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Calculations of the rates of the cooling reactions n-\-n —-» n-{-p-\-e~~-\-ve and n-\-w~ —> n-\-e~-\-ve are pre
sented ; the rates of the closely related muon-producing reactions and the four inverse processes are also 
given. Several different arguments are used to obtain estimates of the relevant matrix elements. The nucleons 
are assumed to form a normal Fermi fluid with a continuous excitation spectrum. The calculated cooling 
rates indicate that a neutron star containing quasifree pions would cool within a few days to a temperature 
so low that the star would be unobservable. The surface of a star that does not contain quasifree pions would 
cool to 107 °K in a few months and would reach 4X106 °K in about 100 years. The calculated cooling rates 
strongly indicate that the discrete x-ray sources located in the direction of the galactic center are not neutron 
stars. 

I. INTRODUCTION 

MEASUREMENTS made on recent rocket flights 
above the earth's atmosphere have demonstrated 

the existence of several discrete sources of galactic 
x rays.1-4 Several authors5-7 have suggested that some 
of the observed sources may be hot neutron stars 
radiating x rays from their surfaces, while other authors 
have suggested that the observed x rays may by syn
chrotron radiation from energetic electrons in magnetic 
fields8 or bremsstrahlung radiation from hot clouds of 
electrons and nuclei.8'9 

The neutron-star hypothesis is the most specific of 
the suggested x-ray producing mechanisms, and it is 
thus the easiest hypothesis to disprove observationally. 
The most obvious property of a neutron star, its small 
size, has led to observational proof10 that the principal 
x-ray source in the Crab nebula is not a neutron star; 
the results of the recent occultation experiment indicate 
that the source in the Crab has a diameter of the order 
of one light year. In the present work, we consider in 
detail another important property of neutron stars, 
their fast cooling by neutrino emission, and we find that 
the calculated cooling rates imply important restrictions 
on the observability of neutron stars. 

We calculate the rates at which a star loses energy by 

emitting neutrinos in the reactions 
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n-\-n —» n-\-p-\-e~-\- ve, 

n+n —> n+p+fi~+ v^, 

w~+n —> n+e~+ ve, 
and 

as well as the inverse processes 

n+p-\-e~ —» n-\-n-\- ve, 

n+p+fjr —> n+n+ v^, 

n-\-e~ —» n-\-w~+ ve, 
and. 

n-jrfjT —-> n-\-ir~~\- v^. 

(i) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Reactions (1) and (5) were first discussed by Chiu and 
Salpeter7 and the corresponding neutrino luminosities 
have been calculated by several authors.11-13 We have 
previously reported crude estimates13 of the rates of 
reactions (4) and (8). 

We expect that reactions (l)-(8) should be the 
dominant means of neutrino production in neutron 
stars. In the Appendix, we consider the rates of various 
other neutrino-producing reactions, and conclude that 
these processes do not contribute importantly to the 
neutrino luminosity. 

In our calculations of the rates of reactions (l)-(8), 
we have assumed that the spectrum of excited states 
available to a dense neutron gas is continuous, just as 
it is for a normal Fermi gas. Ginzburg and Kirzhnits14 

have pointed out that the excitation spectrum of the 
nucleon gas may not be continuous, but may instead 
resemble the spectrum of a gas of superconducting 
electrons. The existence of superfluidity might greatly 
modify the cooling rates of neutron stars, and we expect 
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to consider the question of superfluidity of the nucleon 
gas in a future paper. Our present treatment of the 
neutrino-producing reactions and the related conclu
sions about the observability of neutron stars are ex
pected to be accurate only if the nucleon gas does not 
form a superfluid. 

Our calculations indicate that reactions (1) and (5) 
cause a mass Ms of neutron-star matter to lose energy 
at a rate given by 

Lvnn-e= ( 6 > < 1()38 e r g ^ - 1 ) (M8/MQ) (pnucl/p)1'3^8, (9) 

where MQ is the mass of the sun, pnUci is the density of 
nuclear matter (3.7X1014 g/cc), p is the density of the 
neutron-star matter, and Tg is the stellar temperature 
in units of 109 °K. The neutrino luminosity due to 
reactions (2) and (6) is equal to FXLv

nn'e, where F is 
equal to zero when the electron Fermi energy Wp(e) is 
less than m^c2, and is equal to the ratio of the muon 
Fermi momentum to the electron Fermi momentum if 
WF(e) is greater than m^c2. Thus the net energy loss by 
reactions (1), (2), (5), and (6) is equal to (l+F)Lv

nn'e. 
We find that the rate of energy loss by neutrinos 

produced by reactions (3), (4), (7), and (8) is given 
approximately by 

£ ,*»« (1046 erg sec"1) (», /»6) (M./MQ)T9*, (10) 

where nT/tib is the ratio of the number density of quasi-
free w~ mesons to the number density of baryons. The 
luminosity L/n is greater than Lv

nn'e if nx/nh is greater 
than about 10~7. As we have shown in Sec. I l l of the 
preceding paper, one cannot say with any degree of 
certainty whether or not quasifree pions are present in 
neutron stars. We confine ourselves in the present work 
to consideration of the consequences of the presence of 
quasifree pions in neutron stars, setting aside the much 
more difficult problem of whether such pions are 
actually present. 

We combine Eqs. (9) and (10) with the results of the 
neutron-star models of Tsuruta15 (computed using the 
equations of stellar structure and various simple laws 
for the equation of state) to estimate cooling times of 
hot neutron stars. A neutron star containing quasifree 
pions would cool so fast by neutrino emission that its 
x-ray luminosity would be negligible within a few days 
after the formation of the star. Thus our cooling rates 
indicate that the observed x-ray sources cannot be 
neutron stars that contain quasifree pions. 

About half of the observed x-ray sources are in the 
direction of the galactic center; our cooling times 
indicate that any observed source that is actually 
located near the galactic center (which is about 8 
kiloparsecs away) could be a neutron star only if it was 
formed less than a week before it was observed, an 
extremely unlikely possibility. However, it has been 

15 S. Tsuruta, Ph.D. thesis, Columbia University, 1964 (un
published); S. Tsuruta and A. G. W. Cameron, Nature 207, 364 
(1965). 

suggested3*16 that the brightest source, the one that 
appears to be in the constellation Scorpius, may be of 
the order of 30 parsecs from the sun. If the Scorpius 
source is in fact only 30 parsecs away, the observed flux 
from it is consistent with the hypothesis3 that the source 
is a neutron star with a surface temperature of about 
3X106 °K. Our cooling times indicate that such a star 
could be thousands of years old. However, a blackbody 
at 3X106 °K would not produce the large numbers of 
short-wavelength photons recently observed17 for the 
Scorpius source. 

We begin the detailed discussion of the reaction rates 
by formulating in Sec. I I the general problem of 
neutrino emission from neutron stars. Then in Sec. I l l , 
we use simple heuristic arguments to obtain approxi
mate expressions for the rates of reactions (1) and (3). 
The problem of neutrino opacity is treated in Sec. IV, 
where we show that the mean free paths of all neutrinos 
involved in reactions (1) to (8) are large compared to 
the radius of a neutron star. Section V contains a 
detailed calculation of the rate of energy loss by 
reactions (1), (2), (5), and (6), while Sec. VI contains 
an analogous treatment of the pion processes, reactions 
(3), (4), (7), and (8). Finally, in Sec. VII, we use 
information from neutron-star models15 to calculate 
the rate of cooling of the surface of a typical hot neutron 
star (i.e., the decrease of the x-ray luminosity with 
time). We then apply our calculated cooling rates to 
the recent observations of Bowyer et al? 

II. GENERAL FORMULATION 

In order to compute cooling times, one must consider 
the excited states of a neutron star. A neutron star is 
almost completely isothermal, except for an extremely 
thin atmosphere. For the purposes of calculating the 
rate of neutrino emission, one can neglect the atmos
phere and imagine that the excited states of the star are 
populated (according to the usual Boltzmann factor) 
by placing the star in contact with a thermal bath at 
a finite temperature T. The star then has a definite 
baryon number and total electric charge but does not 
have a definite energy. The rate of energy loss (cooling) 
by neutrino emission is given by an expression of the 
form 

£ , = (2 i r /*)Er i : / i<« \(Se;v\Hw\Sa)\
2Ev 

X8(Ea-Ep-Ev) exp(-Ea/kT), (11) 

where Sa, Sp are states of the entire star, Hw is the 
weak-interaction Hamiltonian, Ev is the energy of the 
emitted neutrino v, and the summation over p is limited 
to states for which Ep<Ea. 

In practice, cooling rates must be computed with the 
help of a model; we adopt an independent-particle 

16 R. H. Brown, R. D. Davies, and C. Hazzard, Observatory 
80, 191 (1960). 

17 R. Giacconi, H. Gursky, and J. R. Waters, Nature (to be 
published). 
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model whose general characteristics have been discussed 
in the preceding paper.18 We shall in fact use several 
slightly different versions of the independent-particle 
model in order to estimate the uncertainties in our 
results. We also approximate the thermal average 
[Eq. (11)] over the states of the star by assigning a 
Fermi-Dirac or Bose-Einstein distribution function to 
each kind of particle in the star. As discussed in Paper I, 
it is not possible to decide at present whether or not 
neutron stars contain a significant number of quasifree 
pions; hence our calculations have been carried out for 
both assumptions, pions present and pions not present. 

