
P H O T O N - I N D U C E D 0 D E C A Y I N S T E L L A R I N T E R I O R S B 1441 

first-forbidden unique decay with an endpoint energy 
of only 2.6 keV and a half-life of about 4X1010 years.13 

This decay has extreme astrophysical importance, 
moreover, since it provides a galactic clock.14 The 
decay Rb87(0-)Sr87 with a half-life of 4.7X1010 yr may 
be enhanced by the allowed photobeta transition to 
the first excited state of Sr87. The same statement 
applies to the decay Pd]07(^-)Ag107, with a half-life of 
7X10 6yr . 

The above examples are but a few of the astro-
physically interesting possibilities suggested from a pre­
liminary examination of the Nuclear Data Sheets.12 The 
photobeta process (together with excited-state beta 
decay) provides a mechanism for transforming a stable 
(Z,A) nucleus to an unstable (Z+1,A) nucleus and 

13 R. L. Brodzinski and D. C. Conway, Phys. Rev. 138, B1368 
(1965). 

14 Donald D. Clayton, Astrophys. J. 139, 637 (1964). 

INTRODUCTION 

ON E of the most important achievements, and one 
of the most attractive features, of the general 

theory of relativity since its publication is the discovery 
by Einstein and Grommer1 in 1927 that the equations 
of motion need not be postulated separately in addition 
to the gravitational field equations; rather, they follow 
from them. 

Indeed, 11 years later, Einstein, Infeld, and Hoff­
mann2 succeeded in developing an approximation 
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thence to another stable (Z+2,A) nucleus (e.g., 
Ca4 8-> Sc48-> Ti48). On the other hand the cvcle illus­
trated by 7+Te 1 2 5 ~> I125+e~+i>, e r+I 1 2 5 - * f e125+*> is 
essentially the catalytic conversion of a photon into a 
neutrino-antineutrino pair. 

I t is not possible to make any general statement con­
cerning the relative importance of the photobeta process 
and excited-state beta decay: Such evaluation requires a 
knowledge of the level structure and ft values for decay 
from excited states (which only rarely can be deter­
mined experimentally). On the other hand the photobeta 
process is largely independent of such considerations 
(except for photobeta to excited states as in Ca48) and, 
since it does not interfere with excited-state beta decay, 
one can always obtain a lower limit to rates for the 
processes Z—>Z+2 and 7—> v+v as discussed above. 
For example, from Fig. 10 we see that at 12X108 °K 
every Te125 nucleus produces about 0.3 MeV in neutrinos 
at least as rapidly as once every 104 years, regardless of 
the excited-state beta-decay rate. 

method by means of which they found the equations 
of motion of finite-mass particles represented as singu­
larities of the gravitational field. The equation of 
motion for each particle obtained in this way (Einstein-
Infeld-Hoffmann equation) includes a relativistic correc­
tion of order 1/c2 to the well-known Newton equation 
and tends to the latter for velocities v<gjc, where c is the 
speed of light in vacuum. This additional force term 
is the one associated with the advance of the perihelion 
of the planetary motion, a phenomenon to which only 
general relativity can give a satisfactory answer. 

Following Einstein, Infeld, and Hoffmann's original 
paper, other works on the subject were devoted to 
improving the mathematical methods towards better 
understanding of the problem.3 Nowadays the Einstein-
Infeld-Hoffmann equation has been extended to include 

3 See, for example, J, N. Goldberg, in Gravitation, An Introduc­
tion to Current Research, edited by L. Witten (John Wiley & Sons, 
Inc., New York, 1962), Chap. 3. 
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The role of the Bianchi identity in obtaining the equations of motion in general relativity is further dis­
cussed in connection with the problem of the infinite self-action terms. It is shown that because of this 
identity and under certain assumptions (concerning the type of singularity of the Christoffel symbols near 
the particle), there is a possibility of obtaining an equation of motion, free of infinite self-action terms, with­
out referring to any renormalization procedure. This is the Infeld equation of motion which describes the 
motion of a particle of finite mass and in which the time coordinate is taken to be the independent parameter. 
Besides that, however, the Bianchi identity imposes certain constraints that the field functions have to 
satisfy in addition to the equation of motion. 
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corrections due to possible gravitational radiation,4 and 
other approximation methods have been developed.5 

