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The 7 = 0 7rx scattering length is evaluated with a forward-direction elastic-scattering dispersion relation. 
The high-energy contribution to the dispersion integral is obtained on the assumption that the high-energy 
behavior of the forward scattering amplitude is dominated by a few leading crossed-channel Regge poles, 
while any available experimental information on total irir cross sections is used to compute the low-energy 
contribution. The scattering length is found to be negative, with a calculated value of — 1.7_o.5+1-3 (in pion 
Compton wavelengths). Evaluation of the 1=1 amplitude at threshold yields the value — 0.4, which is 
found to be consistent with zero; this indicates that the method used in the evaluation of the scattering 
length is not unreasonable. 

I. INTRODUCTION 

EXPERIMENT suggests a large phase shift for the 
1=0 (I denotes the isotopic spin), 5-wave ww 

amplitude at low energies1; the presence or absence of 
a resonance, however, remains obscure. In this con
nection it is evidently of importance to know the value 
of the scattering length. In this paper we attempt an 
evaluation, using a forward-direction elastic-scattering 
dispersion relation. Assuming that the high-energy 
behavior of the amplitude is adequately represented by 
a few leading Regge poles, we reach the definite con
clusion that the scattering length is negative. 

In Sec. 2 we write the scattering length as a sum of 
two terms, where the first one represents the low-energy 
contribution to the forward dispersion relation and can, 
in principle, be evaluated once the total TTTT cross sections 
at low energies are known. It is this term which intro
duces most of the uncertainties into our calculation. 
The second term represents the high-energy contri
bution to the dispersion integral, and is expressed 
entirely in terms of the parameters for the P, P', and p 
Regge trajectories at zero total center-of-mass energy. 
The residues are calculated in the Appendix to this 
paper on the basis of results obtained by Phillips and 
Rarita on pion-nucleon and nucleon-nucleon scattering. 
In addition to the scattering length, we evaluate the 
1=1 amplitude at threshold; from Bose statistics we 
know that it should vanish there since it contains odd 

*This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 Evidence for a strong 1=0, S-wave TX interaction at low 
energies has been reported numerous times in the literature. See 
for example A. Abashian, N. E. Booth, and K. M. Crowe, Phys. 
Rev. Letters 5, 258 (1960); 7, 35 (1961). For a more complete 
discussion of the ABC enhancement, see N. E. Booth and A. 
Abashian, Phys. Rev. 132, 2314 (1963). Other references include 
N. P. Samios et al., Phys. Rev. Letters 9, 139 (1962); L. M. Brown 
and P. Singer, ibid. 8, 460 (1962), and Phys. Rev. 133, B812 
(1964); A. O. Barut and W. S. Au, Phys. Rev. Letters 13, 165 
(1964); Sharashchandra H. Patil, ibid. 13, 261 (1964). Recently, 
the possible existence of a 1=0, scalar di-pion near the p mass 
has been suggested; see for example M. Islam and R. Pifion, 
Phys. Rev. Letters 12, 310 (1964); V. Hagopian et al., ibid. 14, 
1077 (1965); Loyal Durand, III , and Yam Tsi Chiu, ibid. 14, 329 
(1965). Further references may be found in the above-mentioned 
articles. 

partial waves only. Thus the deviation of its value from 
zero gives us an indication of the reliability of the 
approximations made in the evaluation of the scattering 
length. 

In Sec. 3 we obtain the numerical results for the 
scattering length and the / = 1 amplitude at threshold; 
their values are found to be —1.7 and —0.4, 
respectively. 

Finally, in Sec. 4 we estimate the errors involved in 
the calculation, and conclude on the basis of these 
estimates that the scattering length is definitely nega
tive, and that the value —0.4 of the 1=1 amplitude at 
threshold is consistent with zero. 