III. HEURISTIC CALCULATIONS 

One can estimate the order of magnitude of the energy 
loss due to processes (l)-(8) by a simple heuristic argu
ment that is not entirely fraudulent. The main feature 
of this argument is that only fermions on the edge of 
their degenerate seas can undergo inelastic scattering. 
Thus only a small fraction of the order of (kT/EF) of 
the fermions of a given type can participate in the cool
ing reactions. Since neutrinos escape from a neutron 
star (see Sec. IV) this argument does not apply to them. 
However, the net amount of energy transferred to a 
neutrino in any of the cooling reactions must be, by 
conservation of energy, of the order of kT. As a guess, 
we replace the dimensionless neutrino phase space, 
which is proportional to Ev

2, by (kT)2/[_EF(n)EF(p)'] 
for reactions (1) and (2) and similar factors for reactions 
(3) and (4). 

The energy loss from reaction (1) can now be crudely 
estimated from the familiar arguments of kinetic theory. 
One writes for the energy loss from a volume 0 by 
reaction (1): 

z/^ow(fj)V)^r/£FWTOr/EP(^)], (12) 
where n(n) is the neutron number density, the weak-
interaction cross section <j^lQr®[_EF(n)/l MeV]2 cm2, 
the relative velocity v^c/3, the neutrino energy 
Ep^kT/3, and the various Fermi energies can be 
estimated from Eqs. (5) of Paper I. We have included 
in Eq. (12) one factor of kT/EF for each degenerate 
fermion that occurs in process (1); we have also made 
use of the fact that EF(e) is, according to Sec. I I of 
Paper I, approximately equal to EF(n). We consider a 
mass Ms of neutron-star matter at a uniform density p 
and a uniform temperature T. Using Eq. (5) of Paper I 
in Eq. (12), one finds that the neutrino luminosity due 
to reaction (1) is given by 

£ , < » - (6X 1(F erg sec"1) (MS/MQ) (pnuci/p)37V, (13) 

where MQ is the mass of the sun and T$ is the tempera
ture in billions of degrees. Equation (13) yields energy 
losses that are not enormously different from the energy 
losses computed from our more complicated analysis of 

18 J. N. Bahcall and R. A. Wolf, preceding paper, Phys. Rev. 
140, B1445 (1965). This reference will be referred to as Paper I. 

Sec. V. Moreover, Eq. (13) gives correctly the crucial 
dependence of L„(1) on temperature, although the den
sity dependence cannot be obtained correctly without 
a more careful kinematical analysis. 

A similar crude argument can be used to obtain an 
estimate of the energy losses from reaction (3). Note 
that process (3) contains two fewer fermions than 
processes (1) and (2); hence the rate of (3) is faster 
than (1) by a factor of the order of (EF(n)/kT)2. Thus 

L / 3 ) - (4Xl0 4 5 e rgsec~ 1 ) 

X (tir/thd (MjMo) (pnuci/p)8/82V. (14) 

The heuristic arguments show clearly what quantities 
must be calculated in a careful analysis, namely, the 
phase-space integrals (which we have approximated 
by factors of kT/EF) and the nuclear matrix elements 
(which we have approximated by an average weak-
interaction cross section). 

IV. NEUTRINO OPACITY 

Neutrinos produced by the reactions discussed in the 
previous section have typical energies of the order of 
kT, with kT less than or of the order of 100 keV. For 
neutrinos of such energies, the largest contribution to 
the neutrino opacity comes from neutrino-electron 
scattering for ve and neutrino-muon scattering for v^ 
This result can easily be established by examining the 
possible reactions. We consider first electron neutrinos, 
ve. 

The following reactions are forbidden for typical 
neutron-star conditions by conservation of energy and 
momentum: ve+n —> p+e~, ve+p~^n+e+, and ve-\-p 
+n-^>n-{-n+e+. The reaction ve+n+n —> p-\-e~-\-nf 

and related reactions involving strange particles, e.g., 
A0,s or Hr\ occur rarely because the cross section is of 
the order of 10~42 cm2 times several factors of (kT/EF). 
Neutrino absorption by heavier elements on the surface 
of the star is negligible because the cross sections are 
small and the heavier elements are rare. Thus neutrino-
electron scattering is the most important interaction 
for ve. 

A similar analysis has been carried out for muon 
neutrinos and shows that the only interactions allowed 
by the selection rules and by energy conservation are 
Vp-yr and v^-fjr scattering. 

The cross section for neutrino-electron scattering in 
a degenerate gas is,19 for Ev<£EF(e), 

<r~ (2X10-44 cm2){Ejmec
2)2[Ev/EF{e)~], (15) 

where we have included a factor of [_Ev/EF(e)~\ that 
was inadvertently omitted from Eq. (53a) of Ref. 19. 
Equation (15) should be multiplied by one-third for 
antineutrino-electron scattering. For fy-/*- scattering, 
the cross section is again given by Eq. (15). For Vp-}i~ 
scattering, Eq. (15) should be multiplied by one-third. 

» J. N. Bahcall, Phys. Rev. 136, B1164 (1964). 
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The mean free path of an electron neutrino is 

X„,ss (ane)"1, (16a) 
and therefore 

X,.« (5X106 km)(Pnuci/p)4/3(100 keV/£,)3, (16b) 

In obtaining Eq. (16b), we have used Eqs. (5) of I. The 
mean free path of a muon neutrino is larger than XVe 

since muons are less numerous than electrons. 
Note that the values of the mean free path given by 

Eqs. (16) are large compared to the radius of a neutron 
star (^10 km). Thus the opacity of a neutrino star to 
low-energy neutrinos is entirely negligible. 

V. NUCLEON-NUCLEON COOLING 

A. General Expressions 

We now make explicit use of the independent-particle 
model to calculate the rate of reaction (1). We describe 
the state of the entire star in terms of the states of its 
individual particles, introducing corrections to account 
for the interactions among the various particles. Follow
ing the work of Gomes et a/.,20 we label each single-
particle state by its momentum p; as in Paper I, the 
energy assigned to a state of particle species i with 
momentum p is given by 

Ei(p)= {m?c^+pV)l^+Ui{p)-mic\ (17a) 

The Fermi energy EF(i) is defined by 

EF(i) = {nt?c*+[_PF{i)Jc2} w-rmc2, (17b) 

where PF{i) is the Fermi momentum for a particle of 
species i. The zero point of Ui{p) is defined such that 
Ui£PF(i)2 is equal to the binding energy B(i) as defined 
in Sec. IIIB of Paper I. Thus, Ei(p) is the energy 
required to take a particle of type i from infinity and 
place it in the neutron star in a state with momentum 
p (gravitational interactions not considered). The 
quantities Wi{p) and WF(i) are defined to be equal, 
respectively, to [_Ei(p)+rnic

r] and \EF{i)-\-mic'r\. 
The neutrino luminosity Z,„(1) arising from reaction 

(1) (n+n —> n+p+er+Pe) can be written as follows 

Z„(1) = irh~l 52 / dzn\dzn%dzn\dznvd
zned

znv 
spins./ 

XSd(Ei-Ef)Ep\(n,p,e,ve\Hw\n,n)\2, (18) 

where the subscripts 1, 2, 1', p, e, and v denote the two 
initial neutrons, the final neutron, the proton, the 
electron, and the antineutrino, respectively. The factor 
dztii is the element of phase space for particle i; S is the 
product of Fermi-Dirac distribution factors for the 
neutrons, the proton, and the electron; and Hw is the 

20 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. 
(N. Y.) 3, 241 (1958). 
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weak-interaction Hamiltonian for the beta decay of 
the neutron.21 

L' The sum over spins in Eq. (18) can easily be per
formed, and the matrix element can then be written in 

N terms of the overlap between the wave functions 
describing the relative motions of the nucleons in the 

e initial and final states. 
Pe Before writing down an explicit formula for the 

matrix element, we make two simplifications: (1) We 
y assume that the nucleon-nucleon potential acts only in 
n even-parity states, and (2) we neglect all terms involv-
o ing the lepton momenta. The first assumption has fre

quently been used in nuclear-matter calculations and 
does not appear to give rise to any large errors. The 
second simplification can be shown to introduce errors 
of the order of 15% if the first approximation is valid. 
One may reasonably expect the errors in the calculated 
neutrino luminosity arising from these approximations 
to be small compared to the uncertainties that arise 
from our lack of a fundamental theory of strong inter
actions from which one would hope to calculate the 

\ scattering of nucleons in a neutron star. 
We describe the overlap between the initial and final 

nucleon wave functions by means of the following 
, dimensionless integrals: 

MV=K-Z JdVCcosk'.r+An,0^)]* 

X[cosk.r+An„°(r)]; (19a) 

) MA=K~Z / ^ [ c o s k ^ r + A ^ r ) ] * 
,f X[cosk.r+Ann°(r)]. (19b) 

i In Eqs. (19), X* is the Compton wavelength of the pion, 
y r is the relative displacement of the two nucleons, k' is 
i one-half the difference between the two nucleon 
i momenta in the final state, and k is one-half the differ-
e ence between the nucleon momenta in the initial state. 
., The initial-state wave function [cosk«r+Awn°(r)] de

scribes the relative motion of two neutrons with total 
i spin zero. The functions [cosk'«r+Awp

0(r)] and 
^cosk'-r+Aw/O")] correspond to neutron-proton pairs 
in states with spin zero and spin one, respectively. 

