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A theory of neutrinos is constructed within the present scheme of geometrodynamics. First, a special 
class of c-number Heisenberg fields is considered and a plane-wave-like solution of the covariant neutrino 
equation is obtained in the two-component limit. It is shown that the special class of neutrinos forms a 
Rainich null geometry. Conversely, a geometry suitable for the special neutrinodynamics is distinguished 
from general null geometries by imposing the condition that the null eigenvector of geometry is the gradient 
of the neutrino complexion. Finally, the geometrical parallelism between gravito-electrodynamics and 
gravito-neutrinodynamics is discussed. 

I. INTRODUCTION 

THE view that the physical world is composed of 
an empty geometry is not quite new. It is perhaps 

sufficient to recall that Einstein's theory of general 
relativity is already two score and ten years old. How­
ever, it was only a decade ago when Wheeler succeeded 
for the first time in constructing a complete geometrical 
model of mass, giving a new interpretation of the con­
cept of mass.1 In Einstein's theory, masses and fields 
are still sources foreign to space-time geometry. Instead, 
Wheeler considered them as products of the dynamics 
of geometry. He and his collaborators have further 
developed geometrodynamics dealing only with geom­
etry and its evolution and have discovered previously 
unexpected rich implications for curved empty space.2,3 

Above all, it is very compelling, despite certain un­
resolved difficulties,4 that a Rainich geometry5-7 ac­
commodates the coupled theory of Einstein's general 
relativity and Maxwell's electrodynamics, which is 
characterized by the Rainich algebraic conditions 

R=0; Roo^O; R^R*=lg»vRapRa(i (1) 

and by the Rainich-Misner-Wheeler differential condi-

* Based on part of a thesis submitted by the first author to 
Rensselaer Polytechnic Institute in partial fulfillment of the 
requirements for the Ph.D. degree. Preliminary reports of this 
work were given in Bull. Am. Phys. Soc. 9, 87 and 450 (1964). 

1 J. A. Wheeler, Phys. Rev. 95, 511 (1955). 
2 J. A. Wheeler, Geometrodynamics (Academic Press Inc., New 

York, 1962), in which Refs. 1, 6 and other related articles are 
collected. 

8 See also J. G. Fletcher's review article in Gravitation: An 
Introduction to Current Research, edited by L. Witten (John Wiley 
& Sons, Inc., New York, 1962). 

4 A fundamental difficulty is that the required initial data may 
correspond to more than one Maxwell field; see L. Witten, Phys. 
Rev. 120, 635 (1960). Whether or not such a difficulty is fatal to 
geometrodynamics is not yet known. An optimistic observation 
on this matter is seen in Ref. 3, p. 416. Another serious problem is 
the singular case of the Rainich vector aM, which this paper dis­
cusses in part. 

6 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925). 
6 C. W. Misner and J. A. Wheeler, Ann. Phys. (N. Y.) 2, 525 

(1957). 
7 R. Adler, M. Bazin, and M. Schiffer, Introduction to General 

Relativity (McGraw-Hill Book Company, Inc., New York, 1965), 
p. 418. 

tion8 

d^- 6V*M=0; cv= e^R^R^/RaftR"* • (2) 

This is, in the language of Misner and Wheeler, an 
already unified theory of gravity and electromagnetism.6 

Recently, some attention has been paid to solving the 
Rainich problem for neutrinos.9 In fact, the neutrino is 
the simplest field with half-integral spin. It has no mass 
and no charge; it travels with the speed of light. It 
appears to be as fundamental as the gravitational and 
electromagnetic fields. Nevertheless, no attempt has 
succeeded in providing a proper place for this third field 
in geometrodynamics. 

A question arises as to whether it is possible for the 
neutrino field to be a primary object of geometro­
dynamics. Concerning this point, Wheeler has remarked 
that there is no classical description of the neutrino 
along correspondence-principle lines, and has added 
that Pauli's descriptive term "nonclassical two-
valuedness" antedated the term "spin.10" The natural 
origin of the two-valuedness could be found in quantum 
geometrodynamics, and probably it would be necessary 
to accept quantum considerations from the very be­
ginning in dealing with neutrinos. Nevertheless, in this 
paper, we consider it worthwhile to reinvestigate the 
c-number neutrino field as a solution of the general 
relativistic Dirac equation, and we wish to see if one 
may say anything about neutrinos within the present 
scheme of geometrodynamics. 

