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The properties of a neutron star at absolute zero temperature are discussed. The problem of determining 
the ground state of a neutron star is formulated in a general way and the conditions are described under 
which one might reasonably hope that an individual-particle model (which we adopt) is valid. The effects of 
the strong interactions on the number densities and production thresholds of the various hadrons are il
lustrated with several examples. The modification of the energy spectrum of neutrons and protons in a 
neutron star is calculated using an effective-mass approximation adapted from the theory of nuclear matter. 
Crude estimates are made of the contributions of hadrons other than nucleons to the equation of state and 
specific heat. 

I. INTRODUCTION 

IN the present paper (I), we discuss the properties 
of a neutron star at absolute zero temperature. In 

the following paper (II),1 we calculate, using the ideas 
discussed in I, the rates in a hot neutron star of some 
of the most important neutrino-cooling reactions. We 
also attempt to determine in I I if the recently observed 
discrete x-ray sources can be identified, as many authors 
have suggested, with hot neutron stars. 

Our approach in the present paper is to discuss a 
neutron star as if it were a huge nucleus, neglecting 
the thin outer shell from which the photons are emitted. 
Some of the most important properties of a typical 
neutron-star nucleus are 

3 « - 2 / „ (la) 

« # » , (lb) 

^10+ 5 7 , (lc) 
and 

G«o, (id) 
P>Pnuci (-3.7X10+1 4 g/cm3), (le) 

j R « 1 0 k m . (If) 

Here B, Iz, Nn, Q, and R are, respectively, the baryon 
number, &, component of the isotopic spin, neutron 
number, charge, mass density, and radius of the 
neutron star. The above numbers obtain for a star of 
approximately one solar mass, with R/RQ^10~5. In 
addition, a neutron star has a small admixture of 
leptons ( — 1 % by number of e~ and JJT). All hadrons 
and leptons present in a neutron star are highly 
degenerate. 

In Sec. I I , we formulate in a general way the problem 
of determining the ground state of a neutron star and 
discuss the conditions under which one might reasona
bly hope that an individual-particle model (which we 
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1 J. N. Bahcall and R. A. Wolf, following paper, Phys. Rev. 

140, B1452 (1965). This reference will henceforth be referred to 
as II . 

adopt) is valid. We also summarize the results obtained 
by other authors using a noninteracting-gas model for 
the nucleons in a neutron star. In Sec. I l l , we show 
how the strong interactions can affect the equilibrium 
number densities and production thresholds of the 
various hadrons. In Sec. IV, we calculate the effect of 
the strong interactions on the energy spectrum (assum
ing no superconductivity) of the neutrons and protons 
in a neutron star. In Sec. V, we make crude estimates 
of the contribution of hadrons other than nucleons to 
the equation of state and specific heat. 

II. THE GROUND STATE OF A NEUTRON STAR 

A. General Statement and Remarks 

The problem of determining the ground state of a 
neutron star can be stated in the following form2: 
Find the state that minimizes the total energy for a 
given baryon number, mass density, and zero net 
charge. This general statement is obviously insufficient, 
by itself, to enable one to perform any practical cal
culations. All calculations2-6 to determine the proper
ties of the ground state that have been carried out so 
far lean heavily on the concept of individual particles 
supposed to exist inside the huge nucleus-like neutron 
star. 

One is led to use a particle model of a neutron star 
because most of our laboratory knowledge of hadrons 
is expressed in terms of the properties of independent 
particles, much of the experimental information re
garding strong interactions having been obtained by 
studying the interactions of free hadrons. To regard a 
neutron star as composed of individual particles is, of 

2 V. A. Ambartsumyan and G. S. Saakyan, Astron. Zh. 37, 193 
(1960); 38, 785 (1961) [English transls.: Soviet Astron— A J 4,187 
(1960); 5, 601 (1962)]. 