The neutrino luminosity is then given by 

L,V = 647r4OG2&-1X7r-
9[Cy21 Mv 12+3CA

2 \ MA | 2]P, (20) 

) where the dimensionless phase-space factor P is defined 
as follows: 

f 6 
3 P=0-6XT

15 / II dzmSE-vd^(Kr-K)'8(E/-E*). (21) 

^ Since each factor dz%i is proportional to the normaliza-
3 tion volume fi, the phase-space integral P is actually 

independent of 0. Thus, Z,„(1) is proportional to 0. 

21 See, for example, E. J. Konopinski, Ann. Rev. Nucl. Sci. 9, 
99 (1959) or J. N. Bahcall, Phys. Rev. 126, 1143_(1962). 
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Inserting the appropriate numerical values in the 
expression for Z,„(1), one finds 

1T1L/1>== (5.2X1048 erg cm"3 sec1) 
XP( |MH 2 +4.3 | ika | 2 ) . (22) 

As was apparent from our earlier heuristic discussion, 
two types of quantities must be calculated: the nuclear 
matrix elements MA and Mv and the phase-space 
factor P. Equation (22) has been derived only for the 
case of reaction (1); we shall consider in Sec. VD the 
modifications necessary to account for reactions (2), 
(5), and (6). 

B. Phase-Space Factor 

1. General Discussion 

Chemical equilibrium among the different types of 
particles present in a neutron star is ensured by various 
weak-interaction processes, particularly reactions (1) 
and (5). The concentrations of the various particles 
can be brought to their equilibrium values in typical 
weak-interaction times of the order of 10~16 to 10~8 sec. 
However, the exclusion principle greatly inhibits all 
these reactions when the stellar matter is near chemical 
equilibrium at low temperature. For example, the 
lifetime of a neutron in a neutron star at equilibrium 
at 109 °K is of the order of 1012 sec, which is 10+18 to 
10+20 times longer than the time required to establish 
chemical equilibrium. 

This enormous reduction in the reaction rates near 
equilibrium results from a decrease in the number of 
available initial and final states. Equation (13) of 
Paper I states that, in a neutron star at equilibrium at 
0°K, two neutrons at the top of their Fermi distribution 
have just enough energy to produce a neutron, a proton, 
and an electron at the top of their respective Fermi 
seas, plus a zero-energy neutrino. At temperatures 
greater than zero but still small compared to the 
relevant Fermi energies, neutrons with energies near 
EF{n) have sufficient energy to produce a neutron, 
proton, and electron in unoccupied states near the tops 
of their respective Fermi seas, plus a neutrino with an 
energy of the order of kT. Thus the neutrons destroyed 
in reaction (1) all come from a narrow band of states 
with energies within a few kT of EF(n), and the 
neutrons, protons, and electrons produced in reaction 
(1) must have energies within a few kT of their respec
tive Fermi energies. The relatively slow rate of reactions 
(1) and (5) at equilibrium is due to the fact that only 
a small fraction of the total number of particle states 
can actually be involved in the reactions. The phase-
space factor P of Eq, (21), which we evaluate in the 
following paragraphs, contains a quantitative descrip
tion of the inhibition of the reaction rate due to the 
small number of available states. The phase-space 
factors for the allowed reactions (1) and (5) are the 
principal quantities that determine their absolute rates, 
just as the ordinary phase-space factor (usually denoted 

by /) primarily determines the laboratory decay rates 
of superallowed nuclear beta decays. 

2. Integrations 

The integrations involved in the phase-space factor 
P can all be performed analytically; the approximations 
required for carrying out the integrations give rise to 
errors of only a few percent. One can evaluate the 
integrals relatively accurately because of the simplifica
tions that result from the fact that kT is, for the 
problems of interest, much less than the relevant Fermi 
energies. For example, the energy kT is 0.086 MeV at 
109 °K, whereas EF(n), EF(e)y and EF(p) are, respec
tively, of the order of 70, 70, and 3 MeV at nuclear 
density. 

We begin the evaluation of the phase-space factor P 
by rewriting it in the form 

p=:B / I I pfdpiSEfBiEf-EdA , (23a) 
J i=l 

where 
B=(MWC)-15(2T)-1*, (23b) 

A = h-*[ll dmd) ( K ' - K), (23c) 
J i=l 

and pi and &i represent, respectively, the magnitude 
and direction of the momentum of the particle of 
species i. 

We begin by evaluating the angular integral A. The 
integrand of P is negligible except in the restricted 
"important" region of phase space where all the 
particle energies are within a few kT of their Fermi 
energies. It is convenient to neglect contributions to 
the integral from certain regions that are far from the 
"important" region. In particular, we consider only 
those parts of the region of integration that satisfy the 
inequalities 

PB+\PI-P*\ <pi<pi+p2~ps (24) 
and 

Pi>ps, (25) 
where 

ps=pp+pe+pp. (26) 
The largest error made in restricting ourselves to the 
domain described by relations (24) and (25) is of the 
order of e~

EF^)lkT, which is less than 10~3 for the 
temperatures and densities of interest. 

The angular integral A can be evaluated easily 
through the use of inequalities (24) and (25), and the 
result is 

-4 = (4ir)W(2#1M1
/)-1. (27) 

The statistical factor 5 can be expressed most easily 
in terms of dimensionless energies: namely, 

5 = I I ( l + e " ) - 1 , (28) 
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where write the phase-space factor in the convenient form 

xi=0lEx-EF{n)-Bin)-}, 

x%= -p[_E1'-EF{n)-B(n)~], 

xt=-e[w.-wr(fiy\, 
Xi=PZEi-Ep(n)-B(n)l, 

(29a) 

(29b) 

(29c) 

(29d) 

xb= -filEp- EP (p) -B(p)- m^+m^, (29e) 
and 

P=(kT)-K (29f) 

It is thus convenient to use the variables of 
integration. Denning the nucleon effective masses as in 
Paper I, we find that 

ppdpp=mp* (pp)dEp (30a) 
and 

pndpn=wn* (pn)dEn. (30b) 

We make two approximations before evaluating the 
integral over the %i. First, when the integrals are 
expressed in terms of the Xi, the factor 

wnn£i)^n*(^2)w/(£i ,)w/(E3 ,)^( JEp)[^e(Ee)]2 

remains in the integrand; since the important part of 
the region of integration involves only energies within 
a few kT of the Fermi energies, we can evaluate the 
effective masses and momenta at the Fermi energies 
and take these factors out of the integral. Second, the 
region of integration does not include negative energies; 
however, we introduce only errors of the order of 
e-pEF(p) by setting the lower limits on the neutron, 
proton, and electron energies equal to minus infinity. 

With these approximations, we obtain22 

P=2Wc-AB(nin*yfnp*PF(p)PF(e)2I, (31a) 

/

CO / . 00 /»00 /»00 /»00 

dxi I d%21 dx% I dx\ \ dx& 
-00 J — 00 J— 00 «/—00 J — (21+X2+X3+X4) 

x( i>^ n a+e*')-1 (3lb) 

where 

/ 

11 513TT8 

120 960 ' 
(31c) 

and 
mn*=mn*ZEF(n)l, (31d) 

mp*-mp*[EFip)3. (31e) 

Setting PF(P) and PF{e) equal to c~lWp(e), we can 

22 More detailed derivations of Eq. (31) and other equations 
given in this paper are included in a thesis submitted by one of 
us (R. A. W.) to the California Institute of Technology in partial 
fulfillment of the requirements for the degree of Doctor of 
Philosophy. 

P « 2 .6X10-»( J ( J TV. (32) 
\mnJ \mp/L mTc2 J 

The phase-space factor is, as expected from the 
heuristic argument given in Sec. I l l , proportional to 
T8; it is also proportional to the product of the effective 
masses of the four nucleons involved, because the 
number of single-nucleon states per unit energy is 
proportional to the nucleon effective mass. 

Although the integrations involved in P are accurate 
to within a few percent, the numerical value of P is diffi
cult to estimate to much better than a factor of 5 be
cause of the uncertainties in the effective masses and the 
electron Fermi energy. Using Eqs. (29)-(33) of Paper I, 
we estimate that the product {mr? I mr)z(ynP* I mp) is 
equal to 0.6±0.3. The electron Fermi energy depends 
on B{n)—B(p), the difference between the binding 
energies of the neutron and proton. This difference 
might easily be as large as 50 MeV at nuclear density, 
but unfortunately no reliable theoretical estimates of 
B{n)—B(p) are yet available. We shall assume that 
B(n)—B(p) is much smaller than 70 MeV and use the 
free-particle relation, Eq. (5c) of Paper I, for the 
electron Fermi energy. We then obtain a simple but 
approximate expression for P, 

p^i.9xio-30(p/Pnucl)
2r9

8. 