II. FORMULA FOR THE SCATTERING LENGTH 

Let A^SjtjU) be the amplitude of definite iso topic 
spin / for the s reaction, where s, /, and u are the usual 
Mandelstam variables; they are given in terms of the 
center-of-mass scattering angle 6Sy and the magnitude 
of the center-of-mass momentum qs as follows (the 
subscript s is to remind us that these variables are 
defined with respect to the ^ reaction) : 

with 

s=4(q *+»*), 
t=-2qs

2(l-cosds), 

u= — 2qs
2(l+cosds), 

(2.1) 

Here JJ, is the pion mass.2 We normalize the partial-wave 
amplitude Ai*(s) defined by 

AI(s,cos68) = j:i (2l+l)Al
I(s)Pl(cos6s), (2.2a) 

so that it is related to the phase shift di1 according to 

AiI(s) = W2/q.s) exp(*V) sinS/. (2.2b) 

The 1=0 scattering length X is then defined as 

X = lim2^o°WA1/2. (2.3) 
s—>4 

2 From here on all values of s, t, and u will be given in units of 
the pion mass squared. 
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If the absorptive part of AI{s,tiu) vanished for large s, 
then it would satisfy the one-dimensional dispersion 
relation 

A'(sfi)=- / ds' + - / du' , (2.4) 
7T J 4 S' — S TT J 4 v!' — ( 4 ~ s) 

where AI(s,t)s==AI(s} t, 4— s— t), and where ^4/(^,0) 
= (l/2i) discai4

z(j, 0, 4 - s ) , and^w
J(0,^)= (l/2i) discw 

XA^^—Uy 0, w); here disc* stands for discontinuity in 
x. Assuming that the asymptotic behavior of the ampli
tude is determined by the leading Regge poles in the 
crossed channel,3 we see that the above dispersion 
integral is undefined as it stands, since for s—> <*> 
As

I(s,0)^s, which follows from the dominance of the 
Pomeranchuk pole. We therefore write (2.4) as a sum 
of two terms, where the first one represents the low-
energy contribution (LEC) to A^sfi), and where the 
second term is obtained by approximating the integrand 
of (2.4) above a certain energy s% (which is chosen well 
beyond the resonance region where Regge behavior 
presumably sets in) in terms of the leading crossed-
channel Regge poles; the latter integral may then be 
explicitly evaluated by analytic continuation.4 From 
crossing symmetry it follows that the ^-channel ampli
tude of definite isotopic spin is the same function of 
s, t, and u as the ^-channel amplitude is of u, t, and s 
(in that order). Using this fact, we may cast (2.4) in 
the form 

A'(s,0)-
1 !1 A.'tffl) 

ds' 

+T.v aIV(-\)I+I 

+121' mi' 

1 rSi A 
•- \ ds'-
X J i s' 

i r 
- I ds'RJ'iO/ 
IT J n 

4* 

A3''(s',0) 

•<t-s) 

i-iy 
s'-s s ' - ( 4 - s ) ] • 

(2.5) 

where air and an>(— 1)I+I' are the /-channel and 
^-channel crossing matrices, respectively, with 

air = (2.6) 

and where 7^/(0,^) = (l/2i) discs#
J(0,.y); RT(t,s) is the 

contribution to the /-channel amplitude of isotopic 
spin / coming from the leading Regge poles. There 

3 By "leading" we mean those Regge poles lying in the right-
half angular-momentum plane. 

4 Our calculation is done in the spirit of Igi's evaluation of the 
pion-nucleon scattering length; see Keiji Igi, Phys. Rev. Letters 
9, 76 (1962), and Phys. Rev. 130, 820 (1963). 

exist a variety of forms for R1^) in the literature, all 
of which presumably are good approximations to the 
true /-channel amplitude at large s and small /. We have 
chosen the Chew-Jones form5 (a sum is understood if 
there are several poles of isospin /) 

*^M = WH0(-tf)B(,)i>«<.>(-WV), (2.7) 

where qt2=^t— 1, and where a(t) is a particular Regge 
trajectory in the / channel; Y7(/) is related to the full 
residue ^(f) associated with the above Regge pole as 
follows: 

7 /(0 = [2^(0+l]/5J(/)/(g,2)«^>. (2.8) 

Throughout this paper it is understood that a(t) is a 
trajectory of definite isotopic spin. 

