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Because of the astrophysical importance of beta-decay lifetimes in stellar interiors, we have calculated the 
rate of photon-induced beta decay ("photobeta" decay). In the photobeta process the photon can be con­
sidered to decay virtually into an electron-positron pair, with the positron being absorbed by the nucleus. 
The photobeta process is in competition with normal beta decay (if energetically possible), excited-state 
beta decay, and free-positron capture. An infrared divergence problem for exothermic photobeta decay is 
discussed, although the exothermic photobeta rate is too small to enhance most spontaneous beta decays. 
Applications are discussed in the driven decay of stable nuclei. As an example, the photobeta lifetime of a 
nucleus stable by 200 keV drops from 3X1010 yr at 3X108 °K, to 105 yr at 1.2X 109 °K for a nuclear transition 
matrix element characterized by log ft = 6. The competition between the photobeta process and excited-
state beta decay is discussed. 

I. INTRODUCTION 

THE rates of weak nuclear reactions (e.g., beta 
decay) in stellar interiors appear to be intimately 

related to the time scales for many important astro-
physical processes. These weak reactions range from the 
familiar nuclear beta decay to a host of theoretically 
predicted neutrino-producing reactions, too slow to be 
observed in the laboratory, which nonetheless proceed 
at a physically significant rate in the environment of an 
evolved stellar interior. At least three different applica­
tions of weak reaction rates are astrophysically relevant : 
(1) to the rate of evolution of highly evolved stars, (2) to 
the time scale and environment of heavy-element 
nucleosynthesis, and (3) to the abundances of rare 
nuclear species. 

The application to terminal rates of stellar evolution 
comes about because neutrino emission becomes the 
dominant mechanism of energy transfer when the 
central temperature of stars approaches 109 °K. An ex­
tensive summary of these neutrino-producing reactions 
and their consequences on the pre-supernova stage has 
been presented by Fowler and Hoyle.1 Suffice it to re­
peat here that the star becomes an elaborate machine 
for converting gravitational work into neutrinos, the 
collapse time therefore being governed by the weak-
reaction rates. 

A phenomenological application of the weak inter­
actions occurs in the analysis of the neutron capture 
chains responsible for the elements heavier than iron. 
The operation of these chains was systematically 
presented by Burbidge, Burbidge, Fowler, and Hoyle,2 

who concluded that the nuclear lifetimes against the 
capture of free neutrons could be inferred from the beta-
decay lifetimes of several key nuclei. This correlation 
was enriched by Cameron's3 observation that certain 

* Supported in part by Grant No. AFOSR 855-65 from the U. S. 
Air Force Office of Scientific Research. 

1 William A. Fowler and F. Hoyle, Astrophys. J. Suppl. 91, 201 
(1964). 

2 E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, 
Rev. Mod. Phys. 29, 547 (1957). 

3 A. G. W. Cameron, Astrophys. J. 130, 452 (1959). 

beta-decay lifetimes are significantly shortened in stellar 
interiors by decay from thermally populated excited 
states of the nuclear species. The extraction of the 
astrophysical information requires accurate calculations 
of the dependence of beta-decay lifetimes upon tempera­
ture, and therefore a consideration of all relevant weak-
interaction processes. 

The abundances of many relatively rare proton-rich 
nuclear species have remained somewhat of a puzzle. 
But at least one such species, Er164, seems to owe its 
existence to the beta decay of a terrestrially stable nuclear 
species, and Reeves4 has suggested that many of these 
species may be the result of the capture of free positrons 
present at high temperatures in stellar interiors. Al­
though the problem of the proton-rich abundances is 
presently unsolved, it does seem likely that the charge-
increasing weak reactions at temperatures of 109 °K and 
greater are intimately involved. 

With the above possibilities in mind, we have calcu­
lated the rate of direct photon-induced beta decay, both 
endothermic and exothermic, in a high-temperature 
environment. Here the photon virtually dissociates into 
an electron-positron pair and the nucleus absorbs the 
positron; the over-all effect is that of ordinary beta 
decay except that a photon is absorbed (thereby pro­
viding an additional source of energy). In this "photo-
beta"5 process the nuclear transition proceeds directly 
from a state of the nucleus (Z,A) to a state of the 
nucleus (Z+l , A). The photobeta rate is inversely pro­
portional to the ft value which characterizes the nuclear 
matrix element connecting those two states, and pro­
portional to the fine-structure constant and the photon 
density. The rate from a given level is independent of 

4 Hubert Reeves and Pierre Stewart, Astrophys. J. 141, 1432 
(1965). These authors erroneously state that excited-state beta 
decay (which they call photo-beta reaction) is a virtual positron-
capture process. The photobeta reaction which we calculate in this 
paper does not involve the intermediate excited state, and includes 
virtual positron capture. 