In the null case, where RapRaP vanishes, the Rainich 
vector aM is singular, and the Rainich-Misner-Wheeler 
Eq. (2) fails to hold. When a geometry has the properties 

R=0;R00^0;R^R^=0, (3) 

the Ricci tensor can be expressed in the form 

Rnv^l&vntpy, (4) 

8 In Eq. (2), e^pa is the permutation tensor; see, e.g., J. L. 
Synge, Relativity: The General Theory (North-Holland Publishing 
Company, Amsterdam, 1960), p. 18. 

9 0 . Bergmann, J. Math. Phys. 1, 172 (1960); J. R. Klauder, 
ibid. 5, 1204 (1964), and see also Ref. 11. 

10 This remark is given in Ref. 2, p. 88. Other important prob­
lems on the geometrization of neutrinos are also extensively 
discussed there. 
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where e is an undetermined scalar and ^ a null vector 
that satisfies 

*>„^=0; cpo2^0. (5) 

If this geometry entails any physical law at all, there 
should exist a physical correspondent to the null vector 
W In contrast with the non-null field geometry, it is as 
yet uncertain whether the null field geometry has a 
rigorous physical correspondent. In effect, one can 
construct out of geometrical quantities an antisym­
metric tensor which is adequate for describing the 
Maxwell null field.6,11,12 However, the null electro­
magnetic field so defined is not always unique. By a 
nonconstant duality rotation, another null field can be 
found satisfying Maxwell's equations.13 According to 
Peres' investigation,14 such arbitrariness occurs when 
the field possesses a wave front; i.e., when, for a certain 
value of e, the curl of ^ vanishes 

d^ipy—dpCpfi—O. (6 ) 

We will call this differential relation for the null vector 
Vn the Peres condition. 

I t is now natural to ask if there is any alternative way 
of understanding the null field geometry. To examine 
this possibility, let us accept the conjecture that the 
null vector ^ could be constructed out of bilinear 
covariants of a c-number Dirac field \(/. There are, how­
ever, no bilinear covariants of the four-component field 
that can fulfill the properties (5). As is seen in Sec. I I , a 
unique bilinear null vector may be formed from the 
Dirac field subject to the two-component constraint 
iA=75^. This fact makes it clear that the c-number 
Heisenberg nonlinear equation turns out to be the 
neutrino equation in the two-component limit. Section 
I I I deals with a special class of Heisenberg fields and 
derives a plane-wave-like solution of the covariant 
Dirac equation for a massless field in the two-component 
limit. Section IV is devoted to showing that the special 
class of neutrinos forms a Rainich null geometry 
characterized by (3). In Sec. V, a geometry suitable for 
the special neutrino physics is distinguished from 
general null geometries by imposing the condition that 
the null vector is the gradient of the neutrino complexion. 
As a result of this additional restriction, the gravito-
neutrino geometry thus formulated belongs to Peres' 
exceptional case of null geometries. The Peres con­
dition (6), though a little weaker for neutrinos, is 
comparable with the Rainich-Misner-Wheeler equation 
in the non-null case. Finally, Sec. VI summarizes the 
parallelism between null and non-null field geometries 
and discusses the self-consistency of the theory in some 
detail. 

11L. Witten, Phys. Rev. 115, 206 (1959). 
12 A. Peres, Phys. Rev. 118, 1105 (1960). 
13 See L. Witten's article in Gravitation: An Introduction to 

Current Research, edited by L. Witten (John Wiley & Sons, Inc., 
New York, 1962), p. 395. 

14 A. Peres, Ann. Phys. (N. Y.) 14, 419 (1961). 

Throughout this paper we shall employ natural units 
in which 8irG= 1 as well as fi=c= 1. 

II. NEUTRINOS IN CURVED SPACE 

For convenience, we start with the four-component 
spinor field \f/ defined in curved space in the usual 
manner.15 Here the y matrices are related to the space-
time metric gM„ by 

y,xyv+yvyli=2g[lv, (7) 

and the covariant derivative of the spinor field is given 
by VM^= (dM—TM)^, where TM is the Fock-Ivanenko spin 
connection. The adjoint field of \j/ is defined by xp—^rj 
with a Hermitian matrix rj such that 

7Mt= - r y v r 1 (8) 
and 

dtf+^1+^=0. (9) 
Out of the 7 matrices we form an involutary constant 
matrix, 

1 
75=— ieK\p,yKyKY V , 

4! 

