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The contribution of the P (Pomeranchuk) and Pr trajectories to the generalized two-particle (low-
energy) potential is shown to be repulsive and effectively of long range. A rough expression for the P po
tential is given in terms of the high-energy total cross section and associated diffraction peak. I t is argued 
that Pomeranchuk repulsion represents the many-particle channels that dominate high energies and that 
have an important narrowing effect on resonance widths even though these channels are closed in the low-
energy resonance region. 

I. INTRODUCTION 

IN a recent paper there were discussed certain con
sequences of employing Regge poles rather than 

fixed J poles as the source of two-particle generalized 
potentials.1 An important omission in that paper was 
an estimate of potentials arising from trajectories for 
which the first physical J value fails to have an asso
ciated pole of the S matrix. Two well-established tra
jectories are of this type, the so-called P (Pomeranchuk) 
and P' trajectories, where the first associated particles 
have J=2, 2 whereas the first physical angular momen
tum value is 7=0 . The purpose of the present paper is 
to show that the 7 = 0 components of the P and Pf 

Regge potentials are repulsive and effectively of long 
range. They may constitute the major bootstrap com
ponent, so far overlooked, that tends to make reso
nances narrow. 

Bootstrap calculations of low-baryon-number par
ticles on the basis of fixed-spin potentials have always 
yielded larger widths than experimentally observed.3 It 
is well known from the dynamics of particles with large 
baryon number (classical nuclear physics) that the 
proliferation of many-body channels, open at high 
energies, systematically narrows the widths of low-
energy resonances for which these channels are closed. 
No estimates have heretofore been given of this effect 
for particles of low baryon number, but the Reggeized 
strip approximation4 includes the high-energy inelastic 
effect and therefore should manifest the narrowing 
tendency. 

In the new form of strip approximation the general
ized two-body potential is represented as a sum over 
contributions from the leading Regge trajectories of 
crossed reactions. Reference 1 shows that when the 
leading physical 7 value on the trajectory has an asso-

*Work done under auspices of the U. S. Atomic Energy 
Commission. 

1 G. F. Chew, University of California. Lawrence Radiation 
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2 Presumed to be the /(1250) and the /'(1525), the latter re
ported by Barnes et ah, Phys. Rev. Letters 14, 82 (1965). 

3 See, for example, J. R. Fulco, G. L. Shaw, and D. Y. Wong, 
Phys. Rev. 137, B1242 (1965). 

4 G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and 
C. E. Jones, ibid. 135, B208 (1964). 

ciated physical particle, one may associate the potential 
in the conventional manner with "exchange" of this 
particle, although there is an important form factor 
which reduces the strength and extends the range— 
relative to a fixed-spin (elementary) particle potential. 
A small part of the P and P' potentials may be asso
ciated in such a sense with exchange of the 7 = 2 
/(1250) and /'(1525) particles, but the major com
ponent belongs to 7=0—where no particles exist. We 
suggest that physically this latter component represents 
the aforementioned dynamical effect of many-particle 
channels, closed inside the strip where the potential is 
to be employed, but open above the strip boundary. 

Why is such an identification plausible? First of all, 
the P and Pr trajectories account for most of the total 
cross section in the high-energy region where multiple 
production dominates.5 Second, as we shall see, the 7 = 0 
component of the P and P' potentials is always re
pulsive and of a range—corresponding to the forward 
peaks of high-energy diffraction scattering—that is 
relatively long. When such a long-range repulsion is 
added to a shorter range attraction from "ordinary" 
particle exchange, one has the dynamical situation 
favorable to narrow resonances.6 

II. THE 7=0 COMPONENT OF THE 
POMERANCHUK POTENTIAL 

In Ref. 1 it was explained that inside the s strip one 
may make a Legendre polynomial expansion in z% of the 
^-reaction potential associated with the ith Regge pole 
communicating with the t reaction. Since the Pomeran
chuk trajectory is of even signature, we have 

VP*(t,s)= £ (2J+l)Vjp(t)Pj(zt) , (II.l) 
J even 

zt(s,t)^ls+qa'(t)+q^(t)y2qa(t)qb^ , (II.2) 

qaKt) = t/±-ma\ qb
2(t) = t/4:-tnb

2, (II.3) 

if the s reaction connects channels with particle masses 
6 See R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 

(1965), for a recent review of all high-energy irN and KN experi
ments and for additional references. 