5 In Ref. 3, Cameron called excited-state beta decay by the 
name photobeta reactions. Excited-state beta decay is the generally 
accepted terminology, however, which frees the adjective photobeta 
for the more appropriate direct process described in this paper. 
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the level structure of the nucleus (Z,A), although the 
total photobeta rate for the entire nucleus (Z,A) will 
depend upon the fraction of the nuclei existing in each 
state. Typically only one state of the initial and final 
nuclei will dominate the process. The photobeta process 
competes with the process of excited-state beta decay, 
which is essentially a two-stage process of real excitation 
followed by beta decay. One of our principal objectives 
is to delineate the relative importance of the photobeta 
reaction and the excited-state beta decay. 

II. CALCULATION OF THE PHOTOBETA 
REACTION RATE 

A. Endothermic Case 

We first discuss the reaction rate for the process6 

y+(Z,A)-+(Z+l,A)+<r+v (1) 

subject to the restriction 

A = Mz+i+m-Mz>0, (2) 

where Mz'Mz+i are nuclear masses, m is the electron 
mass, and A is the atomic mass difference. The restric­
tion to endothermic reactions means, of course, that 
only photons of energy greater than A produce reaction 
(1). Although the reaction rate for the limiting case 
A = 0 is finite, an extension of the rate to the exothermic 
domain (A<0) must be done carefully, in principle, to 
obtain a finite result. The proper treatment of the 
exothermic case will be taken up in the second part of 
this section. 

The Feynman diagrams relevant to the endothermic 
case are indicated in Fig. 1. In particular, the photon-
nucleus reactions in Fig. 1(b) and 1(c) include, in 
principle at least, a variety of real and virtual inter­
mediate states, such as excited (Z,A) and (Z+l , A) 
states, (Z, A — 1) plus neutron states, etc. The produc­
tion of these intermediate states involves the interaction 
of the electromagnetic field with the internal nuclear 
currents, and although these interactions are of para­
mount importance in establishing the population of 
internal states assumed in excited-state beta decay, they 
are, nevertheless, negligible compared to the photon-
electron reaction in Fig. 1(a) (of the order of the 
electron-nucleon mass ratio). The approximation of 
neglecting internal nuclear currents must, however, be 

FIG. 1. Feynman diagrams for the endothermic photobeta process. 

made in a gauge invariant manner. To this end we shall 
ignore all processes included in Figs. 1(b) and 1(c) 
except for those required by gauge invariance. This 
requirement can be met by retaining only the con-
vective part of the nuclear current (i.e., just that due to 
the over-all nuclear charge, approximated to be a point 
charge) 

» (c) = Ze(Pa+P&)„, (3) 

where Ze is the nuclear charge and P ^ and Pav. are the 
nuclear four-momenta before and after the absorption 
of a photon, respectively. The transition amplitude for 
reaction (1) is calculated according to the standard 
Feynman rules, and with the approximation expressed 
in Eq. (3), the amplitude is given by 

F^yfteNvW Z •It 
- (2P+k) 

(P+k)2-Mz
2 

6 The analogous process of positron emission is surely unim­
portant since it must compete with electron capture, a process that 
requires 1.02 MeV less energy. 

€ ' ( 2 P - & ) "I 

+ ( Z + 1 ) 7 ^ - ^ 1 k p ) T M ^ ( q ) 
(P-k)2-Mz+i2J 

y(p—k)+tn 1 
- u (p) e • y- y„av (q) , (4) 

(p-k)2-rn2 J 

where we use the notation 

PM=four-momentum of the initial (charge Z) nu­
cleus (P2=Mz2), 

PM= four-momentum of the final (charge Z + l ) nu­
cleus (P2=Mz+i2), 

pv=four-momentum of the electron (p2=ni2), 
#M= four-momentum of the antineutrino (#2=0), 
kn~ four-momentum of the absorbed photon 

(*2=0), 
€M= transverse polarization vector of the photon 

(ft-€=0), 
a=§(l+iys) with 75=71727374, 

iVM= nuclear beta-decay matrix element, 
u (p) = electron Dirac wave function [ypu(p) 

= w«(p)], 
^(q) — antineutrino Dirac wave function \jyqu(q) 

and we use natural units with h= c= 1. 

The gauge invariance of Eq. (4) is easily verified by 
expanding the propagator denominators, using the anti-
commutation relation 

7-e7*^+7*^7-e=2e-^ 

and noting that F vanishes when eM is replaced by k^. 
Since we shall make the static approximation Mz, 
Mz+i-^tt (with Mz+i—Mg held fixed) the amount of 
calculation can be reduced by choosing the particular 
gauge 

6 M =(0 , e ) . (5) 
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Then only diagram 1 (a) survives and we have 

y (p—k)+m 
F=^/2eN„w(p)€- y-

2p-k 
-7Ma»(q). (6) 

The rate of reaction (1) is obtained by integrating the 
absolute square of Eq. (6) (with spin and polarization 
sums) over the Planck spectrum and over the final 
density of states. The result before taking the trace is 