which anticommutes with all 7M. From (8) follows 

Y5t==— r r a - 1 . (10) 
According to these definitions, the vector bilinear 

Vp=i$yp\l/ and the axial-vector bilinear A^iypy^y^ 
are both real. In particular, 

F o 2 ^ 0 ; ^ o 2 ^ 0 . (11) 

For the field \p one may also verify that the Pauli-
Kofink relation holds16: 

(00YX*)7ty= ( # 2 * ) * - GPQwWTtf', (12) 

with Q=I, 7M, 7„„ 7M75) or 75, where 7 ^ = ICT/OV-T^YM)-
If the field equation for \p is invariant under the 

chirality transformation 

4,-> e*°v*lt, (13) 

with a constant /30, then the field constrained by 

+=ytf (14) 

can certainly be a particular solution. By means of the 
projection operators A ± =| ( ld=75) , the constrained 
field and its adjoint are expressed as x=A+^> a n d 
X=$A_, respectively. I t is possible to select a suitable 
representation such that only two components of the 
constrained field remain nonvanishing everywhere. Of 
all possible bilinear covariants of the two-component 
field, xQx, the only nonvanishing one is the vector 

15 See, e.g., D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 
465 (1957). The 75 matrix adopted here differs from theirs by a 
multiple \ / (—!) • 

16 W. Kofink, Ann. Physik 30, 91 (1937). 
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(axial-vector) bilinear.17 From the Pauli-Kofink identity 
(12), one deduces the important null relation for x, 

(xy,x)yflx=0. (15) 

The last expression indicates that x is the null eigen-
spinor of the vector XYnX- Evidently, the nonvanishing 
bilinear is null: 

(X7^X)(X7^) = 0. (15') 

As an example of a chirality-invariant field equation 
for ^, we consider the Heisenberg nonlinear equation in 
covariant form18 

7MV^+3e(fyMY5^)7M75^= 0, (16) 

where e is a real constant. The chirality invariance 
permits the equation to possess a particular solution 
which is subject to the constraint (14). For such a 
constrained field, however, the second term disappears 
regardless of the value of e because of the null property 
(15), and we are left with the Dirac equation in the form 

7 * V ^ = 0 . (17) 

Although the Heisenberg equation would be of little 
interest in c-number field theory, it is remarkable that 
the Heisenberg c field reduces to the massless Dirac 
field in the two-component limit \p —> y$p, 

The general term "neutrino" may be used for any 
massless Dirac field. Hereafter, however, we shall focus 
our attention merely on the neutrino as the two-
component limit of a Heisenberg field. Obviously, in 
that limit, the right-handed state of the neutrino is 
excluded at every local point of space-time. 

III. RESTRICTED CLASS OF NEUTRINOS 

In the c-number theory there is a special Heisenberg 
field satisfying the dynamical restriction19 

V M ^ = 2 * ( ^ 7 X 7 5 ^ ) 7 X 7 M 7 5 ^ — 2 6 ( ^ 7 5 ^ ) 7 6 ^ • (18) 

This is easily seen by operating on Eq. (18) from the 
left with 7^. The adjoint equation of (18) is 

VM^= Je(^7x7 5^)^7x75—2e ( ^ 7 5 ^ 7 5 - (19) 

Combining Eqs. (18) and (19), one may prove the 
relations (see Appendix A) : 

V„Av=#7^75V^+iVM^75^=0, (20a) 

U^fa^jP-V^^leiA.Av+^A^). (20b) 

17 This is due to the following properties of A±: ATQA±=0 for 
scalar, tensor, or pseudoscalar, and ATQA±=±AT7MA± for vector 
or axial vector. See R. P. Feynman and M. Gell-Mann, Phys. 
Rev. 109, 193 (1958). 

18 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957); H. P. Durr, 
W. Heisenberg, H. Mitter, S. Schlieder, and K. Yamazaki, Z. 
Naturforsch. 14a, 441 (1959). For the covariant form, see T. 
Kimura, Progr. Theoret. Phys. (Kyoto) 24, 386 (1960). 

19 This field is also self-consistent in the sense that the stress-
energy tensor serves, if /c=2e, as the source to the geometry in 
which the field equation is integrable; A. Inomata, Bull. Am. 
Phys. Soc. 10, 577 (1965). 