6 One may say that the system becomes "trapped" inside the 
repulsive barrier and takes a long time to find its way out. A long 
lifetime means a narrow width. 

where 
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ma and w&. It should suffice for our qualitative discus
sion here, as it did in Ref. 1, to employ the Khuri-Jones 
formula for Vjp(t): 

Vjp(t)^^qa(t)qb(t)^nypW/LJ-aPm} 
Xe-[J r-«p«>]*i(» j ( n . 4 ) 

where fip is a crossing matrix element (always positive 
for the Pomeranchuk pole), yp(t) is the reduced residue 
(also positive near 2=0), and ap(t) is the Pomeranchuk 
trajectory. The function £i(0 is given by 

M*)=in{2 l(0+l>i2(0-i]1 /2} y ( I L 5 ) 

where Zi(t) = z(si,t), Si being the strip width, that is, the 
lowest energy at which the imaginary part of the full 
amplitude can be approximated by the imaginary part 
of the potential. It appears experimentally that Si>4 
GeV2. 

The qualitative discussion of Ref. 1 may be applied 
to Vj=2P(t), associating this force component with 
/(1250) exchange, although the damping here with 
respect to elementary-particle exchange is severe. Our 
rough estimate would give a reduction at £=0 by a 
factor ~ e~2,7 almost one order of magnitude, so the 
J—2 component of the Pomeranchuk potential is rela
tively minor, although attractive (positive). The 7 = 0 
component, on the other hand, is, for |/|<£Tsi, 

T>W(0= -/5paP-1(07p(0Ji<v(O, (H.6) 

strongly repulsive. The result for Pf is similar. One may 
usefully compare (II.6) to the high-energy limit of the 
imaginary part of the amplitude—which is the same as 
the high-energy limit of the imaginary part of the 
Pomeranchuk potential: 

ImVps(t,s) -> pP 
S—>0O 

rVTr r(ap(0+i)n 
X —(2ap(0 + l) 7 P ( 0 ^ ( < ) . (H.7) 

L 2 r ( a P ( 0 + i ) J 

Observe that for s not enormously larger than si the / 
dependence of the two forms is similar. Thus the 
"shape" of the Pomeranchuk potential is essentially 
that of the high-energy diffraction peak. Using the 
optical theorem, 

ai»t(s) « (\6Tr/s)ImVps(t = 0,s), (II.8) 

together with the fact that ap(Q) = 1, we may establish 
the normalization to be 

Vj=op{t=0) - - 0^/2471-Vot( oo) . (II.9) 

Had we used the Chew-Jones expression for the 
Regge formula1'4 rather than the Khuri-Jones expres-

7 This result is confirmed by numerical calculations of Collins 
and Teplitz based on the Chew-Jones potential (private 
communication). 

sion, we should have found in (II.9) a coefficient 
— î/167r2, corresponding to a slightly different sig
nificance for the parameter s\. Since actual dynamical 
calculations are more likely to be based on the Chew-
Jones expression, we shall use this latter normalization 
in what follows. (The arguments to be made here are 
only qualitative, so a factor of § is of no consequence.) 

III. AN APPARENT CONTRADICTION 

Estimating the t discontinuity (or imaginary part) of 
(II.6), one finds it negative in the region between the 
2ir threshold and the mass squared of /(1250).8 Since the 
t discontinuity of any ^-reaction partial-wave elastic 
amplitude must be positive, a doubt arises about the 
correctness of (II.6). 

In fact, Chew and Teplitz9 proposed a technique for 
evaluation of the potential which precludes a negative 
result for the potential carrying the vacuum quantum 
numbers. The reasoning of these authors, however, 
depended on the neglect of double spectral functions 
throughout the "corner" regions where both variables 
(s and t) are inside their respective strips. This is 
equivalent to assuming that inside the t strip the entire 
t discontinuity is contained in the potential for the s 
reaction. 

Such is, of course, not strictly the case, and if one 
asks where (in t) the discontinuity of (II.6) becomes 
large, one sees that it is in the region where Imap(t) is 
large, that is, the upper portion of the / strip above the 
mass squared of /(1250). In view of the relatively 
narrow width of the / we can be sure that Imap(t) 
remains small for t ̂  m/.10 Now, in the upper portion 
of the t strip (inside the s strip) there may be sub
stantial components of the Mandelstam double spectral 
function arising from iteration of lower t components 
in the potential. This double spectral function con
tributes to the total t discontinuity but is excluded (by 
definition) from the potential. Were the double spectral 
function sufficiently large it could produce the required 
positive sign for the complete t discontinuity, even 
though the potential (II.6) may be negative. 