C. Estimates of the Matrix Element 

(33) 

Our lack of detailed knowledge of the effects of strong 
interactions makes accurate calculation of MA and My 
difficult. In the following subsection, we use a dimen
sional argument to guess the order of magnitude and 
density dependence of the matrix elements. We then 
use two specific models for the nucleon-nucleon collisions 
to obtain more detailed estimates of MA and My. 

1. Dimensional Estimate 

The integrals over r in Eqs. (19a) and (19b) must 
yield a quantity proportional to the cube of a length. 
Thus we can estimate My and MA by considering the 
physical lengths that are involved. There are two 
lengths associated with the nucleon-nucleon potential: 
The attractive potential has a range of about Xr and 
the core radius is about 0.4XT. The relevant wave num
bers K, k, and k' are all large fractions of Ppinjtr1, 
and^PirU)-1^0.4X.(p/Pnuci)-1/3. 

Since all the lengths involved are nearly equal at 
nuclear density, we expect | MA |2 and | My |2 to be of 
the order of unity at nuclear density. Furthermore, the 
effective range of A is probably determined primarily 
by k, kf, or PF{n)h~l. Thus we might expect MA and 
My to be proportional to Pp{n)~z, i.e., to decrease 
as p-"1. In any event, we expect MA and My to decrease 
slowly with increasing density, for moderate densities. 
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2. Scattering Model 

In this model, we assume that the function A in 
Eqs. (19a) and (19b) is an outgoing scattered wave; 
that is, we assume that 

A ~ E * ei81 sindi Pi(ti)eikr/kr (34) 

for krS>l. Equation (34) does not describe the wave 
function for the region kr < 1, a region which contributes 
a large part ( > one-half) of the integrals My and MA. 
In order to estimate the wave function for small radii, 
we must assume a specific form for the interaction 
potential. We adopt the separable potential suggested 
by Yamaguchi.23 The corresponding s-wave scattering 
wave function is given by 

where 
cosk-r+e*5 $mb{eikr— e~^) {kr)-1, (35) 

f T l 1fk\ 
ei8 sin5= \ —i+-\ r~( -

1 kl 2 2 W 

+ (2x2Ai3)-1032+&2)2 (36) 

The parameters X and fi, which represent, respectively, 
the coupling strength and range of the separable poten
tial, can be determined from the singlet and triplet 
scattering data. The effective Hamiltonians acting on 
the space parts of the singlet and triplet wave functions 
are different. But the two singlet wave functions con
tained in My are eigenfunctions of the same Hamil-
tonian; since the two eigenfunctions correspond to 
different nucleon energies, they are orthogonal. Thus 
the free-scattering model implies that My equals zero. 

We have computed MA using values of fi and X that 
reproduce the experimental phase shifts between 25 
and 100 MeV. The resulting expression for MA is 
complicated, but, for p<pnuci it can be accurately 
approximated as follows: 

| ^ | 2 - 0 . 3 ( P n u c i / p ) 7 / 3 . (37) 

Note that the model described above neglects all 
correlations between the colliding nucleons and the 
other nucleons that are present. 

3. Nuclear-Matter Calculation 

In using the scattering model discussed above, we 
have neglected the fact that the exclusion principle 
prohibits scattering into occupied states. Nearly all the 
states that are energetically accessible to two colliding 
nucleons are, in fact, occupied in a neutron star; hence 
there is almost no free scattering. The wave function 
describing the relative motion of two nucleons in a 
neutron star or in nuclear matter is a symmetrized plane 
wave, except for some distortion for small internucleon 
separations. This distortion is described by the functions 

23 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 

A in Eqs. (19a) and (19b). One can describe the collision 
between two particles most simply by using a two-par
ticle Schrodinger equation. The effect of the interac
tions between the two colliding particles and the other 
nucleons can be represented approximately by replacing 
the free-particle masses by the effective masses. How
ever, the Schrodinger equation must also be modified 
to take account of the fact that the states below the 
relevant Fermi levels are largely occupied; the appro
priate modified form of the Schrodinger equation is the 
Bethe-Goldstone equation, which is often used in 
nuclear-matter calculations.20 In the Bethe-Goldstone 
equation, the usual potential-energy term V{x)yp{x) is 
replaced by qV(r)\f/(r), where q is a projection operator 
that eliminates those Fourier components of V(r)\f/(r) 
that correspond to occupied states. Since the operator 
qV(r) is not Hermitian, the solutions to the Bethe-
Goldstone equation for different energies are not 
necessarily orthogonal. Thus My need not be zero as 
it was in the scattering model of Sec. VC2. 

We follow Gomes et al.20 in assuming spin-independent 
forces, which implies that MA and My are equal. How
ever, Ann and Anp are not equal, since the exclusion 
principle differentiates between neutrons and protons. 
Using the fact that | k | is different from |k ' | to show 
that 

dsr cosk' • r cosk • r = 0 , 

we can rewrite Eqs. (19a) and (19b) in the form 

MA=MV (38a) 

= X?r
3 / JV[cosk'-rAnn(r)+cosk«rAW3?(r) 

+An„(r)Ann(r)]. (38b) 

The function Ann(r) has no Fourier components corre
sponding to the scattering of either neutron into an 
occupied state, i.e., AWn(r) has no components with wave 
number p for which \^'K±^\<PF{n)h~l. Since k ' is 
approximately one-half K, AWn(r) has no Fourier com
ponent with wave number ± k ' , and 

/ • 

dzr cosk' • r Awn (r) = 0. 

We follow Gomes et al., in assuming that the nucleon-
nucleon potential consists of an attractive square well 
and a hard core. The long-range attractive well has 
little effect on the wave function for densities com
parable to pnuci; the distortion functions A are due 
almost entirely to the hard core. We consider the case 
where the core radius a is much less than h\jPF(n)']-1. 
The resulting low-density approximation should be 
reasonably accurate up to densities about equal to 
nuclear density. In the low-density limit, one can make 
the following simplifications: first, we need only 
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consider s waves; second, we can neglect the last term 
in Eq. (38b) because the product AW3,(r)Ann(r) is of 
second order in PF(n)a\ third, in computing Awp(r) we 
can neglect the leakage of the wave function inside the 
core as well as the changes in the wave function's 
normalization caused by the distortion terms A. One 
can then use the Bethe-Goldstone equation to find the 
Fourier component of Anp(r) that corresponds to the 
momentum k. In this way, one finds that 

\MA\*=\Mv\2 

= [ (47ra) (k'2- k^K-'J. (39) 

The values of k and k' are determined by kinematics 
and the exclusion principle. We found in Sec. VB that 
the particles involved in reactions (1) and (5) must be 
in a narrow band of states at the top of their respective 
Fermi seas. Thus the momentum of each particle 
involved in a reaction must be nearly equal to the 
Fermi momentum for that particle. The neutron Fermi 
momentum is large compared to the proton and electron 
Fermi momenta; the neutrino momentum, which is of 
the order of kT/c, is completely negligible. Hence the 
momentum p / of the final neutron must be approxi
mately equal to the momentum in the initial state, 
P1+P2. If we neglect the momenta of all particles except 
the neutrons, we find that the three neutron momenta 
form an equilateral triangle with sides of length PF{n). 
I t follows that k is equal to 31/2(2h)~1PF(n) and k' is 
equal to (2h)~1PF(n). Substituting these values of k 
and kr in Eq. (39), using Eq. (5e) of Paper I, and 
choosing the core radius a to be 4X10 - 1 4 cm, we find 
that 

\MA\*=\MV\2 

^ 1 . 0 ( P D U C I / P ) 4 / 3 . (40) 

4. Summary 

The scattering model and the model based on the 
usual picture of nuclear matter both predict that | MA |2 

is of the order of unity near nuclear density and that 
IMA 12 decreases with increasing density. The relatively 
small difference between Eqs. (37) and (40), and the 
agreement of both equations with a dimensional 
analysis, indicates that the value of the total matrix 
element is not critically sensitive to the uncertainty in 
our knowledge of the strong internucleon force. 

D. Related Reactions 

1. The Inverse Reaction 

We have calculated so far only the rate of neutrino 
energy loss via reaction (1). At the temperatures and 
densities for which reactions (1) and (5) are the 
dominant means of ensuring chemical equilibrium in 
the n-e-p system, the rates of reactions (1) and (5) must 
be equal in order to preserve the equilibrium. The rates 
of neutrino energy loss by the two reactions are in fact 

equal within the approximations we have used in 
calculating the rate of reaction (1). 

In deriving Eq. (20), we assumed that the lepton 
momenta were small compared to the neutron momenta. 
Within the same approximation, the expression for the 
energy production due to the inverse process can also 
be cast in the form of Eq. (20). The nucleon matrix 
elements MA and My for reaction (5) are the complex 
conjugates of MA and My for reaction (1). Further
more, one can easily show that Eq. (31a) for the phase-
space factor P holds equally well for reactions (1) and 
(5). Thus, Eq. (20), which gives the neutrino luminosity 
in terms of My, MA, and P , predicts the same rates of 
energy loss for the direct and inverse reactions. 