The integrability condition of Eq. (18) is obtained 
after calculation of the commutator of two covariant 
differentiations (VMVy~ W v 7 ^ which reads 

i W 7 M ¥ = <?eafiKXep(TtiVge«($yaybf) ( t f o ^ h ^ , (21) 

where R^j, is the Riemann curvature tensor. Evidently, 
the integrability condition (21) allows the following 
solution for R^j,: 

RK>*P= e^a^^g^i^y^) {hpy^ld. (22) 

Contraction on K and n leads to 

* V = # * = ~ 2e2{ (^7x75^) (H?y&) 

- gx, (HPy&) $ypy$f<)}. (23) 

So far as Eq. (18) is completely integrable, a solution 
exists for an arbitrary initial condition \f/(x0). Since Eq. 
(18) is invariant under the chirality transformation 
(13), any nonvanishing components of K+\j/ will never 
turn into a nonzero part of A-jf/ in the course of dynami­
cal development. Therefore, if ^(#0) is limited to x(^o), 
then the same should be true for \f/(x) a t any back­
ground metric provided that the integrability condition 
(21) is fulfilled. Naturally the null property (15) of a 
two-component field is preserved under the dynamical 
restriction (18). 

In the two-component limit, any Heisenberg c field 
tends to the neutrino field. In the same limit, Eq. (18) 
can be written as 

V^x=-6(xy^x)x , (24) 

which we shall refer to as the restricted neutrino equa­
tion, with the field % describing a restricted class of 
neutrinos. For the limiting field % the relations (20a) 
and (20b) are also simplified as 

V„ <pv = iyciv V ^ x + i V t f o i v X = 0 , (25a) 

Upv = xy^iOC — vVx7»X =2ecpiiipv, (25b) 

where <Pn=ixYnX- From (23), therefore, there follows an 
allowed geometry in which the restricted field equation 
(24) is integrable,20 

^ = - 2 6 2 ( X 7 M X ) ( X 7 , X ) . (26) 

Positive-definiteness of Roo in Eq. (26) results from the 
property (11) of the vector current for any metric value. 
Apparently the Ricci tensor (26) fulfills all Rainich 
null-field conditions (3). We may thus conclude that 
the restricted neutrino equation is integrable in a 
Rainich-Riemannian null space. In addition, the curl 

20 The integrability condition of Eq. (24) is i^Y M I , x = 0 (be­
cause the right-hand side of Eq. (21) vanishes for x)> from which 
Morinaga derived the equation RK\nv—*RK\nv and obtained the 
pure gravitational space i?MJ- = 0 as a necessary consequence; 
K. Morinaga, J. Sci. Hiroshima Univ. Ser. A 5, 151 (1935). The 
present solution (22) is obviously another possible geometry which 
reduces to the pure gravitational case in the limit e —•> 0. Emphasis, 
however, must be placed on the point that the restricted neutrino 
field x is a limiting case of the Heisenberg field. Otherwise the geom­
etry (23) will be subject to ambiguity by a constant multiple. 
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of the null current <pn=ixYnX vanishes because of the 
relation (25a) 

dpCpp—dvpfi—O. (27) 

Hence the null space belongs to Peres' exceptional case. 
Before closing this section, let us obtain a plane-

wave-like solution of the restricted neutrino equation 
(24). The Peres equation (27) holds true if and only if 
(pn is the gradient of a scalar; say (f^—d^. On this 
substitution, Eq. (24) becomes 

and is readily solved with the field 

X=«***o, (29) 

where %o is a covariantly constant two-component 
spinor, i.e., 

V ^ X Q ^ O ; X0=75X0. (30) 

On each local Minkowskian background, the solution 

(29) describes a plane wave 

with momentum-energy ^=^eXo7MX0. In general, the 
e^0^a/-like function21 <p can be found by a line inte­
gration, 

<p(%)— I (Pudx^+po. (31) 

As the integral is independent of the path, it is com­
pletely determined up to an additive constant. The 
undertermined constant merely gives rise to a phase 
gauge of the field which is physically irrelevant. 

IV. NEUTRINO STRESS-ENERGY TENSOR 

In the general theory of relativity, the physical field 
serves as a source to the geometrized gravitational field 
through the Einstein equation 

RvLv—hgnvR—KT^. (32) 

By the variational principle, the Einstein equation (32) 
is obtainable from an appropriate Lagrangian which 
consists of the geometrical and physical parts. The 
stress-energy tensor can be defined as the variational 
derivative of the physical part with respect to the 
metric. In order for the Newtonian correspondent to 
exist in the weak-field limit, the coupling constant K in 
Eq. (32) must be universal for all massive sources 
(K= 1 in natural units). There is, however, no particular 
experimental reason for applying the same argument to 
massless fields which do not have the rigorous Newton­
ian limit. For the moment, we leave the value of K 
unspecified for convenience. 