R=-
e^N^N*) fd*k d*pd*q r d*k a 

J 2oo 1 2(2TT) 8 J 2oT ' '2E2qQ 

X5(Mz+o>-Mz+i-qo-E)(P'k)-2 

X E . T r { ( 7 ^ + w ) € - 7 [ 7 - ( ? - * ) + w ] 

Xy^aq-yy^y {p-k)+rn]e-y}, (7) 

where we have introduced "projection operators" 
yp+m and yq for the electron and antineutrino, re­
spectively. The brackets on the nuclear parts indicate 
the appropriate averaging and summing over spin 
states. The function f(oo) is the Planck spectral distribu­
tion function and is given by 

/ (co)=(e">T - l ) - (8) 

where r is the absolute temperature multiplied by the 
Boltzmann constant, and GO is the photon energy. 

We shall consider the weak nuclear matrix elements in 
the allowed approximation only, for which 

°=gvf 
Jc=gA J Vfc 

1 (Fermi transition), 

(Gamow-Teller transition), 

where gv and gA are the vector and axial-vector coupling 
constants, respectively. For pure transitions, the form of 
the integrand in Eq. (7) depends on the particular type 
of transition only through an angular correlation term. 
The angular correlation term vanishes, however, when 
the average is carried out over the antineutrino direc­
tion, and over the final nuclear spin states. Hence Eq. 
(7) actually has the same form for both Fermi and 
Gamow-Teller transitions, and, after the trace and 
polarization sums are carried out, the rate is given by 

R=2e2-
(\N\2) dzk dzp 

/ («) dzqb(Mz+u-Mz+i-E-q) 
2co3 2E 

X 
m(oo-E) (oo-E)2+E2 

+ 
XE-p cosd)2 (E-pcosO) 

-oo-EA ; (9) 

where p, q now stand for the magnitude of the elec­
tron and antineutrino three-momenta, respectively, 

E— (p2+m2)112 is the electron energy, 6 is the angle be­
tween the electron and the photon, and (lAf)2) is the 
averaged square of the weak nuclear matrix element 
(either Fermi or Gamow-Teller). 

After the integration over angles is carried out, the 
rate becomes 

ln2 a r00 do> 
U ( r , A H ~/(co)G(c,A), (10) 

7T ft J A 00 
where 

C(. •*-f. 
w-A+1 

^ E ( c o - E - A + l ) 2 [ 2 ( c o - £ ) ( E 2 - l ) 1 / 2 

+ (oo2-2ooE+2E2) l n lE+OE 2 - ! ) 1 / 2 }] (11) 

and r, energies, and masses are expressed in units of the 
electron mass. In Eq. (10) the nuclear matrix element 
has been expressed in terms of the nuclear / / value from 
the relation 

//==2x3ln2/m5(|iV(2) 

and the electric charge in terms of the fine structure 
constant 

a = e2/4;TC^l/137. 

The rate is most conveniently expressed as a rapidly 
convergent series of Maxwell-Boltzmann rates 

R(TA> 
n=l \fl / 

(12) 

where r(r/n,A) is obtained from R(r9A) by replacing 
/(o>) in Eq. (10) by exp(—noo/r). By using the integral 
representations for the modified Bessel functions of the 
second kind and order zero and one, namely, 

r 
KQ(X) = X I 

e-E*ln{E+(E?-iyi2}dE, 

K!(x) = x e-E*(E2-l)li2dE, 

and 

the function r(r,A) can be written 

2 ln2 a / 
f (r,A) = ( e~^{r^Kl(l/r) 

7T ft\ 

+ ( A - l ) X 0 ( l / r ) ] + 4 r 5 ^ o ( l / r ) } 

(13) 

/•oo 

2 < 
J 1/r 

-2 1 dxK0(x)e-Ax\ 
' i / 

r3 
+ L#° -])• (14) 

where Kv(x) = exKv(x). Since the value of l / r = 5.934 
X109 /T is considerably greater than unity for all except 
very high values of the temperature, the modified 
Bessel functions in Eq. (14) can be represented to a good 
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FIG. 2. Photobeta lifetime of a nuclear state as a function of 
temperature for various values of atomic mass differences. The 
quantity A is measured in units of the electron rest energy. 

approximation by their asymptotic expansions 

9 /*-\1/2r i 
tfo(*)=(-J 1 — 

\2xJ L So 

tfi(*)=(-) i + — 
\2xJ L Sx 

Sx 128x2 

3 15 
+ 128x2 

• ] • 

•]• 
(15) 

The rate r(r,A) then becomes 

where 

21n2 a 
r (r ,A) = r9/2e-A/ rH ( r j A ) ? 