2, Muon Production 

Muons are present in a neutron star if the electron 
Fermi energy is greater than the muon rest energy 
mMc2;18 muon neutrinos are then produced by reactions 
(2) and (6). The rate of reactions (2) and (6) can be 
computed by the method used for reactions (1) and (5). 
The only difference in the rates of production of muon 
and electron neutrinos results from the fact that the 
density of muon states at the top of the muon Fermi 
sea differs from the density of electron states at the top 
of the electron Fermi sea by a factor F, where, for WF(e) 
greater than m^c2, 

F=PFfa)/PF(e). (41) 

Using the equilibrium relations [Eqs. (10) and (11) of 
Paper I ] , we obtain 

F={l-Zmfic
2/WF(e)J}1<2. (42) 

The ratio F is of course zero when EF(e) is less than 
m^c2. Using Eq. (5c) of Paper I to estimate WF(e), we 
find that 

F=ll-2.25(pnncl/p)^2112 for p>1.8pn u c l (43a) 

and 

F=0 for p<1.8P n u c i . (43b) 

E. Numerical Expressions 

We now combine the results of the last four sub
sections to obtain convenient numerical expressions for 
the rate of energy loss by neutrino emission. Substi
tuting Eqs. (33) and (40) into Eq. (22), and multiplying 
by 2(1+F) to take account of reactions (2), (5), and 
(6), we find that the rate of neutrino energy loss by the 
two-nucleon reactions is given by 

Z,»»= (1020 erg cm-3 sec"1) (p/pnnci)
2i*T9*(l+F), (44) 

where F is given in Eq. (43). 
The luminosity of a mass Ms of neutron-star matter 
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with a uniform density p is given by the expression 

Z„nw=(6X1088 erg seer1) 
X (MS/MQ) (pnuci/p)1/3r9

8(l+Z0 , (45) 

where If © is the mass of the sun.24 

Equations (44) and (45) give estimates of the neu
trino luminosity from reactions involving two nucleons. 
Two-nucleon reactions are expected to dominate the 
neutrino production as long as there are no quasifree 
pions present. 

F. Comparison with Previous Work 

Chiu and Salpeter7 first suggested that reactions (1) 
and (5) might contribute importantly to the cooling of 
neutron stars. They used a dimensional analysis to 
obtain the expression 

jLf/cs==(2xi036 erg/sec) 
XT9

8lEF(n)/50 MeV~]~2-2KMs/MQ) 

for the rate of energy loss by neutrinos produced in 
reactions (1) and (5). The result given by Chiu and 
Salpeter has the correct temperature dependence, but 
it is typically two or three orders of magnitude smaller 
than our best estimate [as given in Eq. (45)]. 

Finzi11 has performed a detailed calculation of the 
rate of reaction (2) at a density of 1.6pnuci. Although 
he did not explicitly calculate the rate-of-energy loss 
by reaction (5), he correctly assumed it to be equal to 
the neutrino luminosity arising from reaction (1). His 
treatment of the matrix element differs from ours in 
several ways. First, he neglected the effects of the 
exclusion principle on the relative motion of two 
colliding nucleons. Second, he treated the strong 
nucleon-nucleon interaction as a first-order perturba
tion; the nucleon scattering matrix element was 
assumed to be equal to a constant, which was deter
mined by the requirement that the same first-order 
perturbation treatment yield a value of 3X10~26 cm2 

for the scattering cross section for free nucleons. Third, 
he treated the nucleons and leptons as scalar particles 
(instead of fermions) in calculating the amplitude 
associated with the weak vertex. Finzi's treatment of 
the phase-space factor P differs from ours in two ways: 
First, a minor error in his integrations results in an 
extra factor that is approximately equal to 2/3; second, 
he uses the free masses mn and mp instead of effective 
masses mn* and mp* to describe the density of single-
particle states. Finzi gave the following expression for 
the luminosity of 0.6M 0 of neutron-star matter at 

24 In our earlier calculation (Ref. 13), we used the scattering 
model to estimate the matrix element. We also neglected the 
relativistic correction to the neutron effective mass. Setting Mv 
equal to zero, using Eq. (37) for MA, and setting mn* equal to 
0.9 reduces the value of the constant in Eq. (45) to 1X1038, the 
value given in Ref. 13. The density dependence is also changed 
somewhat. The muon rate was not included in our earlier estimate. 

1.6pnUci-
V = (8.83X1037 erg/sec)r9

8. 
This result differs from the luminosity predicted by 
Eq. (45) for the same mass and density by about a 
factor of one-fifth (if we set F equal to zero). The dis
agreement between the two answers is small compared 
to the obvious uncertainties in either approach. The 
closeness of the two results for the rate of energy loss 
arises partly from the fact that the matrix element is, 
as we mentioned in Sec. VC, relatively insensitive to the 
details of the model used to calculate it. 

Ellis12 has recently reported a similar calculation of 
the rate of energy loss by reactions (1) and (5). 
Following Finzi, he employed second-order perturbation 
theory to estimate the transition amplitude, using the 
known nucleon-nucleon scattering data to determine 
the coupling at the strong vertex; he also neglected the 
effects of the surrounding neutrons on the relative 
motion of the colliding nucleons. Unlike Finzi, Ellis 
treated the nucleons and leptons as fermions, and he 
performed the calculation for a range of densities. 
Although he did treat the nucleons relativistically, he 
did not consider the protons to be degenerate, despite 
the fact that Ep(p)/kT is of the order of 50 for most 
temperatures and densities expected in neutron stars. 
Ellis performed part of the integration over phase space 
by a Monte Carlo technique; he gave the following 
formula, which accurately represents his numerical 
results: 

V*=(6X1038 erg/sec) 
XpE*(»)/50 MeV2'U9(Ms/MQ)T9^. 

The peculiar temperature dependence is due primarily 
to the fact that he assumed that the protons were non-
degenerate. The above relation does not differ from 
that obtained by Finzi or by us by more than a factor 
of 10 in the most interesting domains of temperature 
and density. 

We have extended and refined the work of previous 
authors in several respects. First, the rate of energy loss 
by muon neutrinos and the luminosity due to the 
inverse processes [reactions (5) and (6)] have been 
explicitly calculated in the present work. Second, we 
have attempted to modify the single-particle picture 
to take account of strong interactions. In particular, 
we have used the methods developed for nuclear-matter 
calculations to estimate the density of single-particle 
levels (as expressed by the effective masses) and to 
treat the nucleon-nucleon scattering in a manner con
sistent with the exclusion principle. We have also been 
able to calculate the phase-space factor more accurately 
by expressing it in a form that permits accurate analytic 
evaluation. 

VI. PION COOLING 
A. General Discussion 

In this section we calculate the rates of several 
neutrino-producing reactions that will occur if quasi-
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free pions are present in neutron matter. We showed 
in Sec. V of Paper I that quasifree pions, if they are 
present at all in a neutron star, must be highly de
generate; that is, nearly all the pions must be in the 
lowest energy single-particle state. The momentum pT 

and energy co* of this lowest single-particle state are not 
known. The reaction rate fortunately does not depend 
sensitively on p*, and we can assume that pT is zero 
without making a serious error. The energy car can be 
written 

u« = B(Tr-)+rn«c\ (46) 

where B(r~), the pion binding energy, was defined in 
Sec. I l l of Paper I. 

The most important neutrino-producing processes 
that involve pions are reactions (3), (4), (7), and (8). 
We shall first derive an expression for the rate of energy 
loss by reaction (3), and then modify the formula to 
take account of other reactions. 

The rate of energy loss per pion by reaction (3) is 
given by 

spins./ 

XE,\((n,<r,v)\Hv\(n,ir)+)\*. (47) 

The notation used in Eq. (47) is similar to that used in 
Eq. (18): The differentials dztii, d W , d*ne, and d3tip refer 
to the initial neutron, the final neutron, the electron, 
and the antineutrino, respectively. The statistical 
factor 5 is the product of the usual Fermi-Dirac distri
bution functions for the two neutrons and the electron 
(all pions are assumed to be in the lowest energy state). 
The initial-state vector | (n,ir~)+) is an eigenstate of 
the strong Hamiltonian; the incoming part of | (n,w~)+) 
corresponds to a neutron with momentum pi and a pion 
with momentum pT. The final-state vector | (n,e~,v)) is 
a product of momentum eigenstates representing a 
neutron (with momentum pi), an electron (with 
momentum pe), and a neutrino (with momentum p?). 

We again find it convenient to separate the neutrino 
luminosity into a dimensionless phase-space factor, a 
dimensionless matrix element, and a constant factor. 
The matrix element is nearly constant over those 
regions of space where the statistical factor S is non-
negligible. Thus we can remove the matrix element 
from the integral and write the neutrino luminosity in 
the form 

Z/3> = PM2[G2(27r)^~1Xff-
6], (48a) 

where 

Xd(Ef-E%)P(Pf-?t)SE,, (48b) 

M2bz ( P / - Yi) = G-2&K~d
 (2TT&)-3 

X £ |<(»,*v)|F*| (n,T-)+)\\ (48c) 
spins 

and Fi and P/ are the initial and final momenta, 
respectively. 