Setting t—0 in (2.7) and substituting the result into 
(2.5), we arrive at the following expression for the 
high-energy contribution i7J(*>): 

^ W = I i ' a j j ' 7 
1 r« 

' ' (0)- dv'PaW) 
2Jvl 

r * (-^i x — + — 
Lv'-v v'+v J 

(2.9) 

where v— — l + J s with corresponding definitions for v 
and v\ in terms of sf and Si, and where a=a(0). Notice 
lhat for J>=1, the exchange of the p Regge pole in the 
t channel contributes very little to the integral, since 
for the p, If=l. We shall take advantage of this fact 
in Sec. 3. For Rea(0) ^ 0, the integral (2.9) is undefined; 
however, we may use the well-known dispersion relation 
for the Legendre function of the first kind to rewrite 
(2.9) as 

r Pa(-v)+(-iy'Pa(v) 
g J f r H - S r « r r V ' ( 0 ) U r — 

L sin™ 

+ - / dv'PaWn—+ ) . (2.10) 
2 A \v'-v v'+v/J 

For our purpose this expression is still inconvenient, 
since we are interested in the value of H1^) at v=l, 
where Pa(—v) has a logarithmic branch point (this 
branch point is, of course, absent from the full ex
pression). We get around this difficulty by shifting the 
argument of the Legendre function, using a subtracted 
dispersion relation for Pa(v): 

i \ .(-iO = P«(0)-
Sin7TG2 Q7TG! r Pa{ 

v \ dvr 

w J i v'(v' 

PaW) 

W-v) 
(2.11) 

Substituting (2.11) into the first term on the right-hand 
side of (2.10) and combining the various integrals, we 

6 Geoffrey F. Chew and C. Edward Tones, Phys. Rev. 135, 
B208 (1964), Eq. (II-3). 
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obtain 

ff'0) = -Ez< <m<7r(0)£+J ' |V 
P«(0) 

sirwra 

+ 
1 rn PaW)l 
- dv' — +2>aW(0)|» 
2Jx v' J 

X ^ ' P a ( / ) [ / ( / 2 - , 2 ) ] - 1 [ / ^ ' + ^ ' ] , (2.12) 

where 
fe'=l=b(-l)'. (2.13) 

Since J>I^>1, and since we will be interested in the value 
of (2.12) for v=l, we may neglect v compared with v' 
in the denominator of the second integral, and replace 
the Legendre function by its asymptotic form, 

where 

P«(?)—>C(a)v«, 
v—»oo 

2a r ( o + l ) 
C(a) = 

x ^ r C a + l ) 

(2.14a) 

(2.14b) 

the integral may then be performed explicitly. Our final 
expression for the forward-scattering amplitude is 
(recall that v= — 1+Js) 

1 /-i A*tffi) 
A'(s,0)=- ds' +L/'«ri'(-D7+/' 

•K J i s' — S 

1 /•« AStffl) 
- ds'—- - + # ' « , (2.15) 
X./4 s'—(i—s) 

Pa(0) 

X 

where 

L si 

AW 
suixa 

x r ± V ) + w i (2,6) 
\-a—l\vi/ OL—2\vi/ J 

Here a=ar(fS). For s=4, and ,?i=200, say, the con
tribution to £T7(j/=l) coming from the second sum
mation in (2.16) is small compared with that coming 
from the first; we, therefore, will ignore it in the sub
sequent calculations. For a— 1 (i.e., the Pomeranchuk 
trajectory), we may of course evaluate (2.10) directly; 
we find 

C ^ / ( l ) ] p o m = - | T p ( 0 ) C ^ l - l - | l n ( l - 4 A i ) ] . 

The factor § comes from the crossing-matrix element. 
Notice that for Y P ( 0 ) > 0 , the Pomeranchuk contri
bution is negative. Superficially it might appear that 
our result for the scattering length will depend on the 

choice of s\. We emphasize that, as long as S\ is chosen 
sufficiently large so that the amplitude is well approxi
mated in terms of the leading Regge poles for ̂ >^i, 
our result will be essentially independent of si. 