7T / * 
(16) 

F(r ,A) = A + 2 ( l - A ) B i 1 / 2 ( A / r ) 

+ K 1 8 - A + ( A - 25)^3/2(A/r ) ]+ • • •. (17) 

The functions Ev{%) are related to generalized expo­
nential integrals and are defined by 

x+v 
Ev{x) = ex J e-xH~vdtc^ , (18) 

where the approximation is good to within 1% for all 
values of x > 0 and for values of v needed in Eq. (17) 
(i.e., Z > > 1 1 / 2 ) . Since the function H(r,A) is of order 
unity for r < 0 . 3 and A<2 , the logarithm (base 10) of 
the rate R can be approximated within these limits by 

logioR(r,A)~logior(r,A) 

T21r 
o — 
L 7T 

2 ln2 a 
logio| r9/2^-A/r 

fl 

with an accuracy of 10%. For r^>l, A, on the other 
hand, the rate (10) is dominated by large photon and 
electron energies, and can be approximated by 

JR£-(a/7r)[5.78r5 m r + 3 . 1 0 r 5 + • • • ] . ( r » l , A). (20) 

We have plotted the logarithm (base 10) of the 
photobeta lifetime typ (defined as the reciprocal of the 
rate R) in Fig. 2 as a function of T for fixed A and in 
Fig. 3 as a function of A for fixed T. The scale factor for 
the lifetime (in years) is given by the nuclear ft value 
(in seconds) multiplied by a factor of 10~5. Thus for an 
/ / value of 105 sec and A = 0 , ^7/3^103 years at T=1.2 
X109 °K. In constructing Figs. 2 and 3, we have used 
Eq. (19) as an approximation. Since any discussion of 
the photobeta lifetimes must be made in comparison 
with excited-state beta-decay lifetimes, we shall post­
pone a discussion of the results until Sec. I I I . 

B. Exothermic Case 

From a practical point of view any detailed calcula­
tion of the exothermic rate is unnecessary since spon­
taneous beta decay occurs if A is negative. In general, 
the spontaneous decay rate will dominate unless — A is 
rather small. A reasonable approximation for small 
values of A would then be to use the value of the 
endothermic rate at A=0. However, for the sake of 
completeness and in view of the fact that the exothermic 
rate calculation contains an interesting feature that is 
absent in the endothermic rate calculation, we shall 
present a detailed treatment. 

As was mentioned previously, the reaction rate (10) 
gives a convergent result when the limiting case A = 0 is 
reached, even though the denominator of the electron 
propagator vanishes at zero photon frequency. The 

( r < 0 . 3 , A < 2 ) (19) 

-0.4 0 0.4 0.8 1.2 1.6 2.0 

A (electron mass units) 

FIG. 3. Photobeta lifetime of a nuclear state as a function of 
atomic mass difference for various temperatures. The dotted lines 
are linear extrapolations into the exothermic region. 
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absence of divergence can be traced to the electron 
being at rest (hence no electromagnetic current). As 
soon as the system becomes slightly exothermic (A<0), 
however, the integrand in Eq. (10) diverges as or2, the 
electron no longer being at rest at zero frequency. 

The divergence problem encountered here is a slight 
variation of the usual infrared divergence problem con­
sidered in great detail by numerous authors.7 In general, 
low-frequency divergences will occur in the transition 
probability for a given process when radiative correc­
tions due to the emission and absorption of virtual 
photons are taken into account. Infrared divergences in 
transition probabilities also occur when additional real 
soft photons appear in the final state for the given 
process. The solution to the usual problem is realized by 
the exact cancellation (to all orders of perturbation 
theory) of the infrared divergences from both real and 
virtual photons. The cancellation requires that transi­
tion probabilities for the emission of different numbers 
of real soft photons be added together, and the justifica­
tion for such a procedure hinges upon the fact that 
finite experimental resolution precludes a knowledge of 
the number of soft photons in the final state. 

The above analysis has been applied to second-order 
electromagnetic corrections to beta decay.8 The'infrared 
divergence that occurs when beta decay is accompanied 
by spontaneous emission (inner-bremsstrahlung) is ex­
actly cancelled by an infrared divergence that appears 
in the transition probability for beta decay with virtual 
photon emission. The divergence in the latter transition 
probability arises from an interference between the 
amplitude for beta decay without radiative corrections 
and the (infrared divergent) amplitude for beta decay 
corrected (to second order) for virtual photons. The 
spontaneous problem is of no concern to us except 
to note that the electromagnetic corrections are of 
the order of several percent and are temperature-
independent. 

In the presence of thermal radiation, infrared di­
vergences also appear in the transition probability for 
absorption and induced emission. These divergences are 
not cancelled, however, by virtual photon effects, but 
rather by interaction between the charged particles and 
the thermal radiation. In particular, a photon of mo­
mentum k^ can be absorbed by one charged particle 
while an identical photon is emitted by another (or the 
same) particle. The transition amplitudes for all such 
processes must be added coherently to the simple beta-
decay amplitude, since the initial and final states are the 
same in all cases. For the simple beta decay, the photons 
do not enter the decay process but remain part of the 

7 D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13, 
379 (1961). This reference contains an extensive bibliography on 
the infrared divergence problem. 