In the following sections, we estimate the values of 
P and M2, employing arguments that are analogous to 
those we have previously used to calculate the nucleon-
nucleon cooling rate. We shall see, however, that our 
knowledge of the relevant matrix elements is much 
less accurate for pionic cooling than it is for nucleon-
nucleon cooling. 

B. The Phase-Space Factor 

As in the case of nucleon-nucleon cooling, we describe 
the density of available initial and final states by the 
phase-space factor P, which, for reaction (3), is defined 
in Eq. (48b). The integrand in Eq. (48b) is concentrated 
in the small "important region" of phase space where 
the energy of each particle is within a few kT of its 
Fermi energy. Just as in Sec. VB, we neglect the 
contribution to the integral P from certain regions far 
from the "important region"; in particular, we consider 
only the parts of phase space satisfying the following 
inequalities: 

pi+p*+p*-p*<pi<pi-pp-p*+pe; (49a) 

Pi>p9+pr. (49b) 

Following the treatment of reaction (1), we also arti
ficially extend the region of integration to include 
negative energies for the two neutrons and the electron, 
since the contributions from the negative energy 
regions are completely negligible. We neglect the 
variation of ww* (En) in the important part of the region 
of integration. 

With these approximations, the calculation of P for 
reaction (3) is directly analogous to the calculation of 
P for reaction (1). We find that 

p = 2-7TT-9(CO,/WTC2) {kT/m^Yim^/m^I, (50a) 

where 

/

OO / . O O /»QO 

dXi I dx2 / d#3(#l+#2+#3)3 

-00 •'—00 ^ — ( 3 1 + # 2 ) 

XII (l+e**)~l (50b) 
= (457/5040)TT6. (50C) 

The phase-space factor is proportional to T6, as 
expected from the heuristic argument in Sec. III. The 
factor P for reaction (3) depends on the density only 
through the effective mass wn* and the pion ground-
state energy cav. Referring to the results of Sec. IVB of 
Paper I, we assume that the neutron effective mass is 
1.0wn. We also assume that the pion binding energy 
B (w~) is small compared to mvc

2. Then the pion phase-
space factor can be conveniently expressed in the form 

P=5.6X10-237Y\ (51) 
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C. Matrix Element 
We present several arguments that can, in the 

absence of a detailed theory of strong interactions, be 
used to obtain crude estimates of the matrix elements 
for reaction (3). 

1. Dimensional Argument 

The physical lengths involved in the matrix element 
M are the following: toT

_1, h{mec)~1, h(mnc)~l, 
h£PF(e)2~\ hc[_Ef\~l,hlPF{n)'y\ and the range of the 
pion-nucleon potential. The range of the pion potential 
is of the order of the scale length Xr. We assume that 
the pion binding energy B(ir~) is not large compared 
to MTTC2; then hcu^1 and h\pF(e)~]~l are also of the 
order of ft*. 

There remain four relevant lengths that are not 
approximately equal to XT: hcEf1, h(mec)~l, h(mnc)~l

y 

and h[PF{n)~y~l. The neutrino energy Ey enters the 
matrix element only through the combinations EedzEp; 
since E? is much smaller than Ee, it follows that M is 
essentially independent of hc£Ei]~1. The momentum 
and energy transferred to the leptons do not depend 
strongly on me, tnn, or PFM, because of the equilibrium 
relations that obtain [cf. Paper I, Eq. (13)]. Hence 
these three quantities do not contribute strongly to the 
energy denominators corresponding to the important 
virtual states (the virtual states involved in Fig. 1 for 
example). The amplitudes at the vertices are not 
strongly dependent on Pp(n)\ consequently, the entire 
matrix element M is approximately independent of 
h[Pp(n)'2~1. We shall see later that the amplitude at 
the weak vertex can, for some diagrams, be proportional 
to the electron mass, and the contributions from these 
diagrams are consequently inhibited by a factor of 
(me/nir). The contributions from the dominant dia
grams, however, are essentially independent of h(mec)~l. 
The effect of the nucleon mass on the matrix element is 
more subtle; the masses of the hadrons and the coupling 
constants characterizing their interactions are con
nected in a complicated way. The ratio OwAn) or 
mn/MTj is typical of the dimensionless quantities arising 
in strong-interaction calculations. Our dimensional 
reasoning can only suggest that M should be of the or
der of unity, within perhaps a couple of factors of m»/W. 

2. Pion Decay 

We first estimate the rate of reaction (3) by consider
ing the diagram shown in Fig. 1 (a); the pion is assumed 

to beta decay during a collision with a neutron. The 
diagram suggests factoring the matrix element of Hw 

as follows: 

< ( / V T , i O | # ™ ^ 
Xinip^wiPe+pp) | (» ,*- )+>, (52) 

where e(pe), for example, represents an electron state 
with four-momentum pe. This factorization can be 
justified formally by writing an explicit expression for 
(n,e~,v\Hw\ (nyw~)+) in terms of a double integral over 
the neutron and pion coordinates. 

I t is easy to establish the dimensional form of the 
overlap matrix element (n(pi)7r(pe+pi;)\ (n,T~)+), 
which we abbreviate by (0 |^ ) . The matrix element 
involves two integrals, one over the center-of-mass 
coordinates and one over the relative position of the 
nucleon and pion. The integration over the center-of-
mass coordinate yields a momentum delta function; 
the integration over the relative position yields an 
effective overlap volume, which must be of the order 
of 3W3. Since the wave functions are normalized in a 
volume 12, we find that 

| ( 0 | ^ ) i 2 = ^ 7 r ^ - 3 ( 2 7 r ^ ) 3 5 3 ( P / - P i ) , (53) 

where B is expected to be of the order of unity. 
The weak Hamiltonian is the product of a leptonic 

weak current G1/22-1/4:^eya(l+yb)^v and apionicweak 
current Qa. The current Qa has the form {pe-\-pv)a 
XK£— (pe-\-pv)22y because the four-momentum is the 
only vector associated with the spinless pion. The scalar 
factor K[_— (pe+pp)22 *s difficult to calculate. However, 
the value of K(mv

2) can be calculated from the known 
lifetime of the free pion. Assuming for simplicity that 
K\L~~ (pe+pp)2l is approximately equal to K(mT

2), 
we find, using Eq. (53), that 

tP^QSBhneWfarmr)-1. (54) 

The factor B is a dimensionless number characterizing 
the strong pion-nucleon interaction. I t should be equal 
to unity within perhaps a couple of powers of (w»/m r) . 

J. Born Approximation for Pion Decay 

We now use a specific model to treat the pion-nucleon 
interaction. We assume an interaction Hamiltonian 
given by25 

Hs=ig&xrrY&N' $, (55a) 
where 

« « 1 4 (55b) 

and x and 0 are vectors in the isotopic spin spaces of the 
nucleon and pion, respectively. We treat the strong 
interaction as if it were a small perturbation and con
sider just the diagram shown in Fig. 1(b). The assump
tion that the strong interaction is a small perturbation 
is of course not valid because of the large value of g, 

FIG. 1. Several Feynman diagrams for the 
reaction n-)rir~ —> nr-\-e~-\-ve. 

25 G. Kallen, Elementary Particle Theory (Addison-Wesley Pub
lishing Company, Inc., Reading, Massachusetts, 1964), pp. 141 
and 119. 
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but we use the first-order treatment in the hope that it 
will provide some insight into the relevant physical 
quantities that enter the problem and perhaps serve as 
a guide in the estimation of the factor B in Eq. (54). 

The Feynman rules permit one to calculate easily the 
amplitude corresponding to the diagram of Fig. 1(b). 
We use the free-particle propagators for the pion and 
nucleon, make the nonrelativistic approximation for 
the nucleons, neglect mv compared to mny and average 
over the directions of the neutrino momentum. The 
result is 

M^Zmime/m^Y, (56a) 

which corresponds to 
£ « 2 1 . (56b) 

The factors of (me/mT)2 in Eqs. (54) and (56) result 
from our assumption that the leptons are produced in 
the decay of a w~. A similar factor occurs, for the same 
reason, in the well-known and experimentally verified 
prediction of the V—A theory for the decay of a free 
pion. In the next section we consider the production of 
an electron and a neutrino by the decay of a neutron 
[Fig. 1(c)] and find that the corresponding matrix 
element is not inhibited by factors of me/m^. 

4. Neutron Decay 

The diagram shown in Fig. 1 (c) is the simplest one in 
which reaction (3) takes place by neutron decay. At 
the strong vertex, we use the Hamiltonian given in 
Eq. (55), but the weak vertex now involves the nucleon 
current. We assume a pure V—A form 

Hw=2-^G%ya(l+y^n^eya(l+y^ (57) 
for the weak Hamiltonian. The coefficient of the axial-
vector part of the nucleon current has, for simplicity, 
been set equal to unity. 