EQUATIONS OF MOTION AS A CONSEQUENCE 
OF FIELD EQUATIONS 

In order to establish the relation between the Einstein 
field equations and the equations of motion one proceeds 
as follows. We notice that because of the contracted 
Bianchi identity6 

S ^ = 0 , (1) 

it follows that the energy-momentum tensor density 
appearing in the Einstein gravitational field equations, 

g/«'=:87r7>, (2) 

satisfies a generally covariant conservation law of the 
form 

?»".,= r^.tV+v^r^=o. (3) 
In Eqs. (l)-(3) ^v= ( - g ) 1 / 2 0 ' , where G»v is the 
Einstein tensor, 

Ra? is the Ricci tensor, R=R^ga^ r ^ = ( -g ) 1 / 2 T^ 
(T^ being the energy-momentum tensor), g=detga/3, 
and T^afi is the Christoffel symbol of the second kind. 
Greek indices run from 0 to 3 (x°=t), ordinary partial 
differentiation is denoted by a comma, whereas co-
variant differentiation is denoted by a semicolon, and 
we use units in which the velocity of light c and Newton's 
gravitational constant G are equal to unity. 

For a system of N particles of any finite mass, 
represented as singularities of the gravitational field, 
T^ may be taken in the form 

N 

? > = £ mAvA^A
vdA(x-iA). (4) 

4=i 

Here zA* are the coordinates of the .4 th particle. 
(Capital Latin indices A, B, •••, run from 1 to N. 
For these indices the summation convention will be 
suspended.) vfi=z*i, where the dot denotes time differ­
entiation (vA°=zA°=l), and 8 is the three-dimensional 
Dirac delta function satisfying the following conditions : 

5(x) = 0 for x ^ O , (5a) 

8(x-z)d*x=l, (5b) 

jf(x)8(x-z)d*x=f(z), (5c) 

for every continuous function /(x) in the neighborhood 
of z. In Eq. (4), mA is a function of time which may be 
called the inertial mass of the A th particle. 

If we put the energy-momentum tensor density, 

4 M . Carmeli, Phys. Letters 9, 132 (1964); Nuovo Cimento 37, 
842 (1965). 

5 P. Havas and J. N. Goldberg, Phys. Rev. 128, 398 (1962); M. 
Carmeli, Ann. Phys. (N. Y.) (to be published). 

6 See, for example, J. Weber, General Relativity and Gravitational 
Waves (Interscience Publishers, Inc., New York, 1962), p. 33. 

given by Eq. (4), into Eq. (3) and integrate over the 
three-dimensional region surrounding the first singu­
larity we obtain, using Eqs. (5a)-(5c), 

dp»/dt = / F^d ( x - z) dzx, (6) 

where 
pfi=mvfi, 

F^—mTVapiPvP, 

and we have put, for simplicity, m = w i , s^=2iM, v^^v^, 
and d (x— z) = di (x— Zi). 

INFELD'S "EXACT EQUATION OF MOTION" 

Equation (6) may be interpreted as an "exact 
equation of motion" of the first particle. However, 
since the Christoffel symbol is singular at the location 
of the first particle, Eq. (6) contains infinite self-action 
terms. 

In order to overcome this serious difficulty, so that 
Eq. (6) will have a definite meaning, Infeld7'8 introduced 
a new delta function. In addition to the requirements 
given by Eqs. (5a)-(5c), the Infeld delta satisfies 

\x\-*5(x)d*x=0, (7) 

for any finite positive integer p. 
Repeating now the procedure adopted above for 

deriving Eq. (6), but using the Infeld delta function 
in the energy-momentum tensor density rather than 
the Dirac delta, we obtain 

dp»/dt=F», (8) 

where the bar above a function F means 

F = F8(x-z)dsx, (9) 

the delta function now being that of Infeld. 
Contrary to Eq. (6), Eq. (8) has a definite meaning 

and resembles the familiar Newton law of motion. I t 
is especially suitable for slow motion.4 The bar on F 
means two things7: Singularities are ignored, and z 
replaces x.9"-13 

7 L. Infeld, Rev. Mod. Phys. 29, 398 (1957). 
8 L. Infeld and J. Plebanski, Motion and Relativity (Pergamon 

Press, Inc., New York, 1961). 
9 In fact the bars on a function do not mean simply putting zk 

for xk (in addition to neglecting singular terms) as has been stated 
by Infeld in Ref. 7. Consider, for example, the function Fra 

= (xr—zr)(x8—zs)/r2. Frs is finite at xs = zs. However, it has no 
definite value at xs = zs, because the limit depends on the angle 
of approach to z. If we evaluate Frs by means of Eq. (9), using 
the Infeld—or the Dirac—delta, however, we obtain F r8 = |5r*. 
Indeed, functions like Frs do appear in the equations of motion 
of singularities (see Refs. 4, 10). 