Towards the lower edge of the t strip the potential 
must dominate the t discontinuity, so (II.6) cannot 
there be a good approximation to the complete 
(vacuum-like) potential. Here the procedure recom
mended by Chew and Teplitz seems appropriate in 
order to include the effect of secondary trajectories and 
"background." 

Notice that our conjected mechanism for removing 
the contradiction between (II.6) and the positive-
definiteness requirement, through the double spectral 
function, implies the inadequacy of approximating the 
left-hand discontinuities in an N/D calculation by the 

8 The essential point is that Ixnap(t) is positive. 
9 G. F. Chew and V. L. Teplitz, Phys. Rev. 137, B139 (1965). 
10 For t—mp'i Imap~Tfmf(dReap/dt)t^mf2

} and the trajectory 
slope appears to be less than 1 GeV-2. Thus for T/«100 MeV, 
Imap<0.1 at t=m?. 
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discontinuities of the potential. This is perhaps not 
surprising if one recalls that this latter approximation 
has been especially deficient in handling strongly re
pulsive forces.11 

A lesser paradox is the circumstance that the "range" 
of the Pomeranchuk potential (II.6), as measured by 
its logarithmic derivative at /=0, is longer than would 
be given by a dispersion-relation estimate based on the 
region of t(>m/2) where the imaginary part becomes 
large. For pion-pion scattering, as an example, the in
verse logarithmic derivative with respect to / of the dif
fraction amplitude (II.7) at £ = 0 and s~si is =0.5 
GeV2,12 while m/=1.6 GeV2. The explanation here is 
that the imaginary part of Vj=op(t) oscillates when the 
imaginary part of ap(t) becomes large, leading to can
cellations in the dispersion integral, so the dependence 
on t near /=0 may be steeper than given by the ele
mentary estimate, which tacitly assumes an absence of 
cancellations. This circumstance means that Pomer
anchuk repulsion even while behaving dynamically like 
a long-range force, does not correspond to a "nearby" 
left-hand singularity in partial-wave amplitudes. It is 
a superposition of distant singularities on both right 
(outside the strip) and left, in which the oscillatory 
character of the discontinuity is an essential feature. 
To represent such an effect in N/D models by a few 
phenomenological poles on the left is probably hopeless. 

IV. ESTIMATE OF THE IMPORTANCE OF 
POMERANCHUK REPULSION 

Let us now examine for a much studied example, the 
1=1 7T7T channel, the relative importance of the po
tentials associated with the P and p trajectories, the 
latter being the only one usually considered for this 
system. 

In our previous paper1 we have roughly estimated the 
p potential as 

VTTti^{t)^{\+s/2qf)V^{t) , (IV.l) 

where, for |j|<K$i, 

FipW-5e2[(4rp/mp)/(mp
2-/)>-2«p,<-p2-<>, (IV.2) 

the effective crossing matrix element here being equal 
to |.13 The potential is attractive, to be compared to 
our estimate above of the repulsive Pomeranchuk 
potential: 

si ImATir(sht) 
F „ . i - i p ( 0 « *„*>*(«>) -. (IV.3) 

8TT2 I n L 4 „ ( * i , 0 ) 

11 J. G. Bjorken and A. Goldberg, Nuovo Cimento 16, 539 
(1960). 

12 G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964). 
13 In the X7r problem, both crossed reactions contain the poles 

in question, so the total potential treated in this section is twice 
that from the / reaction above. 

Although the detailed shape of the high-energy KW 
forward diffraction amplitude is not known, it should 
suffice here to represent it by a simple exponential of 
the above-mentioned width 0.5 GeV2. The value of 
o-t°t( oo) is taken as 10 mb,12 leading to 

F „ i M
p ( 0 « - 0 . 3 * i c " , (IV.4) 

where Si and t are to be evaluated in units of GeV2. For 
the p potential, using a width rp=110 MeV, a mass 
mp=0.77 GeV, and a trajectory slope a/ = 0.5 mp~

2, we 
have 

V„j^(t)^lAm-mr^+s/2y^/(l-im). (IV.5) 

Comparing (IV.4) and (IV.5), one should notice two 
points: (a) The t dependence of the two potentials is 
not very different, but the p potential has a major com
ponent increasing linearly with s, while the Pomer
anchuk potential is independent of s. (b) In the lower 
half of the strip, where s<Si/2, the Pomeranchuk re
pulsion is entirely comparable in magnitude to the p 
attraction. 