The dimensionless factor M2 can be calculated using 
Feynman rules. Making the same approximations as 
in subsection (3), we find that 

M2^2g2{mjmn)
2 (58) 

- 9 . (59) 

We note that the contribution to M from the diagram 
of Fig. 1 (c) contains no factors of me/mT and is conse
quently larger than the contributions from the diagrams 
involving pion decay. The value of M2 given in Eq. (59) 
is not reliable, however, because of our use of perturba
tion theory. Terms of higher order in g2 may be larger 
than the contribution from Fig. 1(c). For example, the 
contribution from Fig. 1(b) would have been large 
compared to that from Fig. 1 (c), had it not been for the 
factor {me/mv)

2, which resulted from the form of the 
weak Hamiltonian. The constant in Eq. (56b) is large 
because it contains four factors of g} while the constant 
in Eq. (59) contains only two. 

The estimates of the matrix element M2 given in 
Subsec. VIC.l to VIC.4 can be summarized by stating 
that M2 is expected to be of the order of ten but is 
uncertain by one or two powers of ten. 

D. Related Reactions 

Muons are expected to be present in neutron stars 
that contain pions if cô  is greater than m^c2 [oi. Eqs. 
( l ib) and (15) of Paper I ] . When muons are present, 
reaction (4) contributes to the rate of neutrino produc
tion. The phase-space factor for reaction (4) is the same 
as for reaction (3) if, as expected, a*— m^c2 is much 
larger than kTt The matrix element M is, on the other 
hand, not the same for decays producing muons "and 
electrons. In Sec. VIC we found that diagrams such as 
Fig. 1(c) that involve the decay of a neutron into a 
proton, electron, and antineutrino were much more 
important than diagrams such as Figs. 1(a) and 1(b) 
that involve the decay of a virtual IT into an e and a pe-
However, the pion-decay processes that are inhibited by 
a factor of (me/mT)2 in the case of decay into e and j>e 

are only inhibited by a factor of (%/mT)2 in the case of 
decay into a n and ^ . Thus diagrams such as Figs. 1 (a) 
and 1(b) may contribute importantly to the rate of 
production of muon neutrinos. The rates of production 
of electron and muon neutrinos may nevertheless be of 
the same order of magnitude, and, lacking an accurate 
estimate of either rate, we shall assume that the rates of 
energy loss by muon and electron neutrinos are equal. 

As in the case of the nucleon-nucleon reactions, the 
rate of energy loss by the inverse processes [reactions 
(7) and (8)] can be proved equal to the rate of energy 
loss by the forward processes [reactions (3) and (4)]. 

E. Numerical Expressions 

The rate of energy loss by neutrinos produced in pion 
reactions can be obtained by substituting values of M2 

and P in Eq. (48a). In particular, we use Eq. (51) for 
the phase-space factor and set M2 equal to ten. Multi
plying by four to account for the muonic decay [re
action (4)] and the inverse processes [reaction (7) and 
(8)], we find the expression 

Lp™~ 10~u erg/sec (60) 

for the rate of energy loss per pion. The neutrino 
luminosity of a mass Ms of stellar matter is then given 
by 

£ ,»»« (1046 erg/sec)T9*(nT/nb) (M8/MQ), (61) 

where njnb is the ratio of the number density of quasi-
free pions to the number density of baryons. Equations 
(60) and (61) are probably accurate to within a factor 
of something like 100. The result given in Eq. (61) 
is about twice the rate indicated by the heuristic 
discussion in Sec. I I , and is almost identical to the 
result of our previous calculation.26 We note that the 
energy loss by the pionic process is of the order of 

26 In our earlier calculation (Ref. 13), we used Eq. (54) to 
estimate the pion matrix element, describing the state | (n,7r~~)) 
by means of a crude wave function based on an analogy with the 
nuclear-matter calculations of Gomes, Walecka, and Weisskopf. 
However, in this earlier work, we wrongly neglected the contribu
tions from neutron-decay diagrams such as Fig. 1 (c); this error 
resulted in the incorrect statement that the rate of reaction (3) 
is reduced by a factor of (mt/mv)

2 if WF{C) is less than m$c\ 
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107iy~2 times the energy loss by the nucleon-nucleon 
processes if a significant number of quasifree pions 
are present. 

VII. COOLING TIMES AND OBSERVABILITY 

A. Temperature Distribution 

The interior of a neutron star is nearly isothermal 
because of the high conductivity of the degenerate 
electrons. The effective surface temperature Te is, on 
the basis of the models of Tsuruta,15 of the order of 
10~2 times the central temperature T, but the tempera
ture drop from T to Te occurs almost entirely in a thin 
surface layer of nondegenerate and partially degenerate 
matter. The energy loss by neutrino emission depends 
on the interior temperature T, but the rate at which 
photons are emitted from the surface is governed by the 
effective surface temperature Te. 

The thermal energy U of a neutron star is approxi
mately equal to the energy of thermal excitations in 
the neutron gas if there are no gaps in the energy 
spectrum of the gas. We thus find that 

U~ (5X10*7 erg)r9
2(p/P n Uci)-2 / 3(ilf s /M0), (62) 

where T9 is the interior temperature of the star in units 
of 109 °K. 

B. Cooling Rates 

We assume that the star radiates photons from its 
surface like a blackbody; the detailed atmospheric 
calculations of Orszag27 indicate that the blackbody 
assumption is a fairly accurate over-all approximation. 
The photon luminosity is then given by 

Ly= (7X1036 erg sec-1)Te7^R10
2, (63) 

where T# is the effective surface temperature in units 
of 107 °K, and Rio is the radius of the star in units of 
10 km. For convenience, we rewrite Eqs. (45) and (61) 
for the energy loss by the nucleon-nucleon and pion-
nucleon processes: 

Z / ^ ^ X l O ^ e r g s e c - 1 ) 

X (MS/MQ) (Pnuci/py>*T9*(l+F), (45) 

£ ,*»« (1046 erg sec-1) (MS/MQ) (nT/nh)Tf, (61) 

where nr and fib are the number densities of pions and 
baryons, respectively; the factor F, which represents 
the contribution from muonic decays, was defined 
in Eq. (42). 

The rate of change of the interior temperature can 
easily be computed (if the ratio of interior to surface 
temperature is known) using the relation 

dU/dt= -Ly-Lv
nn-L™ (64) 

and Eq. (62). If quasifree pions are present in significant 
numbers, the pion-nucleon cooling reactions are 
dominant, and the time required for the interior to cool 

** S, A, Orszag, Astrophys. J. 142, 473 (1965). 

from an initial temperature T(i) to a final temperature 
T(J) is 

At (pions) = (8X 1<H yr) (»i/»r) (p/p„uci)-2/3 

X\T9(flr*-Tt(i)r
tl. (65) 

The luminosity Lvn is zero if no quasifree pions are 
present. Then we can solve Eqs. (62), (63), (45), and 
(64), finding that the time required for a star's interior 
to cool from T(i) to T(f) is given by 

A ^ o a 6 { [ a r 9 ( / ) ] - 2 - [ a r 9 ( i ) ] - 2 

+b[taxrlXf— tan - 1# J } , (66a) 
where 

a « (1900 yr) (M S/MQ)^, (66b) 

* « 8.5 (p/Pnuciy,&(M8/MQyi*, (66c) 

Xi=b[aT9({)22, (66d) 
and 

xf=b[aT>(f)J. (66e) 

We have assumed that the temperature parameter a, 
defined by 

a(T) = 10-2T/Te (67a) 
or 

a(T) = T9/Te7, (67b) 

is approximately constant for T between T(i) and T(f). 
I t is clear from Eq. (66) that the cooling rate depends 

strongly on the parameter a, which must be determined 
from theoretical models of neutron stars. We wish to 
stress that a is, in fact, the only quantity derived from 
neutron-star models that enters at all sensitively into 
the theoretical predictions of the cooling rates. I t is 
primarily through a that the models affect the question 
of the observability of neutron stars, and future models' 
calculations should therefore attempt to establish the 
uncertainty in a(T) due to, for example, uncertainties 
in the equation of state. 

We have computed cooling times for a typical 
neutron star, with the results shown in Fig. 2. The 
curves represent cooling by the pion-nucleon reaction 
[Eq. (65)3, by the nucleon-nucleon processes, by 
photons radiating from the surface, and by the nucleon-
nucleon process and photon cooling operating together 
[Eq. (66)]. We considered a star with average density 
pnuci and mass M®. The quantity a(T) is a slowly 
varying function of temperature; we chose values of 
a(T) in agreement with a neutron-star model con
structed by Tsuruta15 (see Table I) . 

C. Observability of Neutron Stars 

The probability of ever observing a neutron star de
pends strongly on the rates at which such stars cool. A 
star containing quasifree pions would emit detectable 
x rays for no more than a few days, and the probability 
of observing it would be small. A star that cools only 
by the nucleon-nucleon and photon processes would be 
detectable for a longer time (cf. Fig, 2). 
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LOG|0(TIME(years)) 

FIG. 2. Cooling times calculated for a typical neutron star. The 
curves marked wn and nn were calculated assuming neutrino loss 
by the pion-nucleon and nucleon-nucleon reactions, respectively. 
The curve y represents a star cooling by radiation from the 
surface only, and the curve nn-\-y gives the cooling time of a star 
emitting neutrinos from its interior by the nucleon-nucleon 
processes and radiating photons from its surface. 