10 M. Carmeli, Physics Letters 11, 24 (1964). 
11 One has to distinguish between Eq. (6), or Eq. (8), and the 

usual geodesic equation. See Refs. 10 and 12. Compare, however, 
Ref. 13. 

12 H. Bondi, Lectures on General Relativity (Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1964), p. 411; A. Peres, Phys. Rev. 
137, B1126 (1965). 

13 P. Havas, J. Math. Phys. 5, 373 (1964). 
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EQUATIONS OF MOTION WITHOUT THE 
INFELD DELTA 

We now show how infinite self-action terms can be 
removed from Eq. (6) in an exact way without using 
the Infeld delta.14 

Putting Eq. (4) into Eq. (3) we obtain 

N N 

+ Z^AT^vA"vJdA = 0, (10) 

where Latin indices run from 1 to 3 and the delta 
function now is that of Dirac. The first term on the 
left-hand side of Eq. (10) can be written as 

N N 

C E MAVA^A]^ L 0 ^ A M ) , O 5 A 
A-=l A=l 

N 

+ E {mAVA"KdA)t*. (11) 

Now 

(dA),o=ldA(xs-ZAs)l,o 
= (8A),zAnVA

n 

= -(5A),nVAn. 

Using Eqs. (11) and (12) in Eq. (10), we obtain 

(12) 

E {(ntAVA(i),o+mAT^VAavA^dA = 0. (13) 

Equation (13), which is identical with Eq. (3), is 
supposed to be satisfied for any space-time point, since 
otherwise Eq. (1) or Eq. (2) will not be satisfied. 

We now examine the behavior of Eq. (13) in the 
infinitesimal neighborhood of the first singularity, which 
we assume not to contain any other singularity. In this 
region 

dB(x-zB) = 0; £ = 2 , 3 , . • • , # . 

Hence, Eq. (13) gives for the conservation law near the 
first singularity: 

{(mv^) , 0 + m V a ^ v ^ S (x— z) = 0. (14) 

Following Infeld,7 let us further assume that the 
ChristofTel symbols in Eq. (14) can be expanded near 
the first singularity into a power series in the infini­
tesimal distance r, defined by 

r 2 = (xs_zs~)(xs_zsy} Z
s=Zis, 

14 Other methods for removal of infinite self-action terms are also 
known; they are sometimes based on renormalization procedures 
valid only for the equations of motion obtained up to a definite 
accuracy. Sometimes the self-action terms are even left in the 
equation of motion. These equations, then, can hardly be given 
any meaning. See, for example, B. Bertotti and J. Plebanski, Ann. 
Phys. (N.Y.) 11,169 (1960). 

in the vicinity of the first particle. Then we have15 

r^^=_fcr^+-fc+ir^H h r ^ d — , (15) 

where the indices written as subscripts on the left of a 
function indicate its behavior with respect to r, and 
k is a positive integer. For example, o T ^ is that part 
of the Christoffel symbol which varies as r°, i.e., is 
finite at the location of the first particle. 

The expansion given by Eq. (15) means, when one 
uses spherical coordinates r, 0, and <p, that 

- i r>=r - !C^(M, 
or^fl=r°z>a0(M, 
ir* a / J=r£* a / 3(0,^),etc. 