3 A. G. W. Cameron, Astrophys. J. 130, 884 (1959). 
4 E. E. Salpeter, Ann. Phys. (N. Y.) 11, 393 (1960). 
5 S. Tsuruta and A. G. W. Cameron, Nature 207, 364 (1965); 

S. Tsuruta, Ph.D. thesis, Columbia University, 1964 (un
published) . 

6 E. E. Salpeter, in Quasi-Stellar Sources and Gravitational 
Collapse, edited by I. Robinson, A. Schild, and E. L. Schucking 
(University of Chicago Press, Chicago, 1965), p. 393. This article 
contains an excellent introduction to the subject of neutron stars 
and a review of some of the earlier literature. 
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course, an oversimplification, but this oversimplifica
tion possesses considerable self-consistency and some 
experimental justification. The self-consistency results 
from the action of the exclusion principle and the 
experimental justification can be found in the successes 
of the independent-particle model in describing nuclei. 

The exclusion principle prohibits true scattering 
among the degenerate baryons in a neutron star at 
0°K because all the energetically accessible states 
are occupied. A collision between two baryons in a 
neutron star can therefore be pictured as follows. 
Initially, when the separation is large compared to a 
Fermi, the two-particle wave function is a product of 
plane waves. During the collision, when the particles 
are close together, the product wave function is dis
torted because of the strong interactions. Since all 
energetically accessible states are occupied, the two-
particle wave function must resume after the collision 
its original form as a product of plane waves. Thus 
baryons in a neutron star behave somewhat like con
duction electrons in a metal, namely, they propagate 
like plane waves with some extra wiggles in the wave 
function when two particles are close together. The 
reason is the same in both cases (electrons in a metal 
or baryons in a neutron star): the effective strength 
of the forces (electromagnetic or strong) is greatly 
decreased in the medium of degenerate fermions by 
the exclusion principle. 

The above picture is expected to be valid7 if the 
wave number k, which the average nuclear potential 
impresses upon a nucleon, is smaller than P?/fo, where 
PF is the Fermi momentum of the neutrons or protons. 
The relevant criterion is therefore 

k~ (MnV/fi2)1'2 

<PF/%, (2) 

where mn is the mass of a neutron and V is the depth 
of the nuclear potential. If one ignores for the moment 
a possible hard-core repulsion, then inequality (2) is 
approximately equivalent to the condition that P F > 170 
MeV/c; this condition is always satisfied for neutrons 
in a neutron star. The fact that inequality (2) is satis
fied for neutrons is sufficient for the validity of the 
model since (for p < 8pnuci) most collisions in a neutron 
star are between pairs of neutrons or between a neutron 
and some other hadron. 

We have suggested previously8 that a necessary 
condition for the validity of any independent-particle 

7 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. 
(N.Y.) 3, 241 (1958); L. C. Gomes and J. D. Walecka (unpub
lished) . Our application of the independent-pair model to neutron 
stars is based largely on these two papers; they contain a particu
larly illuminating treatment of the closely related problem of the 
properties of nuclear matter. For more recent applications of 
many-body theory to the calculation of the properties of nuclear 
matter, see, for example, K. A. Brueckner and K. S. Masterson, 
Phys. Rev. 128, 2267 (1962) or H. A. Bethe, ibid. 138, B804 
(1965). 

8 J. N. Bahcall and R. A. Wolf, Phys. Rev. Letters 14, 343 
(1965). 

model for hadrons is that the average separation d 
between hadrons satisfy the following inequality: 

d > 0 . 5 F . (3) 

Inequality (3) is equivalent to the condition that 
P<8pnuci. We now show in three different but related 
arguments why inequality (3) must be satisfied for 
valid calculations to be carried out, with our present 
knowledge of strong interactions, on the basis of an 
independent-particle model. The arguments given in 
subsections (ii) and (Hi) assume that the effects of 
strong interactions can be important in a neutron star; 
this is shown explicitly by means of examples in Sec. 
I I I . 

