AM. 

5. MATRIX ELEMENTS IN SL(6) 

In this section we argue that our model will impose 
SL (6) rules on scattering and decay matrix elements, in 
the zeroth approximation and under certain circum
stances. The rules however allow "irregular" terms5 

(spurions or kinetons), even in the zeroth approximation. 
There is an S matrix corresponding to the unbroken 

SL(6) symmetry of H0 (see Sec. 2). Call it S. I t is a 
function of the 35-momentum (p,q) and the SU(6) 
quantum numbers (r,s) for each of the scattering par
ticles. For certain ranges of the momenta (to be dis
cussed below), the main effects of the symmetry 

breaking Hf should be (i) to smear out slightly the 
532(#fina]—^initial) which appears in S, and (ii) to alter 
the interpretation of the initial and final states (see 
Sec. 4). Denote the S matrix with the smeared-out 
S32 function by S'. We assume that the physical S 
matrix, S (between the lower particle or resonance 
states), is to be obtained approximately by multiplying 
S' by a zeroth-order wave function fs (q) (see Sec. 4) and 
integrating dS2q for each scattering particle. The wave 
function will pick out values of g«Jkf. 

We must now discuss unitarity. Since we start from 
an Hermitian Hamiltonian H$-\-Hr, the exact S matrix 
must be unitary; the question is whether the above 
procedure leads to a unitary approximation to it. Again, 
since HQ is Hermitian, S must be unitary. At first sight 
we seem to be simply picking out the submatrix of S in 
which all the q's are zero, and it would be remarkable if 
this submatrix were also unitary. However, it must be 
remembered that Eq. (4.3) has a series of excited solu
tions, which presumably correspond to higher physical 
states. The true unitarity equation will have contri
butions from these higher intermediate states; and their 
combined effect may be approximated by an integral 
with respect to q over a continuum, which is manifestly 
*SX(6)-covariant. 

Thus there is no conflict with the gross effects of 
unitarity. However, in regions which are sensitive to the 
exact spectrum of intermediate states, the replacement 
of the discrete spectrum by the continuum will have a 
bigger effect, and we cannot expect the SL(6) rules to 
be well obeyed. This will be the case near a branch 
point, for example.10 Thus we arrive at a condition 
similar to that proposed by Salam et al? Note, however, 
the crucial role in our model played by the discrete 
spectrum of excited states in simulating the effect of an 
SL (6) -invariant continuum. 

Let us now examine some of the effects of the above 
procedure. Suppose that there are terms in S which 
depend on the momenta (p^p^a) only through their 
mutual SL(6) invariants, that is, terms without spin 
flip. The effect of the wave functions fs(q) is to make 
the q's effectively zero (compared with the pn's), so the 
resulting 5-matrix term is a function of the mutual 
Lorentz invariants of the pjs, together with an SL(6)~ 
invariant spin matrix element involving the SU(6) 
quantum number s. Such a term has been called 
"regular."5 

On the other hand, there may be terms in S which 
involve the momenta as 6X6 matrices pa$, not all their 
indices being saturated on other momenta. The wave 

10 This condition is not as stringent as it might appear. For 
example, poles due to SU(6) multiplets in intermediate states seem 
not to violate the SL(6) rules (with irregular terms). This is be
cause the unphysical momenta q in the propagator at the pole are 
forced to be nearly zero by momentum conservation (or near 
conservation) if the external #'s are close to zero. I t is therefore no 
further restriction to enforce the condition that the pole correspond 
to a physical intermediate state. Where integrals over inter
mediate states are concerned (at branch points), however, this 
argument does not apply. 
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functions fs(q) remove the unphysical components and 
leave the "incomplete" matrix 

3 

P = X pAhA = pn^. 

These terms therefore finally become 5X(6) invariants 
made out of the 527(6) quantum numbers s and the 
"incomplete" momentum matrices p^r", and so are just 
the "irregular" terms proposed by Riihl.5 Contrary to 
what might have been supposed, these terms are not 
expected to be smaller than the "regular" ones, but just 
part of the zeroth approximation in the theory. 