8 A. Sirlin, in Lecture Notes on Weak Interactions, edited by 
Christian Fronsdal (W. A. Benjamin, Inc., New York, 1963), 
p. 173. This reference contains a bibliography of radiative correc­
tions for beta decay. 

FIG. 4. Feynman diagrams for coherent processes that give rise 
to a second-order interference term in the beta-decay rate in an 
exothermic situation. The integral sign before diagrams (b) and 
(c) indicates a summation over the Planck spectrum. 

background in which the decay occurs. The amplitude 
for the coherent interaction with the radiation back­
ground is infrared divergent and the interference be­
tween it and the amplitude for beta decay cancels the 
infrared divergences in absorption and induced emission. 

One result of the interaction between a free particle 
and the radiation background is the effective increase in 
the particle's mass above the zero-temperature (i.e., no 
photons) value, in analogy with the mass shift due to a 
particle's interaction with its own electromagnetic field. 
Unlike the self-interaction correction, this mass correc­
tion is finite since the Planck spectrum cuts off rapidly 
at high energy. With the static approximation and the 
gauge in Eq. (5), the only additional diagrams that need 
to be considered are given in Fig. 4. I t is straightforward 
to see that the inclusion of nonzero convective nuclear 
currents due to finite nuclear masses results in a gauge-
invariant interference term and leads to a more general. 
cancellation of infrared divergences. I t is evident that 
only a particle's convective current is involved in 
infrared divergences, and for this reason photobeta re­
actions involving electrons at rest are free of infrared 
difficulties. 

Before investigating the diagrams in Fig. 4, we give 
the net rate Ri(r,A) for absorption and induced emis­
sion. Since the amplitude for emission can be obtained 
from the amplitude for absorption by the substitution 
rule9 k^-^—k^ the net rate can be written down 
directly from Eq. (10) 

l n 2 a [ r00 do) 
Ui(r,A) = H / - /(«)G(o),A) 

fl 
~Ado) } 

+ 1 - / (o>)G(-co, A) (21) 

with A < 0 and where G(co,A) is defined in Eq. (11). The 
low-frequency cutoff at co = coo is inserted for the moment 
to ensure the convergence of RI(T,A). The alternative 
use of a small fictitious photon mass to obtain a Lorentz-
invariant cutoff is of no advantage here, since we have 
already singled out the special frame of reference in 
which the temperature is defined. When the contribu­
tions from Fig. 4 are included, the resultant rate remains 
finite in the limit coo —» 0. 

9 J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons 
(Addison-Wesley Publishing Company, Inc., Cambridge, Massa­
chusetts, 1955), p. 162. 
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As a first step in calculating the contribution from the 
diagrams in Fig. 4, we calculate the effective mass in­
crease for the electron due to its interaction with the 
thermal radiation bath. (For present purposes we shall 
no longer use the electron mass as the unit of mass). 
Following the usual procedure,10 the sum of the dia­
grams in Fig. 5 gives the modified electron propagator 
(to second order) 

Sp'ip)-
p-y-tn0-2(p)-I(p) 

(22) 

where mo is the "bare" electron mass, 2(p) is the second-
order self-energy part, and I{p) is defined analogously as 
the "induced-energy par t" given by the coherent sum­
mation,11 over the Planck spectrum, of the forward-
Compton-scattering amplitude: 

i(p)=Z<<? 
2co ( 2 T T ) 3 / 

f—^ 1 

7* (p+k) — m0 y (p—k) — m0. 
e-y. (23) 

The "experimental mass" mexp is then determined by 
the position of the pole in Eq. (22), and in particular, 
the "induced mass" contribution is given by 

6 w j = | T r • 
(yp+m) 

2m 
KP) -\ira{ry'mfm, (24) 

where a is the fine-structure constant and m is the zero-
temperature electron mass. By renormalizing the ex­
perimental mass to include the contribution (24) for a 
free electron in the thermal bath, we introduce in the 
usual way an induced-mass "counter term" as indicated 
in Fig. 4(d). The diagrams in Fig. 4 can then be added 
together following Dyson's method,10 for example, to 
give the result 

-^NMvhMtiX 
• / 

d*k / (« ) 

2« (2x)3 

X 
l\k-p/ 2m2 J 

(25) 

10 Silvan S. Schweber, An Introduction to Relativistic Quantum 
Field Theory (Row, Peterson and Company, New York, 1961), 
p. 531 ff. 

11 A more formal approach is to replace the photon propagator 
as the vacuum expectation value of a time-ordered product of field 
operators by the expectation value in the presence of the thermal 
radiation. The photon propagator in momentum space is then 
given, in a particular gauge, by 

D^(k2) = -idS^^-27ri5(k^f(o,)l, 

where k2 = k^—co2, 3(k2) is the Dirac 6 function, and 5M„ is the 
metric tensor with §11=g22 = 533 = —du= — 1. 