We have previously pointed out28 that the rate of 
decrease of the x-ray intensity from a neutron star 
could be used as an observational test of theories of 
neutron-star cooling; we have given a convenient 
formula for making the appropriate observational 
comparisons, should a neutron star ever be discovered. 

We now consider the flux of photons that would be 
produced at a distance r by a neutron star with effec tive 
temperature Te. The flux <£ of photons with wavelengths 
less than Xm is given approximately by 

$ « (0.4 cm-2 sec-^^ioVkpc^Cn/SXlO6 °K)3 

X$x2+x+l)e-*, (68a) 

where Rio is the stellar radius in units 10 km, rkpc is the 
distance to the star in kiloparsecs (1 kpc—3.08X1021 

cm), and x is defined as follows: 

*=4.8(10 A/Xm)(3Xl06 °K/Te). (68b) 

Approximately ten x-ray sources have been identified 
by Giacconi et ah,1 Bowyer et al.,2'z and Clark et al* 
These sources are concentrated near the galactic plane, 

TABLE I. Temperature parameter a(==10~2T/Te). The values 
of a were obtained by interpolation of a table given by Tsuruta.a 

Tel is the effective surface temperature in units of 107 °K. 

Te7 a 

2.0 1.92 
1.0 1.65 
0.8 1.61 
0.6 1.59 
0.4 1.53 
0.3 1.48 
0.2 1.39 
0.1 1.10 

a S . Tsuruta, Ph.D. thesis, Columbia University, 1964, p. 322 (un
published). 

28 J. N. Bahcall and R. A. Wolf, Astrophys. J. (to be published). 

TABLE II . Possible distances and cooling times 
for the Scorpius source. 

Tel 

2.0 
1.0 
0.8 
0.6 
0.4 
0.3 
0.2 
0.1 

r (kiloparsecs) 

2.3 
0.7 
0.5 
0.3 
0.09 
0.03 

6X10"3 

4X10~5 

'cooling 

5 h 
60 da 

l y r 
8 y r 

100 yr 
800 yr 
104yr 

3X105yr 

and about half of them are located in the direction of 
the center of the galaxy. The weakest source detected 
by Bowyer et al., produced a measured flux of 0.7 
cm~2 sec-1, and, because of absorption in the earth's 
atmosphere and in the counter itself, the observed 
x rays must have been concentrated in the wavelength 
range from 1.5 to 8 A; since the sun is approximately 
8 kiloparsecs from the galactic center, we conclude from 
Eq. (68) that the effective temperature of an observed 
source located at the galactic center must be greater 
than 2X107 °K, if the source is no larger than a neutron 
star. Comparison with Fig. 2 indicates that a neutron 
star with a temperature of 2X107 °K would have to be 
less than a day old. The x-ray sources located in the 
direction of the galactic center have been observed 
several times in the last few years,1'3-17 and the flux from 
these sources has not changed, within the observational 
uncertainties (about a factor of 2 or 3). Hence we con
clude that the sources in the direction of the galactic 
center are almost certainly not neutron stars. 

The strongest x-ray source appears to be in the 
direction of Scorpius. We have used Eq. (68) to calcu
late the distance at which a neutron star with a given 
surface temperature could produce the flux observed 
from the Scorpius source; this distance is calculated for 
various surface temperatures. The corresponding cool
ing times computed from Eq. (66) are shown in the 
third column of Table II. In computing the second 
column of Table II, we assumed that all the observed 
photons had wavelengths less than 8 A; we also 
assumed that the neutron star had a radius of 10 km. 
It has been suggested that the Scorpius source may be 
only of the order of 30 parsecs from the sun. According 
to Table II, a distance of 30 parsecs corresponds to a 
surface temperature of about 3X106°K and to a 
reasonable cooling time of approximately 103 yr. How
ever, a blackbody at 3X106°K would not produce 
nearly enough radiation with wavelength less than 2 A 
to be consistent with the spectral measurements re
cently performed on the Scorpius source by Giacconi 
et al.17 
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APPENDIX 

Sections V and VI are devoted to the calculation of 
the rates of neutrino loss by reactions (l)-(8); in this 
Appendix, we explain why we expect reactions (l)-(8) 
to dominate the neutrino production if the nucleon gas 
has a continuous excitation spectrum. In the following 
paragraphs, we consider various types of reactions and 
show that their contributions to the neutrino production 
is small compared to the contributions from reactions 
(l)-(8). 

We first consider reactions that do not involve either 
electromagnetic interactions or quasifree pions. The 
rate of ordinary neutron decay 

n-*p+e-+p (Al) 

is negligible compared to the rate of reaction (1). As 
explained in Sec. VB, the conditions of chemical equilib
rium and conservation of energy imply that the rates 
of processes involving only neutrons, protons, electrons, 
and neutrinos are dominated by reactions in which the 
neutrons, protons, and electrons concerned have 
energies near their respective Fermi energies, and the 
neutrinos produced have energies of the order of kT. 
But momentum cannot be conserved in reaction (Al) 
if pn is near PF(n), pp is near PF(p), pe is near PF(e), 
and pp is of the order of kTc~l, because 

PF(n)-PF(p)-PF(e)^>kTc~K 

Consequently, reaction (Al) must involve the emission 
of electrons and protons with momenta small compared 
to their Fermi momenta, and the probability of finding 
such low-energy states unoccupied is of the order of 
exp[—EF(n)/kT2, which is extremely small. Conserva
tion of momentum is easily satisfied if the decaying 
neutron is allowed to collide with another particle, as 
in reaction (1). 

Reactions that involve large numbers of particles are 
slow because only a small fraction [of the order of 
kT/EF(n)~] of the particles of a given species are near 
enough to their Fermi level to scatter into unoccupied 
states. For example, the reaction 

n+n+n—>n+n+p+e~~+v (A2) 

is slower than reaction (1) by a factor of the order of 
[kT/EF(n)J. 

A reaction that, like 

e++ n-\- n —•» n+p+ v, (A3) 

involves an incident positron, produces few neutrinos 
because the concentration of positrons is proportional 
to exp[—EF{e)/kT~\. Positron-producing reactions like 

n-\- p —> n-{- n+ e++ v (A4) 

are slowed by the same factor of exp[—EF(e)/kT~], 
because the number of neutron-proton pairs with 
enough energy to produce two neutrons in unoccupied 
states is proportional to exp[—EF(e)/kT2* 

Applying the arguments of the last few paragraphs 
to all of the obvious neutrino-producing processes that 
do not involve either quasifree pions or electromagnetic 
interactions, we find that none of these processes are 
faster than reactions (1), (2), (5), and (6). 

We now consider reactions that do not involve pions, 
but do involve electromagnetic interactions. Photons 
propagating through a neutron star interact with the 
charged particles in the stellar medium. Creation of one 
of these quasifree photons (usually called "plasmons") 
requires an energy greater than hooo, where co0 is the 
plamsa frequency in the medium. Consequently, the 
rate of a reaction such as 

y-»v+v, (AS) 

which involves one external plasmon is proportional 
to e~ji03olkT. Rates of such reactions are small for tem
peratures less than 109 °K because hooo is of the order 
of 5 MeV at neutron-star densities.29 

Reactions involving more than one neutrino are 
generally slow because of the small amount of phase 
space available to such processes. The amount of phase 
space available to a neutrino with energy less than kT 
is proportional to (kT)z. Consequently, the rate of the 
reaction 

p+vr->p+e-+J>e+pfi, (A6) 

for example, is smaller than the rate of reaction (1) by 
a factor of the order of [kT/EF{n)~J. 

More detailed work on processes involving electro
magnetic interactions is now in progress,30 but we have 
not yet found any such processes that are more im
portant than reaction (1) for the temperatures and 
densities at which neutron-star matter forms a normal 
Fermi fluid. 

Turning to reactions involving quasifree pions, we 
can use the arguments presented in the last few para
graphs to show that the following types of pion reactions 
are slower than reactions (3), (4), (7), and (8): the free 
decay of the pion (TT~ —*M~"+*V)> reactions involving 
large numbers of fermions, positron processes, and 
pionic reactions involving more than one neutrino. The 
reaction 

7T~+ 7T~ —> 7T~+ /X~+ Vy. , (A7 ) 

however, might be faster than reactions (3), (4), (7), 
and (8) if the lowest quasifree pion state has a momen
tum greater than about \PF(\x)\ the energy and 
momentum of the lowest pion state are completely 
unknown. However, the question of whether reaction 
(A7) proceeds faster than reactions (3), (4), (7), and 
(8) is not particularly important, because reactions (3), 
(4), (7), and (8) alone would be sufficient to cause a 
neutron star containing quasifree pions to cool too fast 
to allow radiation from its surface to be observed. 

29 J. B. Adams, M. A. Ruderman, and C-H. Woo, Phys. Rev. 
129, 1383 (1963); M. H. Zaidi, Nuovo Cimento (to be published). 

30 M, A. Ruderman (private communication). 