(i) Hard Core 

Our original argument8 assumed the existence of a 
hard core in, for example, the nucleon-nucleon inter
action. We again assume in this subsection a hard 
core. If inequality (3) is not satisfied, then pairs of 
hadrons spend most of their time within each other's 
hard cores. Because of the high-momentum components 
that are present in a hard-core interaction, any pair of 
neighboring hadrons will continually produce other 
kinds of virtual hadrons; thus the state vector of any 
particular particle will contain large admixtures of 
various hadrons. A "neutron" at such high densities 
will spend a large fraction of its time as, e.g., a -w~ 
-\-nT°'$+p or iTj~+7r~+ A0. Thus the concept of distinct 
strongly interacting particles is not meaningful for 
densities greater than or of the order of eight times 
nuclear densities. 

This conclusion is easily understood in terms of the 
following simple example. Imagine a collection of alpha 
particles at a density for which d>Ra, where Ra is the 
"radius" of an alpha particle. If the density of alpha 
particles is now increased so that d<Raj the alpha 
particles will come apart into their constituents, pri
marily neutrons and protons, as they do in actual 
nuclei. This simple example also suggests that the 
distinction between fermions and bosons probably dis
appears for densities in excess of eight times nuclear 
densities. Thus pions (bosons) will spend a large 
fraction of their time as fermion-antifermion pairs 
(e.g., N-{-N). In this situation, one must regard the 
star as one complex object and try to discuss the exci
tations of the star (or large nucleus) as a single entity. 

(ii) Strange Forces 

The forces due to the exchange of strange particles 
are expected to be important when d is of the order of 
fi/mKC, i.e., 0.4 F. Since these forces are not well known 
at present, one cannot calculate reliably the strong 
interactions among hadrons at densities for which 
d<0A F. 
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(iii) Strange Particles 

The mass splittings between members of the baryon 
octet are of the order of a few hundred MeV. Thus 
strange particles such as S's, A°'s, etc., will be produced 
in profusion in a neutron star when the neutron Fermi 
energy is of the order of, say, 400 MeV. The condition 
that 

P F 2 {n)/2mn « 400 MeV, (4) 

implies an average separation between neutrons of the 
order of 0.4 F. Since the forces between various mem
bers of the baryon octet are not well known (except 
perhaps for the nucleon-nucleon forces), one can not 
carry out reliable calculations for densities such that 
d<0A F. 

Note that Eq. (4) also shows that relativistic effects, 
which can not be reliably included in dynamical cal
culations involving the strong interactions, are impor
tant for d<0A F.9 

B. The Noninteracting-Gas Model 

The noninteracting-gas model for the constituents of 
a neutron star was proposed independently by Ambart-
sumyan and Saakyan2 and Salpeter4 in 1960 and has 
been investigated in great detail by Cameron3 and 
Tsuruta.5 In this model the concentrations of the 
various species of particles were calculated neglecting 
all interactions between particles, although the effects 
of nuclear forces were included in the equation of 
state. Tsuruta has calculated detailed tables, on the 
basis of the noninteracting-gas model, for the number 
densities of the various hadrons, 2J~, A0, E~, A~~, 2°, 
etc., as a function of stellar density for p<300pnuci. A 
principal result of these calculations2-5 is that only 
fermions are present at densities for which stable 
neutron-star models are expected to exist (p < 300pnuci); 
no pions are present on the basis of the noninteracting-
gas model until p>300pnuci. 

The following approximate numerical results can 
easily be obtained, for p<j2pnuci, on the basis of the 
noninteracting-gas model: 

»(») = 

n(e) = 

£*(»)* 

EF(P)Z 

P F ( » ) = 

Pr(«) = 

= 2X10+3s(p/pnucI)cm-3; 

= n (p) = 2 X10+38 (p/pnuci)2 cm-3; 

B£F(e) = 7X10+Kp/Pnuoi)2/3 MeV; 

«3(p/p„ucl)
4/3MeV; 

= 4X10+2(p/pnuol)
1/3MeV/c; 

= PF(P) = 7X 10+Hp/Pnuci)2'3 MeV/c. 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 
9 L. Gratton and G. Szamosi, Nuovo Cimento 33, 1056 (1964) 

have used a semiclassical hard-sphere model to describe the 
properties of a neutron gas at densities much greater than nuclear 
densities, claiming that quantum-mechanical effects are negligible 
when the de Broglie wavelength becomes smaller than the hard
core radius. Their model is an example of an incorrect over
simplification that ignores the unsolved matters of principle 
pertaining to the description of matter at high densities. 