- o . 

FIG. 5. Feynman diagrams for the electron propagator corrected 
to second order for virtual photons and for the interaction of the 
thermal photons. 

where the integral is again cut off (when necessary) to 
avoid an infrared divergence. The amplitude in Eq. (25) 
must now be added to the simple beta-decay amplitude, 
squared, and integrated over the electron-antineutrino 
spin and phase space. When the interference term 
arising from such an operation is added to Eq. (21) we 
obtain for the corrected total photobeta rate (excluding 
the simple beta-decay rate) 

ln2 a [ f^dco 
£2(r,A) = / —/(co)[G(co,A)-2G(0,A)] 

IT ft [J o,o W 

+ / — / ( W ) G ( - 0 ) , A) 
J wo w 

dRp\ 

dm / me=i 
8m i, (26) 

where Rp is the simple beta-decay rate in the absence of 
both induced mass and Coulomb corrections. The last 
term in Eq. (26) represents the induced-mass correction 
to the simple beta decay and has been included in the 
rate R2 in addition to the contributions referred to 
above. 

To see that the rate R2(T,A) is finite in the limit 
coo —» 0 we isolate the w0-dependent part in the form 

/„ 
"AJco 

-/(a>){G(«,A)+G(-«, A)-2G(0,A)>. (27) 

If, for fixed A, we apply Taylor's formula (with re­
mainder) to the function G(co,A), it is evident that the 
bracketed part of the integrand in Eq. (27) is of order co2 

and hence the integral converges. Furthermore, the rate 
may be written in the form convenient for small 
negative A 

ln2 a f00 dw 
R2(TA) = — ~ — 

7T ft J 0 CO 

2 l/dnG\ ' 

n=o w!\dAn/A=:0-

+p ( r ,A) , (28) 

where p(r,A) is a remainder term of order (—A)5/2. The 
integral term on the right-hand side of Eq. (28) is also 
contained in an expansion of the endothermic rate for 
small A, and a smooth extrapolation of Eq. (16) across 
A = 0 is justified. For A<3C0, the dominant term in Eq. 
(26) is 

-5miR^-\A\5. (29) 

This term arises from the destructive interference be-
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FIG. 6. Tracks of equal beta-decay and photobeta-decay rates 
for an exothermic reaction. Region above track for a given Z is 
beta dominant. Region below track is photobeta dominant. The Z 
dependence of the equal-lifetime tracks arises from Coulomb 
corrections to the simple beta-decay rate. 

tween the noninfrared part of Eq. (25) and the simple 
beta-decay amplitude, and gives a small temperature-
dependent reduction (order —hmi) of the simple beta-
decay rate. 

To give an idea of the relative importance of the 
photobeta- and beta-decay rates, we have plotted in 
Fig. 6 curves of equal photobeta and beta rates in the 
A, r plane for several choices of Z. In plotting the curves 
the photobeta rate was evaluated at A=0 . Figure 6 
shows that the photobeta rate can exceed the spon­
taneous rate of an exothermic decay only for high 
temperature and very small end-point energy. 

III. DISCUSSION 

An assessment of the importance of the photobeta 
process requires a survey of nuclear energy level 
schemes, and in a preliminary search12 the following 
three criteria were invoked to select likely candidates 
among nuclei: (1) spontaneous lifetimes should be in 
excess of 104 years for exothermic cases, (2) nuclei 
should be stable by no more than a few hundred keV for 
endothermic cases (see Fig. 3 for lifetime versus sta­
bility), and (3) excited-state beta decay should be 
unfavored. 

The third criterion needs some amplification because 
the beta decay of thermally populated excited states 
provides an important increase in beta-decay rates in 
stars. The rate of excited-state beta decay will be 
suppressed, however, if all excited states capable of 