The 5-increasing aspect of the p potential means that 
in N/D dynamics this component, acting like a very 
short-range attractive force, tends to dominate the de
nominator function and thus to control the existence 
and location of resonances in the amplitude. On the 
other hand, the width of a resonance (resonances are 
expected to occur in the lower half of the strip) is pro
portional to the numerator function at the resonance 
energy—which is sensitive to the value of the potential 
in this low-energy region (the "long-range force"). Thus 
a drastic reduction of the potential in the resonance 
region should lead to an important resonance narrowing 
effect. 

It has already been remarked that with such a strong 
repulsion one may not employ the N/D device of re
placing left-hand partial-wave cuts by the cuts of the 
potential. It will be necessary to perform at least a few 
steps of the Mandelstam iteration in order to achieve 
a believable dynamical result. The results of such cal
culations will, one hopes, be reported at a later time. 

V. CONCLUSION 

The presence of Pomeranchuk repulsion in all two-
particle channels may explain why resonance widths 
have so uniformly been overestimated in non-Reggeized 
bootstrap calculations. At the same time, certain aspects 
of the qualitative estimates heretofore given of the 
attractive forces essential to forming bound states and 
resonances are not invalidated by Reggeization. There 
remains a correlation with the concept of particle ex
change, and the sign (attraction or repulsion) generally 
survives. We can understand in this way the success of 
crude bootstrap arguments that use crossing matrices 
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and almost nothing more. The estimates given in this 
paper and in Ref. 1 indicate, however, that to achieve 
even semiquantitative accuracy in the dynamics it will 
be necessary to employ Regge potentials together with 
the Mandelstam iteration or the equivalent thereto. 
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A determination of the K+ decay branching ratio into the mode K+ —» 7r+7r+7r~ is obtained in a H2 
bubble chamber with a beam of stopping K+. With a total r + count of 2186, the branching ratio obtained 
is (5.71±0.15)%. The estimated world average is (5.54±0.075)%. 

INTRODUCTION 

THE precise determination of the r branching 
ratio is very important, since this information is 

used in most K± experiments to establish the K± flux. 
Many values have been obtained in the past years, not 
always compatible within the errors. In Table I we 
have collected the most significant ones. 

We present here a new determination of the r 
branching ratio obtained in the 81 cm Saclay-CERN 
hydrogen bubble chamber exposed to a beam of stopping 

K+. The statistical accuracy of our determination is 
comparable with those of Refs. 1 and 2. However, the 
use of the H2 chamber allows, in our opinion, a more 
certain reduction of the background. 

EXPERIMENTAL DETAILS 

The entire analysis was carried out at the scan table 
with visual separation between decays into the r mode 
and all other K+ decays. Two kinds of scans have been 
done. In the first scan (scan A) all the tracks entering 

TABLE I. Published values of the r branching ratio. 

References 

G stack coll.a 

Ritson et al.h 

Brussard et al.G 

Hoang et al.d 

Birge et al.G 

Alexander et al. (see Ref. 6) 
Taylor et al.* 
Roe et al.% 
Bo'ggild et al. (see Ref. 7) 
Shaklee et al. (see Ref. 1) 
Callahan et al. (see Ref. 2) 

rscan A 
Present experiments scan B 

Itotal 
Weighted mean 

Technique 

emulsion (cosmic rays) 
emulsion 
emulsion 
emulsion 
emulsion 
emulsion 
emulsion 
xenon bubble chamber 
emulsion 
xenon bubble chamber 
Freon bubble chamber 

hydrogen bubble chamber 

No. Of r 

30 
58 
30 
9 

171 
226 
263 
359 

98 
540 

2332 
504 

1682 

Branching ratio into r mode 

(8.5 ±1.6)% 
(7.6 ± 1 ) % 
(7.1 ± 1 ) % 
(5.2 ± 2 ) % 
(5.6 ±0 .4 )% 
(6.8 ±0 .4)% 
(5.2 ±0 .3)% 
(5.7 ±0 .3)% 
(7.7 ±0 .8)% 
(5.1 ±0 .2 )% 
(5.54±0.12)% 
(5.65±0.26)% 
(5.74±0.18)% 
(5.71±0.15)% 
(5.54±0.075)% 
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