Next, we give the values of the residues 77(0) as 
obtained from data furnished by Phillips and Rarita.6 

These authors have fitted the high-energy total pion-
nucleon and nucleon-nucleon cross sections, assuming 
that the forward scattering amplitude is dominated 
by the leading crossed-channel Regge poles. The w-w 
residues are then obtained via the factorization 
theorem.7 We find 

7 P = 1 . 0 5 ± 0 . 0 2 , 

7 P ' = 0 . 9 3 ± 0 . 0 4 , 
(2.17) 

where the dimensionless quantity fi is related to the 
residue defined by (2.7), 7°(0), according to 

Y<(0) = 
2«''+1 3yt 

IT C(a8-)(s)a<l 
(2.18) 

where i stands for the P or the P' Regge poles (7 = 0). 
Here s=2MEo, where M is the nucleon mass, and Eo 
is a reference energy which Phillips and Rarita chose 
to be 1 GeV. The factor 3 comes from the crossing 
matrix element. The reader may consult the Appendix 
for a detailed discussion. We have not given here the 
value of the residue associated with the p trajectory, 
since, as is shown in the Appendix, it is very uncertain. 
Fortunately, as has already been emphasized, p ex
change in the t channel contributes only very little to 
# J(1), so that we shall ignore its contribution here. 
We shall come back to this point in the following 
section, 

III. EVALUATION OF THE 
SCATTERING LENGTH 

Substituting the values from (2.18) into expression 
(2.16), we obtain the following results for the P and P' 
contributions to 277(1): 

[Zr J(l)]P=-1.35±0.026, 

[ # ' ( ! ) > = -1.67±0.072, 
(3.1) 

where the errors in (3.1) are those due to the uncer
tainties in the residues (2.17); the corrections to (3.1) 
coming from the second summation in formula (2.16) 
are only of the order of 10~4. To the extent that we are 
ignoring the contribution of the p trajectory, the value 
of ^ J ( 1 ) = [ Z T J ( 1 ) ] P + [ ^ / ( 1 ) ] P ' will be the same for 
7=0, 1, and 2, that is, tf*(l)«-3.0. 

6 Roger J. N. Phillips and William Rarita, Phys. Rev. Letters 
14, 502 (1965). 

7 See, for example, V. N. Gribov and I. Ya. Pomeranchuk, Phys. 
Rev. Letters 8, 343 (1962). For a more complete treatment see 
S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev. 
126, 2204 (1962); and M. Gell-Mann, in Proceedings of the 1962 
International Conference on High-Energy Nuclear Physics at CERN, 
edited by J. Prentki (CERN, Geneva, 1962), p. 533. 
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FIG, 1. Plot of K0(s) in units of 10~y~2 versus the square of the 
center-of-mass energy, s, in units of /A (ju = pion mass.) The func
tion has been matched at s=200 to the value as obtained from 
pure P , P ' , and p Regge-pole exchange in the crossed channel: 
#0(200)«3.46X10-V2 . 

The next step consists in evaluating the first two 
integrals in (2.15), using whatever experimental in
formation is available. For this purpose it is convenient 
to put them into the form C?=4) 

(LEC)i 
1 rslds' 

7T J 4 S' 
Hi>ttii>+au>(-l)I+Il 

XAs
If(s',0)+-

ds' 
•Asi(s'fi). (3.2) 

W 4 / ( / - 4 ) 

The contribution coming from the second integral is 
small compared with that from the first; considering 
the uncertainties involved in what follows, we shall 
ignore it. We are interested in the value of A J(4,0) for 
/ = 0 , 1 ; A°(4,0) gives us the magnitude of the scattering 
length, while we expect that A1 (4,0) ^ 0 , if our approxi
mations are reasonable. We therefore consider ex
pression (3.2) for 1=0 and 1. Substituting the crossing 
matrix elements into the integrand of (3.2), and neg
lecting the second integral, we obtain 

(LEC)i 

where 

and 

1 rsl 

IT J 4 
dsKi(s), 

K0(s)= (l/sfttAf-AJ+U.*! 