12 Nuclear Data Group, Nuclear Data Sheets (Oak Ridge 
National Laboratory, Oak Ridge, Tennessee, 1964). 

favorable transitions lie at large excitation energies 
above the ground state. To obtain a general idea of the 
relative importance of the photobeta- and excited-state 
beta-decay rates we have indicated in Fig. 7 the 
circumstances under which the two rates are equal. In 
Fig. 7 we have assumed that the transformation 
(Z,A)—> (Z+1,A) is dominated by one excited-state 
beta-decay and one photobeta transition to a common 
final state. For simplicity, the transitions are charac­
terized by equal / / values, equal initial-state spins (the 
initial state for the photobeta reaction being the ground 
state), and nuclear charge Z = 5 0 . In constructing Fig. 7 
we have used Eq. (19) for the photobeta rate at temper­
atures less than 3X109 °K and Eq. (20) at temperatures 
greater than 3X101 0°K. A smooth extrapolation was 
used for intermediate temperatures. With these ap­
proximations the curves of equal lifetimes are essentially 
independent of the parameter A. At temperatures for 
which Eq. (19) is applicable the factor exp(—A/r) in 
the photobeta rate is cancelled by part of the Boltzmann 
factor in the excited-state beta-decay rate. The re­
maining part of the factor in the latter rate is 
exp(— W/T), where W is the energy difference, in elec­
tron mass units, between the excited state of (Z,A) and 
the particular state of ( Z + l , A). A similar cancellation 
would occur if the initial state involved in the photobeta 
reaction were not the ground state, since the amount of 
excitation would appear only in a Boltzmann factor in 
both the photobeta- and excited-state beta-decay rates. 
For a given value of W, Fig. 7 shows that the photobeta 
reaction will dominate at low temperatures since, at 
these temperatures, the thermal population of the ex­
cited state will be relatively small. At higher tempera­
tures the excited-state beta decay becomes dominant 
because of the increased thermal population of the 
excited state. As the temperature is increased still 
further the excited state and the ground state become 

T(°K) 

FIG. 7. Tracks of equal excited-state beta-decay and photobeta-
decay rates for ground and excited states with same spin, parity, 
and ft values, and Z = 50. Nuclear level diagram defines energies 
involved. The tracks take into account only the two transitions 
indicated. 
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equally populated (in the limit T —»<*>). The photobeta 
reaction, however, depends on the photon density 
whereas excited-state beta decay does not. Since the 
photon density increases without bound for increasing 
temperature, the photobeta reaction would again domi­
nate at high temperature, provided beta decay from 
states of higher excitation (but increased thermal popu­
lation) remains unimportant as originally assumed. The 
requirement that the photobeta reaction proceed at a 
significant rate, demands relatively high temperatures 
(see Fig. 2). Figure 7 indicates, however, that at those 
temperatures the energy W must be large in order that 
the photobeta rate exceed the excited-state beta-decay 
rate (we exclude the region to the right of and below the 
right-hand equal-lifetime track). 

Ca< 
Sc 

FIG. 8. Nuclear energy levels of Ca48 and Sc48. Natural beta 
decay of Ca48 to ground or first excited state of Sc48 is highly 
forbidden. If the transition to any of the next few excited states of 
Sc48 is allowed, Ca48 is photobeta unstable at high temperature. 

A good example of a photobeta candidate having 
essentially no competition from excited-state beta decay 
is Ca48, shown in Fig. 8. The beta decay of Ca48 to Sc48 

has remained undetected because of the high degree of 
forbiddenness of a transition from the 0 + ground state 
of Ca48 to the first two states of Sc48. Depending on the 
spins and parities of the next few excited states of Sc48, 
it is quite possible that Ca48 is photobeta unstable at 
high temperature. A similar situation occurs for Zr96. 

Perhaps the details of the competition of the photo­
beta process with the excited-state beta decay is best 
illustrated by an actual example. Figure 9 shows the 
relative energy level diagram of Te125 and I125. Although 
Te125 is stable in the laboratory, it can be transformed to 
I125 at high temperature both by excited-state decay and 
by photobeta decay. The photobeta process will proceed 
via the allowed transition (logio//=4.9) from Te125 

(0.0353 MeV) which is heavily populated thermally at 
temperatures in excess of 108 °K, to the ground state of 
I125. That transition is endothermic by 115 keV. The 
excited-state decay will probably proceed via Te125 

(0.462 MeV). The lifetimes against both processes are 

0.15 

125 

5 2 T e 7 3 

FIG. 9. Nuclear energy levels of Te125 and I125. In the laboratory 
I125 decays by electron capture to the f+ state of Te125 with 
log//= 4.9. At high temperature, Te125 may be unstable, either by 
the endothermic photobeta process or by excited-state beta decay. 
Energies are in MeV. The log//« 5.5 for decay from the 0.462-MeV 
state has been estimated from neighboring analog transitions. 

plotted in Fig. 10. I t is evident from this figure that the 
photobeta rate is the faster of the two only for tempera­
tures less than about 1.7X108 °K, for which the life­
times are greater than about 1010 yr. At the higher 
temperatures where the lifetime is much shorter, the 
rate is dominated by the excited-state beta decay. We 
also see, from Fig. 10, that such conclusions are ex­
ceedingly sensitive to the assumed log// value. 