Here n(i), E$(i), and PF(i) are, respectively, the 
number density, Fermi kinetic energy, and Fermi 
momentum for particles of type i. Equations (5) will 
be used for order-of-magnitude estimates in this and 
the succeeding paper. 

The number of electrons and protons is much less 
than the number of neutrons because of two facts: (1) 
The Fermi momentum of the electrons equals the 
Fermi momentum of the protons (the condition of zero 
charge); and (2) The mass of an electron is much less 
than the mass of a nucleon. The way in which these 
facts conspire to produce a relatively small number of 
electrons and protons can be seen easily from the 
equilibrium relation between neutrons, protons, and 
electrons, which is (n+p+e~—>n+n'+ve): 

cP¥(e)+PF
2(p)/2nip~ (mn~mpy+Pj?{n)/2rnn. (6) 

Thus 
(n(e)/n(n))~(PF(e)/PF(n)y (7a) 

~(PF(n)/2mnCy (7b) 

« 1 , (7c) 

which is the origin of the name "neutron star." 
The noninteracting-gas model has been used to 

calculate2-5 the equation of state, heat capacity, and 
other properties of dense matter for pnuci<p<300pnuci. 
These results have been applied to a number of prob
lems including hydrodynamic models of supernova 
collapse.10 

III. PARTICLE MODELS WITH 
STRONG INTERACTIONS 

A. General Formalism 

The problem of determining the constituents of a 
neutron star can easily be formulated for any model 
that assumes the existence of individual particles in
side the star. One defines a function 

$ = Xif dZnlW^NA+aQW+pB'ii)-], (8) 

where the summation over the particle label i extends 
over all types of particles that are present, dzn{ is the 
number of particles of type i in a given momentum or 
energy interval, W\ is the energy of a particle of type 
i and momentum p, Nj is the number density of par
ticles of type j , Q(i) and B'(i) are the charge and 
baryon numbers of particles of type iy and a and (3 
are Lagrange multipliers introduced in order to satisfy 
the constraints of conservation of charge and baryon 
number. The state of the neutron star is then deter
mined by requiring that 

m ( » / d t f < ) o = 0 , (9) 

10 S. A. Colgate and R. H. White (to be published), and UCRL-
7777 (unpublished). 
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where the minimization implied by Eq. (9) is carried 
out at constant volume 12. 

Note that Eqs. (8) and (9) can be used to determine 
the equilibrium state of matter even if the matter is 
not in the form of an electrically neutral neutron star. 

B. Examples 

The function Wi(N 3) has a simple form for the 
leptons (er and /x~) that are present because the average 
electrostatic energy is small [<;0.2(p/pnuci)

2/3 MeV] 
compared to the Fermi energies [see Eqs. (5)2-
Therefore 

We(p) = c(m2c2+p2Y'2, (10a) 
and 

W^p) = c(rn2c2+p2)1'2. (10b) 

From Eqs. (8)-(10), one finds 

We(Pv(e))=-a, (11a) 

= Wlt(Pvfa)), We(P^(e))>mfXc\ ( l ib) 

The functions Wi, where i is a hadron, depend on the 
number densities of all the hadrons present because of 
the strong interactions that obtain among all hadrons; 
the magnitudes of these interactions are comparable 
with the hadronic binding energies. A significant part 
of each hadronic function W% will, nevertheless, be 
given by the simple expression: miC2+p2/2nii. Thus one 
obtains by differentiating Eq. (8) with respect to Nn-

mnc
2+E¥(n)+B(n)^ ~/3. 