In summary, the rules for finding the effect of the 
symmetry in the zeroth approximation to the model are: 

(1) Write down all the formally SL (6)-invariant 
structures, regular and irregular. 

(2) Check whether there are any nearby branch 
points to spoil the symmetry. 

6. PARITY AND U(12) 

The formalism described thus far contains no parity 
operation and must therefore be regarded as a model 
interesting, if at all, for its qualitative features. 

To include parity one must go to a theory such as 
RiihlV or 27(12) .3 In either case the inhomogeneous 
group must have more than 36 generators (72 and 144, 
respectively), and a momentum vector will possess more 
than one invariant (compare Sec. 2). In such a space, 
it is not obvious how to formulate quantum mechanics, 
what the causality condition is, and so forth. Which 
types of momenta describe physical particles may even 
be uncertain. 

Nevertheless, we inquire briefly what one would 
expect to find if a model of the kind proposed here could 
be formulated in a £7(12) framework. 

We assume that a momentum in the inhomogeneous 
27(12) transforms as a 144, 

143 

p=H PATA, 
A=0 

with y0p Hermitian, in the notation of Ref. 3. We 
further assume that the momentum of a particle (in the 
unbroken symmetry) is such that the equation 

pt=MrP (6.1) 

(where \p is a 12-component "quark") has 6 independent 
solutions \p{p). These solutions may then be used to 
represent the particle states in interactions. When the 
symmetry is broken, the physical states will involve an 
integral over a wave function f(q) (where the q are the 
independent unphysical momenta) analogous to Eq. 
(4.1); and we conjecture that this wave function will 
force all the unphysical momenta to be small. The effect 
is, to the zeroth approximation, that the p in (6.1) is 

replaced by ^yyM, where pp is the physical 4-momenturn. 
Thus (6.1) becomes, in this approximation, the Wigner-
Bargmann equation proposed by Salam et al.,z which 
we therefore believe may be a natural consequence of a 
model of the kind proposed here. We have given the 
argument for a quark, but it clearly generalizes to 
higher representations of £7(12). 

A similar argument shows that "irregular" terms are 
to be expected in zeroth approximation in £/(12), just 
as in the SL(6) theory (see Sec. 5). 

One would also like to find the structure of the ex
cited states (see Sec. 4) in £7(12); but to do this would 
require a more detailed model. I t is clear however, that 
the qualitative features (degenerate sets of incomplete 
multiplets) would reappear. 

7. SUMMARY 

The model described above has the following 
properties: 

(1) I t is Lorentz-invariant. 
(2) I t seems not to conflict with unitarity. 
(3) The ground-state wave functions, to a zeroth 

approximation, correspond to pure 527(6) multiplets. 
(4) 5-matrix elements between these ground states 

obey simple SL (6) rules, in regions which are insensitive 
to the detailed spectrum of intermediate states. 

(5) These rules allow for the presence of "irregular" 
terms, even in zeroth approximation. 

(6) There are excited states which correspond to 
approximately degenerate groups of incomplete SU(6) 
multiplets. These play an important role as inter
mediate states in the unitarity condition. 

(7) The SL(6) model does not contain parity; but, 
if it can be generalized to £7(12), the Wigner-Bargmann 
equations will probably appear naturally, and properties 
(1) to (6) will probably be qualitatively unchanged. 

We conclude that a broken translational symmetry 
scheme of this kind is capable of accounting for 
the known successes of 527(6) and its relativistic 
generalisations. 

Note added in proof. In Sec. 4, the states of the 
Schrodinger-like harmonic-oscillator equation (4.6) may 
be classified according to 5 £7(32). But to find their spin 
and SU(3) content—which is the problem—the SU(S2) 
orbital wave function has to be combined with the 
527(6) "intrinsic spin." ,527(32), by itself, is not a sym
metry of the theory. We therefore have not been able 
to use 527(32) to find a general rule for the decomposi
tion of the higher excited states. 
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