There are at least three important natural radio­
activities that are speeded up by the photobeta process 
at high temperature. The Re187(/3~)Os187 decay is a 

16.0 

8.0 

4.0 

1.0 2.0 4.0 6.0 8.0 12.0 

T ( I 0 8 » K ) 

FIG. 10. The lifetimes of Te125 against the photobeta process and 
against excited-state beta decay. The photobeta decay dominates 
only for T<1.7X108; i.e., for /i/2>10n yr. The upper (lower) 
dashed line shows the effect of increasing (decreasing) the esti­
mated log// value for decay from the 0.462-MeV state of Te125 to 
7.0 (4.0) illustrating the sensitivity on that (unknown) quantity. 
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first-forbidden unique decay with an endpoint energy 
of only 2.6 keV and a half-life of about 4X1010 years.13 

This decay has extreme astrophysical importance, 
moreover, since it provides a galactic clock.14 The 
decay Rb87(0-)Sr87 with a half-life of 4.7X1010 yr may 
be enhanced by the allowed photobeta transition to 
the first excited state of Sr87. The same statement 
applies to the decay Pd]07(^-)Ag107, with a half-life of 
7X10 6yr . 

The above examples are but a few of the astro-
physically interesting possibilities suggested from a pre­
liminary examination of the Nuclear Data Sheets.12 The 
photobeta process (together with excited-state beta 
decay) provides a mechanism for transforming a stable 
(Z,A) nucleus to an unstable (Z+1,A) nucleus and 

13 R. L. Brodzinski and D. C. Conway, Phys. Rev. 138, B1368 
(1965). 

14 Donald D. Clayton, Astrophys. J. 139, 637 (1964). 

INTRODUCTION 

ON E of the most important achievements, and one 
of the most attractive features, of the general 

theory of relativity since its publication is the discovery 
by Einstein and Grommer1 in 1927 that the equations 
of motion need not be postulated separately in addition 
to the gravitational field equations; rather, they follow 
from them. 

Indeed, 11 years later, Einstein, Infeld, and Hoff­
mann2 succeeded in developing an approximation 

* Work supported by the Aerospace Research Laboratories of 
the Office of Aerospace Research, U. S. Air Force. 

t Present address: Department of Physics and Astronomy, 
University of Maryland, College Park, Maryland. 

1 A. Einstein and J. Grommer, Sitzber. Preuss. Akad. Wiss. 
Physik. Math. Kl. 2, 235 (1927). 

2 A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 65 
(1938); L. Infeld, Phys. Rev. 53, 836 (1938); A. Einstein and L. 
Infeld, Ann. Math. 41, 455 (1940); A. Einstein and L. Infeld, Can. 
J. Math. 1, 209 (1949). 

thence to another stable (Z+2,A) nucleus (e.g., 
Ca4 8-> Sc48-> Ti48). On the other hand the cvcle illus­
trated by 7+Te 1 2 5 ~> I125+e~+i>, e r+I 1 2 5 - * f e125+*> is 
essentially the catalytic conversion of a photon into a 
neutrino-antineutrino pair. 

I t is not possible to make any general statement con­
cerning the relative importance of the photobeta process 
and excited-state beta decay: Such evaluation requires a 
knowledge of the level structure and ft values for decay 
from excited states (which only rarely can be deter­
mined experimentally). On the other hand the photobeta 
process is largely independent of such considerations 
(except for photobeta to excited states as in Ca48) and, 
since it does not interfere with excited-state beta decay, 
one can always obtain a lower limit to rates for the 
processes Z—>Z+2 and 7—> v+v as discussed above. 
For example, from Fig. 10 we see that at 12X108 °K 
every Te125 nucleus produces about 0.3 MeV in neutrinos 
at least as rapidly as once every 104 years, regardless of 
the excited-state beta-decay rate. 

method by means of which they found the equations 
of motion of finite-mass particles represented as singu­
larities of the gravitational field. The equation of 
motion for each particle obtained in this way (Einstein-
Infeld-Hoffmann equation) includes a relativistic correc­
tion of order 1/c2 to the well-known Newton equation 
and tends to the latter for velocities v<gjc, where c is the 
speed of light in vacuum. This additional force term 
is the one associated with the advance of the perihelion 
of the planetary motion, a phenomenon to which only 
general relativity can give a satisfactory answer. 

Following Einstein, Infeld, and Hoffmann's original 
paper, other works on the subject were devoted to 
improving the mathematical methods towards better 
understanding of the problem.3 Nowadays the Einstein-
Infeld-Hoffmann equation has been extended to include 

3 See, for example, J, N. Goldberg, in Gravitation, An Introduc­
tion to Current Research, edited by L. Witten (John Wiley & Sons, 
Inc., New York, 1962), Chap. 3. 
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The role of the Bianchi identity in obtaining the equations of motion in general relativity is further dis­
cussed in connection with the problem of the infinite self-action terms. It is shown that because of this 
identity and under certain assumptions (concerning the type of singularity of the Christoffel symbols near 
the particle), there is a possibility of obtaining an equation of motion, free of infinite self-action terms, with­
out referring to any renormalization procedure. This is the Infeld equation of motion which describes the 
motion of a particle of finite mass and in which the time coordinate is taken to be the independent parameter. 
Besides that, however, the Bianchi identity imposes certain constraints that the field functions have to 
satisfy in addition to the equation of motion. 