Here, 

B(n)^(d/dNn) dsnn(Wn—mnc
2— p2/2mn) 

(12a) 

(12b) 

represents the average energy due to the strong inter
actions between the neutrons and all other hadrons 
present. The quantity B(n) is negative and less than 
~EF(n)(=~PF

2(n)/2mn) if the neutrons are bound 
independent of the gravitational forces. As a first 
approximation, one can neglect in computing B(n) all 
interactions except those among the many neutrons 
present. In this simplified case, B(n) is the average 
energy due to interactions of the neutrons in a neutron 
gas. Even in this case, the quantity B(n) is uncertain 
by a factor of two or more depending upon which form 
is chosen for the nuclear forces in a nuclear-matter 
calculation.11 

The equilibrium equation can be obtained by com
bining Eqs. (11) and (12) with a similar relation for 
protons. One finds 

WF(e)+EF(p) 
= E¥(n)+(?nn-fnp)c

2+ZB(n)-B(p)2, (13) 

where B(p) is defined by Eq. (12b) with n replaced by 
p. Note that Eq. (13) reduces, if [B(n)—B(p)2 is set 

11 See, for example, J. S. Levinger and L. M. Simmons, Phys. 
Rev. 124, 916 (1961). 

equal to zero, to the relation [Eq. (6)2 valid in the 
noninteracting-gas model. Preliminary estimates suggest 
that £B(n) — B(p)2 is, however, rather large because of 
the great disparity between neutron and proton number 
densities. 

If S~'s are present, 

mx~c2+E¥(X-) 

= WF(e)+?nnc
2+EF(n)+£B(n)-B(?;~)2, (14) 

and if 7r~'s are present, 

tnr<?+B(T-) = WF(e) (15a) 

(15b) 

where we have defined coT to be the energy of the lowest 
pionic excitation. In writing Eq. (15), we have made 
use of the fact that pions are bosons and hence all the 
pions that are present (at zero temperature) will be in 
the lowest energy state. 

Equations (13), (14), and (15) can be obtained by 
inspection from the equilibrium reactions, n+e~+p-+ 
n+n+ve, e~+n+n—>2~+ve-\-n

f, and n+n—>7r~+p 
+n'. The reason why neutron stars can contain 2~'s, 
A0,s, and possibly many other hadrons in abundance, 
although these strange particles are not present to a 
good approximation in ordinary nuclei, is that the 
Fermi kinetic energy, PF

2/2m, in neutron stars can be 
of the order of the mass differences (300 MeV) be
tween the hadrons (PF

2/2m<50 MeV for ordinary 
nuclei). 

C. Shifts in Threshold Densities 

Strong interactions shift8 the threshold densities at 
which various hadrons are produced from the values 
these threshold densities have in the noninteracting-gas 
model. The crucial way in which these threshold shifts 
occur is most clearly understood by discussing a few 
examples. Pions are produced at densities such that 
(n-\-n —> w~+p-\-n'): 

We(PF(e))>mirc
2+B(7r~). (16) 

Sigmas are produced at densities such that ( e ~ + » + « —> 

We(PF(e))+Ev(n)>(m2-mn)c
2 

+ZB0(2-)-B(n)2. (17) 

Pions are produced before sigmas if 

B (ir~) < 0.5{ (m^—mp— 2mrc)c
2 

+ £B0(2-)-B(p)-EF(p)2}. (18) 

Inequality (18) follows from Eqs. (13), (16), and (17). 
I t is useful to rewrite Eq. (18), expressing all energies 
in MeV and estimating the proton Fermi energy from 
the noninteracting-gas model. One finds in this way 
that the criterion for pions being produced before 
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sigmas is (energies in MeV): 

B(T~)<~10-lA(p/pn{lcl)^ 
+O.SZBo(Ir)-B(fi)l. (18a) 

The question of whether or not this inequality is 
satisfied has great practical significance since the pres
ence of a large number of pions changes the predicted 
cooling rates of a hot neutron star by a large factor 
(~10+7).1,8 Note that inequality (18) or (18a) can 
never be satisfied if one neglects, as one does with the 
noninteracting-gas model, the effects of the strong in
teractions [i.e., sets B(T-) = B0(2-) = B(p) = B(p)=0']. 
The reason that the threshold density for the produc
tion of pions is so high (~ 300pnuci) on the basis of the 
noninteracting-gas model is that the excess negative 
particles, electrons, are drained off into 2~'s before the 
Fermi energy of the electrons becomes high enough to 
make pions. 