(16) 

Terms like J>a/3, 2Tfi
ap, • • •, however, need not be 

taken into account when one puts the expansion 
(15) into Eq. (14), since 

r « ( x - z ) = 0 (17) 

for any positive integer j . If we denote mA ^ z ^ , • • • 
by A M, • • • we can write Eq. (14) in the form 

{r-kAfi+r-kfiB^ \-r-1C^+D^}d(x-z) = 0y (18) 

where we have used the notation 

Z V = ( w ^ ) , 0 + Z > . (19) 

In order to get rid of terms proportional to negative 
powers of r in Eq. (18) we proceed as follows. Multiply­
ing Eq. (18) by rk and using Eq. (17), we obtain 

A»(e,<p)8(r) = 0, (20) 

the integration of which over the three-dimensional 
region yields, using spherical coordinates, 

/ / 
A»{e,<p) sm.6dddip / r25(r)dr=0 

/ • 
(21) 

To evaluate the last integral of Eq. (21) we write Eq. 
(5b) in spherical coordinates, thus getting 

Hence 

sin0 dddcp 8 (t)r2dr= 1. (22) 

d(r)r2dr=(ATr)-K (23) 

We thus obtain, from Eq. (21), 

A"(dy<p)sbi6d0d<p=0, (24) 

15 The assumption that field functions can be expanded in power 
series in r near the world-line of the particle is inherent in this 
approach to the problem of motion. See Ref. 7, Sec. 2; also Ref. 4. 
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independent of the value of the variable r. Thus the 
angular distribution of A»(d,<p) is such that its average 
equals zero. However, not only does Eq. (24) hold, but 
also (s is any finite positive integer) 

(25) a(r) = r-
s A»(6,cp)smdddd<p=0 

for small values of r as well as when r tends to zero, as 
can be verified by using L'Hospital's theorem, for 
example. I t follows then that a(r), as defined by Eq. 
(25), is a function of r whose value is zero for any small 
r, including r = 0 . We now use the property given by 
Eq. (5c) for the 5 function, and take for /(x) a 
continuous function of r only. We obtain, using spheri­
cal coordinates, 

/ 
f^( r ) / ( r )df=(4T)-V(0) . 

Since a(r) is certainly continuous, one obtains 

r2S(r)a(r)dr=0. 

(26) 

(27) 

Hence when one integrates Eq. (18) over the three-
dimensional space, there will be no contribution from 
the first term. 

In order to show that the second term of Eq. (18) 
will also not contribute to the three-dimensional inte­
gration of Eq. (18), we multiply the latter by rk~l. We 
obtain, using Eq. (17), 

{r-lA»(fi,<p)+B»{fi9<p)}b(T) = 0. (28) 

Integration of this equation, again using spherical 
coordinates, shows that the first term of Eq. (28) will 
not contribute anything because of Eqs. (25) and (27), 
and we are left with 

B*(d,cp) sinddddcp / r28(r)dr=0 

Using Eq. (23), we obtain 

B»(e,<p) sindddd<p=09 

(29) 

independent of r. From this equation one obtains two 
others, analogous to Eqs. (25) and (27) but with B* 

instead of A **: 

b(r)^r~s B»(6y<p) sinflddd<p=0, (31) 

r2b(r)8(r)dr=0. (32) 

Proceeding in this way, one verifies that the angular 
distribution of all functions v4"(0,<£>), Bii{6y<p)1 etc., is 
such that they all satisfy equations like Eqs. (24), (30), 
etc. From this it is clear that one obtains 

ZV(0,p)5(r)<P*=O, 

which gives 

dpt/dt+mv 'Vw 0r^ :fi8(r)dsx=Q. 

(33) 

(34) 

Equation (34) is the "exact equation of motion" and is 
essentially the same as that of Infeld, Eq. (8), though 
the Dirac delta function has been used rather than the 
Infeld delta. 

CONCLUDING REMARKS 

We thus come to the conclusion that one need not 
assume the existence of a new delta function, like that 
of Infeld, in order to obtain the Infeld equation of 
motion. Rather, it follows from the Einstein field 
equations alone if one assumes, as Infeld indeed does, 
the expansion (15). 

Terms which are singular at the particle's location 
are grouped according to their behavior; their angular 
distribution is such that the average of each group is 
equal to zero. This is a consequence of the Bianchi 
identity which is an integral part of Einstein's formula­
tion of the theory of gravitation. Equations (24), (30), 
etc., may be interpreted as constraints which the field 
functions have to satisfy, in addition to Eq. (34). 

One may be encouraged by this property of Einstein's 
theory and ask whether general relativity will be in­
corporated into the theory of microscopic phenomena 
of nature, where singularities play a major role.16 
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