Ki^WsftUJ-iAS+iAfl. 

(3.3a) 

(3.3b) 

(3.3c) 

Here A*1 stands for As
I(s,0). For s-+ <*>, Ki(s) ap

proaches twice the contribution coming from the P 
and Pf exchange in the crossed channel, 

Ki(s)—+2aioR.°(0,s)/s, (3.4) 

where -R,°(0,$) is given by (2.7). We now approximate 
the amplitude of given isotopic spin I in the resonance 
region by a Breit-Wigner formula that satisfies elastic 

unitarity, and has the correct threshold behavior 

s112 sBY*(s) 
i l a ' ( * ,0 )«(2J+l> 

2qs (SR-S)*+SBT>(S) 

where we have chosen for r (s) the form8 

T*(s) = Tt(sB/sKf/qR*)*™. 

(3.5a) 

(3.5b) 

For both the p and the / 0 we have adjusted the parame
ters of (3.5a) to give a width of 100 MeV; the positions 
of the resonances were chosen as 750 and 1250 MeV, 
respectively. Figures 1 and 2 show a plot of KQ(S) and 
Ki(s). We have used roughly the following criteria in 
plotting the curves; (a) near the / 0 and the p, As°(sfi) 
and ^4/(^,0) have been approximated by a Breit-
Wigner form; (b) for s^200, we assume that As

I(s,0) 
is adequately represented by the exchange of the P , 
P ' , and p in the crossed channel, that is, we choose 
Si=200, and use this point as a matching point for the 
integrand; we have 

Xr(*= 200) ~3.46X 10~V 2 ; (3.6) 

(c) we assume that the various absorptive parts of the 
amplitudes approach their asymptotic limit "smoothly" 
from above; (d) we have seen that p exchange makes no 
contribution to Ki(s); it does, of course, make sub
stantial contributions to the individual absorptive parts 
that make up Ki(s). In view of the fact that the p 
residue is poorly known, we are led to make the addi
tional assumption that an approximate curve for Ki(s) 
may be obtained by consistently ignoring the effect of 
p exchange on the individual absorptive parts that make 
up Ki(s); this assumption does not seem unreasonable. 
Figures 1 and 2 show what we think is a reasonable 
curve for Ko(s) and Ki(s). In both cases the functions 
have been matched at $i=200 to their full asymptotic 
value (3.6). The reader may wonder what happened 
to the /o resonance in Fig. 2. The reason for its absence 
is the following: Let us assume, for simplicity, that 
^4s°(,y,0) and A8

1(sfi) are given near the / 0 and the p 

200 

S ( /x 2 ) 

FIG. 2. Plot of Ki(s) in units of 10~2£T2 versus the square of the 
center-of-mass energy s in units of /z2. The matching point and 
the value of Ki(s) at that point are identical to that given in 
Fig. 1. 

8 See J. D. Jackson, Nuovo Cimento 34, 1644 (1964), for a 
discussion on the phenomenological analysis of resonances. 
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by their unitarity bounds, A8
I(s,0)= (2l+l)(s1'2/2q)] 

it then follows that 

\A«lmf ' 

where mi and w0 are the masses of the p and the /0, 
respectively. A more detailed analysis shows that, as a 
first approximation, we may omit the "bump" in the 
curve for Ki(s) arising from the /o resonance, since the 
uncertainties involved in the plot are already sub
stantial. We obtained for the two LEC's the values 

\ /.200 

- / dsK0(s)^1.3, 
IT J 4 

•[ /.200 

- / &£!(*)«2.6. 
7T J 4 

Combining these results with the high-energy con
tribution H1 (1)^—3.0 we arrive at the values for 
il^OjandilK^OJof 

^°(4 ,0)«-1 .7 , (3.7a) 

i41(4,0)«-0.4. (3.7b) 

IV. CONCLUSION 

The main source of error in the value of the scattering 
length X comes from the low-energy contribution; the 
deviation of A1 (4:ft) from zero gives us an indication 
of the reliability of the approximations made in the 
evaluation of A since we have used the same criteria for 
obtaining A0(4,0) and 4̂* (4,0). We shall presently give 
an estimate of the error involved; in view of the lack 
of information on total ww cross sections, it is clear that 
this is only a rough estimate. 