D. General Remarks about Models That Include 
Strong Interactions 

The equations given in Sees. IIIA-C are valid for any 
model that assumes the existence of individual par
ticles in a neutron star. Of course, these particles will 
have, as a result of their continuous strong interactions, 
properties that are different from their free-particle 
analogues which are studied in most laboratory ex
periments. Unfortunately, one must invoke a detailed 
theory of strong interactions in order to calculate quan
tities such as B{TT~) and BQ(2T). We hope that some 
high-energy theorists will apply their methods to the 
calculation of these interaction energies which are vital 
to an understanding of neutron stars.12 

IV. THE ENERGY SPECTRUM OF A 
NEUTRON STAR 

A. General Discussion 

The specific heat and neutrino luminosity of a neu
tron star depend critically on the spectrum of energy 
states available to the star. In the present work (papers 
I and II), we describe the states of the star in terms 
of its constituent particles, adopting the model that 
Gomes, Walecka, and Weisskopf used to describe nu
clear matter.7 

We assume that the nucleons in a neutron star do 
not form a superfluid; that is, we assume that there is 
no energy gap between the ground state and the first 
excited state of the nucleon gas.13 An energy gap of 
more than 0.1 MeV in the neutron energy spectrum 

12 Some preliminary calculations by W. G. Wagner (private 
communication) suggest that B(w~) is positive for moder
ate neutron-star densities. However, one must still calculate 
[£o(2~)— B(p)2 before attempting to decide if pions are indeed 
produced at lower densities than sigmas. 

13 V. L. Ginzburg and D. A. Kirzhnits, Zh. Eksperim. i Teor. 
Fiz. 47, 2006 (1964) [English transl.: Soviet Phys.—JETP 20, 
1346 (1965)] have suggested that the neutrons may form a super-
fluid with a gap of 1 to 20 MeV. 

would greatly reduce both the neutrino luminosity and 
the specific heat of the star. 

We are now trying to determine theoretically whether 
a dense nucleon gas forms a superfluid and to estimate 
the effects of superfluidity on the cooling rates of hot 
neutron stars; we expect to report on this work at a 
later date. 

B. The Nucleon Effective Masses 

(i) Definitions 

According to the individual-particle model, the ex
pression for the density of states available to a single 
nucleon is given by 

p(E) = 2-lir-%-zpHp/dE (19) 

where p(E) is the number of states per unit energy 
interval per unit volume, and p and E are the momen
tum and energy of the nucleon. For a nonrelativistic 
nucleon, the free-particle model implies that 

p(E) = 2-17r-2^-3^, (20) 

where m is the mass of the nucleon. The effect of inter-
particle interactions on the energy spectrum of a star 
can be represented approximately by writing the energy 
of each individual nucleon in the form 

E(p) = c(m2c2+p2yf2-mc2+U(p), (21) 

where U(p) is the change in the single-particle energy 
produced by interactions with neighboring nucleons. 
We define the effective mass ni*(p) by the relation 

l/m*(p) = (m2+p2c-2)-V2+ (l/p)dU(p)/dp, (22) 

which leads to the expression 

p=2-V-2^-3^*(^) (23) 

for the density of single-particle states. Note that Eq. 
(22) reduces to the usual7 nonrelativistic definition of 
an effective mass if p is neglected relative to m in the 
first term on the right-hand side of Eq. (22). The addi
tional relativistic correction (—\p2m~2c~2) is small 
(/x/5%) for nuclear matter. We are interested primarily 
in the density of states near the Fermi momentum PF, 
because this is the quantity that enters into neutrino 
cooling rates. Thus we need calculate only mn*[PF(^)[] 
and fnp*[P^(p)29 which we can now write more com
pactly as mn* and tnp*, respectively. 

(ii) Calculation of the Effective Masses 

We need the effective masses of both the neutron 
and the proton for our calculations of cooling rates. 
There are, however, two important simplifications that 
result from the fact that the number density of protons 
is much smaller than the number density of neutrons; 
one can, with sufficient accuracy, neglect the effect of 
neutron-proton interactions on the neutron energy as 
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well as the effect of proton-proton interactions on the 
proton energy. 

The nucleons are only slightly relativistic for the 
densities at which an individual-particle treatment is 
valid, and the term p-HU/dp in Eq. (22) is not large 
compared to m~K We thus treat both the relativistic 
correction (—^p2m~2c~~2) and the interaction correction 
as small perturbations and do not consider relativistic 
corrections to the interaction term in Eq. (22). Follow
ing the nonrelativistic treatment of Gomes et al.7 we 
make several simplifying assumptions: 

(1) The potential acting in an odd-parity nucleon-
nucleon state is negligibly small. 

(2) The potential acting in even-parity states is 
spin-independent and consists of a short-range hard
core potential, VC0Te(r), and a long-range attractive 
potential, V&tt(r). 

(3) The repulsive core makes a negligible contribu
tion to dU/dp. 

(4) The Born approximation provides an accurate 
estimate of the expectation value of the attractive 
potential (because of the effect of the exclusion prin
ciple on the nucleon wave functions). 

Gomes et al.7 have shown that the above approxima
tions result in small errors at densities near nuclear 
density. 

The four assumptions listed above imply a simple 
correspondence between nuclear matter and a neutron 
star with the same number density of neutrons. In 
computing U(p) for a neutron in a neutron star, we in
clude interactions with only half the neutrons in the star, 
because assumption (1) and the exclusion principle imply 
that there is no interaction between neutrons with paral
lel spin. The corresponding U{p) for nuclear matter 
(which contains equal numbers of neutrons and pro
tons) includes contributions from half the neutrons 
and all the protons present. Thus we conclude that 

Un
n'3'(p;Pn)~Wnn'm'(p;Pn) (24) 

where superscripts n.s. and n.m. denote, respectively, 
"neutron star" and "nuclear matter," and the sub
script n represents "neutron." One can use a similar 
argument to show that 

uP»-Hp;Pn)~Wvn'm'(P;Pn). (25) 
The assumptions (l)-(4) can be used to show that 

the neutron and proton energies have the form 

Un
nM'(P; Pn)=Wpn'8'(i>; Pn) (26a) 

= (2<irti)-s j d*q / d?r 
JIqKPF(n) J 

Xcos2(k-r)FattW, (26b) 
where 

k=(2*)-*(p-q) (26c) 

and P?(n) is the neutron Fermi momentum. 

The effective masses of the neutron and proton have 
been calculated using Eqs. (22) and (26). The compu
tations have been carried out for the following poten
tials: (1) an attractive square well with a repulsive 
core (the potential used by Gomes et al.); and (2) 
several combinations of attractive Yukawa potentials 
and repulsive cores (the potentials suggested by 
Preston14). There is a significant variation in the 
values of the effective masses calculated using these 
potentials, in spite of the fact that all the potentials 
were chosen to fit the low-energy nucleon-nucleon 
scattering data. In the next two paragraphs, we de
scribe the general behavior of the effective masses as 
functions of density, indicating the extent to which 
the numerical results depend on the particular poten
tial chosen. The errors introduced in our calculations 
of the specific heat and cooling rates by the uncertain
ties in the effective masses are small compared to the 
other uncertainties that exist. 

(Hi) Neutron Effective Mass 

The neutron effective mass takes on its minimum 
value at a density of the order of pnUci. When (p/pnuci) is 
between 0.5 and 5, the neutron effective mass mn*

n'a' is 
in the range 

0.90mw<ww*n-s-<1.15wn. (27) 

Our present estimates for mn*
n-s- are somewhat higher 

than in our previous work8 since we did not include 
the relativistic correction in our earlier estimate. For 
P<Kpnucij the effective mass can be expressed in the form 

!»»**•••« mw[l-a(p/pnuci)+0.08(p/pnuci)
2/3], (28) 

where a=2.5±0.5. 