In our discussion so far we have ignored the possi
bility that the absorptive parts As°(s,0) and As

2(s,0) 
might make substantial contributions to the integrals 
in (2.15) at energies roughly below the /o region 
(because of the threshold behavior of the 7 = 1 ampli
tude, we do not expect A g1 (s,0) to make an important 
contribution below the p mass). Without these low-
energy contributions we have estimated the error in X 
to lie between —0.5 fir1 and +0.3/x~1 Qhis estimate was 
made essentially on intuitive grounds; we have however 
considered the effects arising from the uncertainties in 
the residues (2.17)]. As we have mentioned at the 
beginning of the paper, however, there seems to exist 
a strong 7=0, 5-wave ww interaction at low energies. 
To estimate its effect on X we have assumed a constant 
S-wave phase shift of 45 deg over an energy range 
extending from s=5 to s=40 (this phase shift is sug
gested by the value of the scattering length given by 
ABC in Ref. 1). We find that the additional contri
bution to X is roughly +0.9/T"1; we have included in 

this error the contribution coming from the second 
integral in (3.2) which is no longer negligible if there 
exists a strong low-energy enhancement in the 7=0 
amplitude. If this enhancement can be associated with 
a new particle lying on a vacuum trajectory, then the 
exchange of such a trajectory in the crossed channel 
would give rise to additional contributions. From the 
analysis of total pion-nucleon cross sections at high 
energies, we expect the residue associated with this 
Regge pole to be small, so that its effect on the scat
tering length will probably not be significant. Con
cerning the 7=2 amplitude, experiment seems to indi
cate that the total T~T~ cross section is of the order of 
3 mb over an energy range extending roughly from 400 
to 1200 MeV.9 We estimated its effect on the scattering 
length to be less than +0.1. Our conclusion that the 
scattering length is negative does not come as a com
plete surprise10; we know that at the symmetry point,11 

that is, s=t=u=%, A°/A2=%'9 furthermore, one 
expects that the 7=0 and 1=2 amplitudes are domi
nated at that point by their respective S-wave com
ponents, so that ^0°(f)~(IMo2(f). Analysis of the 
angular distribution in charged p decay however 
indicates that the 1=2 amplitude is negative in the p 
region; now, we do not expect the above-mentioned 
ratio to change sign between s=f and 5=4, nor do we 
expect a change in sign of the 1=2 amplitude between 
the p region and threshold; such reasoning leads to the 
conclusion that the scattering length is negative.12 

The corrections to the value of A1(4=fi) introduced 
by the low-energy 1=0 enhancement, and the low-
energy 1=2 cross section, have been estimated in a 
similar manner and were found to be about £ and J 
of those for the 1=0 amplitude. 

Finally we wish to point out that in our calculation 
we have taken To Csee definition (3.5a, 3.5b)] to be 
100 MeV. An increase in the width of the p would 
increase the value of ^4^4,0) while decreasing the value 
of the scattering length; the modifications that need 
to be made in Fig. 2 to ensure the vanishing of .4 ̂ 4,0) 
are rather modest, and certainly within the limits of 
uncertainty of our plot. In conclusion, then, we find 
that the wir scattering length is negative, with a cal
culated value of X= (— 1.7_O.5+1'3)M-1, and that the value 
of A1 (4,0) = —0.4 is consistent with zero. 
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APPENDIX 

We obtain the values of the residues for the P and P' 
trajectories, using the data of Phillips and Rarita.6 

These authors have fitted the total pion-nucleon and 
nucleon-nucleon cross sections, assuming that the 
forward-scattering amplitude is dominated at high 
energies by a few leading crossed-channel Regge poles. 
They normalize the spin-averaged forward elastic 
scattering amplitude so that the optical theorem reads 

lmAah{sfi) = (rab**>{s), (Al) 

where the subscripts a and b denote the particles in
volved in the elastic reaction, and write the contri
bution to Aab(s,0) coming from the ith crossed-channel 
Regge pole (for large s) as 

( l±exp(—tVa.) \/E\ai~1 

) ( - ) , (A2) 

where the + and — signs correspond to the even- and 
odd-signature trajectories, respectively, and where 
Bi(ab) is a coefficient with dimensions of millibarns; 
Eo is a scale factor which they chose as 1 GeV, and E 
is the energy of the bombarding particle in the labora
tory system. As usual we have written «»•=«»• (0). For 
large s, E~s/2M, where M is the mass of the particle 
at rest (the nucleon in our case). The relation between 
Aab(s,0) and our amplitude Aab(sfl), normalized 
according to Eqs. (2.2a), (2.2b) is 

Aab(sfi) = (qss^/Sir)Aab(sfi) —> (s/16fc)Aai>(sfi). (A3) 
s-*oo 

Using (A.3) and (A. 2), with a-b taken as the pion-
nucleon, and nucleon-antinucleon, respectively, we have 

s / l ± e x p ( — i w a i ) \ 
lAMsfi)li= BifrN)! ) 

16x \ sinTa. / 

, (A4a) 

and 
s _ /lzkexpf—iron) \ 

[AMsfl)l<= BiiNNH I 
16w \ sin™; / 

, (A4b) 

where we have used the asymptotic form for s, s~2ME, 
and have written s==2ME0 (—98.5). Phillips and 
Rarita provide us with the coefficients BfaN) and 

Bi(NN) for the case where N is the proton, and w is 
the negatively charged pion. They obtain the following 
values6: £ P (7 rAO=-19 .9±0 .1 mb, BP,(TTN) = - 18S 
± 0 . 2 mb, 'Bp(wN) = 2A±0A mb, BP{NN) = -?>62 
± 0 . 2 mb, BP>(NN) = -33.8±0.6 mb, and BP(NN) 
= 1.0±1.2 mb, (the sign of Bp and Bp> has been mis
printed in Ref. 6). Notice that the value of BP(NN) 
is consistent with zero. In a similar way to (A4a), (A4b), 
we write the contribution of the ith crossed-channel 
Regge pole to the TTTT amplitude, at large s, as 

s /l±exp(—iirai)\ 
lA„(sfl)lii= BiMl : ) 

16x V simrai / 

xQ". (A5, 

The coefficient B^TT) is given by the factorization 
theorem for residues7: 

Bi{Tnr) = BlK^N)/Bl{NN). (A6) 

Since the value of Bp (NN) is consistent with zero, and 
since it appears in the denominator of formula (A6), 
we shall limit ourselves to the evaluation of the P and 
P' residues; fortunately, as we have pointed out before, 
a knowledge of the p residue is not critical for our 
problem, since the p contribution to # J ( 1 ) is small 
[see Eq. (2.16)]. Substituting the values for the co
efficients BiiirN) and Bi{NN) into (A6), we obtain 

7 P = 1 . 0 5 ± 0 . 0 2 , 

and (A7) 
7P' = 0.93±0.04, 

where (i=P,Pf) 

yi=-8Bi(Tir)/16Tr. (A8) 

We have taken the value ap'(0) = 0.5 from Ref. 6 
[ap(0) = 1, of course]. 

To get the relation between the residue 7(0) denned 
in (2.7) and the quantities yiy we notice that the P 
and Pf contributions to Inx4rw.(^,0) are also given by 

\TmA „(*,0)]<= iCWCO,*)],, (A9) 

where Rs°(0,s) is given by (2.7). Approximating the 
right-hand side of (A9) by its leading term for s —> 00, 
and comparing the resultant expression with the 
imaginary part of (A5), we obtain 

7.(0) = ( 2 « ^ A ) [ 3 f i/C(cti) (*)«'], (A10) 

where C(a) is defined by (2.14b), and where we have 
written 7.(0) rather than 77(0) for notational con
sistency ; the subscript i stands for the P and Pr Regge 
poles. 