(iv) Proton Effective Mass 

The proton effective mass reaches its minimum value 
fnm'in* at a density pmin, where 

0.5^n<mmin*<0.75wn, (29) 
and 

0 . 9 p n u c l < p m i n < 2 p n u c l . ( 3 0 ) 

For p<Cpnuci, the effective mass can be expressed in the 
form 

m/n- s-^m„[l-7(p/pnuci)], (31) 
where 

7=5.0±1.0. (32) 

At high densities, rnv*
n's- is given approximately by 

w/- s-«mn[l-5(pnuci/p)1 /3], (33) 
where 

0.6<5<2.0. 
14 M. A. Preston, Physics of the Nucleus (Addison-Wesley Pub-

lighing Company, Inc., Reading, Massachusetts, 1962), Chap. 2, 
pp. 27-29. 
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The effective masses can thus be calculated with 
reasonable accuracy, despite the fact that our present 
ignorance of the strong interactions makes the accurate 
calculation of the energy of a neutron gas difficult 
(or impossible). The energy Utot of a neutron gas is 
the sum of a negative part Un, which results from the 
attractive well, and a positive part Up, which results 
from the repulsive core and the ordinary kinetic energy. 
The positive and negative contributions to Utot tend 
to cancel, and | Utot | is generally small compared to 
either \Un\ or \UP\. Thus, small errors in Un or Uv 

can cause large fractional errors in Utot- On the other 
hand, the strong interactions cause only a relatively 
small change in the effective mass. Thus it is possible 
to calculate the effective masses to within about 10% 
despite the uncertainty in the treatment of the strong 
interactions. 

C. Electrons and Muons 

The energy spectra of the electrons and muons in 
a neutron star are essentially the same as their corre
sponding free-particle spectra, because the energies of 
the electromagnetic interactions are small (<1 MeV) 
compared to the relevant Fermi energies. 

V. THE EQUATION OF STATE 
AND SPECIFIC HEAT 

The strong interactions among the hadrons present 
in a neutron star make it difficult to find an accurate 
equation of state for neutron-star matter. The equa
tions of state based on various theoretical estimates15 

15 J. S. Levinger and L. M. Simmons, Phys. Rev. 124, 916 
(1961); K. A. Brueckner, J. L. Gammel, and J. T. Kubis, ibid. 
118, 1095 (1960); E. E. Salpeter, Ann. Phys. (N.Y.) 11, 393 
(1960). The paper of Levinger and Simmons includes a com
parison with the earlier work. 

of the energy of a neutron gas differ by as much as a 
factor of five at typical neutron-star densities. The 
presence of hadrons other than the nucleons can be 
estimated, on the basis of the noninteracting-gas model, 
to change the pressure by less than a factor of two. 

The specific heat also depends on the threshold 
densities for the production of various species of strange 
particles. The specific heat can be shown to increase 
by a factor of the order of 1.5 near the threshold 
density for the production of each new baryon. The 
densities at which these increases occur are somewhat 
uncertain (cf. Sec. Ill) because the strong interactions 
can cause large shifts in the threshold densities of the 
strange baryons. 

The presence of pions will not affect the specific 
heat directly. A pion gas becomes degenerate at a 
temperature Tc, where 

Tc^(4X1012OK)K/^)2/3(p/Pnuci)2/3, (34) 

and nv/nn is the ratio of the number density of pions 
to the number density of neutrons. Pions are therefore 
highly degenerate if nr>0.1nn and r<101 0 °K. The 
ratio of the pion specific heat CT to the nucleon specific 
heat Cn is given by 

C„/Cn~OMn«/nnyi*(T/TcyiK (35) 

Thus, CV is negligible compared to C» if T<£TC. 
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