21 For example, see L. Landau and E. Lifshitz, The Classical 
Theory of Fields, translated by M. Hamermesh (Addison-Wesley 
Publishing Company, Reading, Massachusetts, 1951), p. 136. The 
null relation (150 corresponds to the eikonal equation. 

Using the Lagrangian from which the Dirac equation 
(17) is derived, one finds the stress-energy tensor for 
neutrinos,22 

2V= UH^^-^H^+H^^-V^Y^} . (33) 
On account of Eq. (17), the trace of this tensor vanishes 

2 V = 0 , (34) 

just as the trace of the Maxwell tensor does. Never­
theless, the fact that the field equation is needed in 
proving the vanishing trace contrasts with the situation 
of electromagnetism for which the trace disappears 
algebraically. The expression (34) is a dynamical 
consequence rather than a pure algebraic relation. The 
Rainich algebraic conditions, whether null or non-null, 
are not satisfied in general by the stress-energy tensor 
of the form (33), even though the field equation is taken 
into consideration. 

In particular, for the restricted neutrino field x> the 
stress-energy tensor (33) reduces to the simple form 

2V= — € Oovx) (XY»X), (.35) 

which has the algebraic properties 

ZV=0; Z>27=0. (36) 
The restricted field satisfies the relations (25a) and 
(25b), and the second relation has been used in reducing 
the tensor (33) to the form (35). Applying the first 
relation as well to the reduced tensor (35), we obtain the 
differential restriction on the neutrino tensor, 

V x T ^ O . (37) 

In the expression (35), positive-definiteness of Too is 
not assured as it depends on the sign of e, a quantity 
which is somehow related to the energy value of the 
field. For instance, in a local Lorentz frame, Too 
= e(xtx)2- I n fact , the lack of positive-definiteness of 
the energy in the c-number theory is a feature of all 
fields with half-integral spin. As is well known, anti-
commutation rules are necessary for the spinor field in 
order to resolve the negative-energy difficulty. Un­
fortunately, such anticommutation relations are not 
compatible with the null property (15). The recent 
work of Klauder on the c-number quantization23 could 
be of importance in this context. 

For a source with vanishing trace, the Einstein 
equation becomes 

R^KT^. (38) 

According to this equation, geometry must be endowed 
with the same properties as those of the physical source. 
Now one may raise the question: Would the c-number 
neutrinos demand a negative geometry (RQ0<0) as well 
as a positive geometry (JR0O>0) depending on the value 
of e? Before answering this question, we recall that the 

22 For a detailed account, see Ref. 15. 
23 J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960). 
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restricted neutrino as a limit of the special Heisenberg 
field is meaningless in the negative null space. On com­
parison of the Ricci tensor (26) with the neutrino stress-
energy tensor (35), it is seen that the theory is self-
consistent only if 

*=2e . (39) 

As a result, the geometry turns out to be positive-
definite regardless of the sign of e. If the energy concept 
at a local point could be carried over to curved space, 
we would say that the positive and negative states of 
neutrinos are degenerate in the geometry with the 
restricted source (35). At any rate, it is clear that the 
restricted class of neutrinos is a solution of the Rainich 
null-field problem. 

V. NEUTRINO GEOMETRY 

In the preceding section, we have seen that the 
restricted neutrino field may form a Rainich null 
geometry. Conversely, can a geometry suitable for the 
neutrino physics be singled out from general Rainich 
null spaces? In the following, we shall show that the 
null geometry of a spinor field in the two-component 
limit has a physical correspondent which obeys the 
neutrino equation in the circumstance that the null 
eigenvector of the curvature is the gradient of the 
chirality complexion of the field. This situation is quite 
analogous to the case of the Einstein-Maxwell geometry 
of non-null fields where the Rainich vector (2) composed 
of the curvature is taken as the gradient of the duality 
complexion of the electromagnetic field. 

As the Maxwell stress-energy tensor remains un­
changed under the duality transformation with a real 
function a (the a rotation),12 the reduced neutrino 
tensor (35) is invariant under the chirality transforma­
tion with a real gauge f} (the j3 rotation),12 

X->X / =«* 7«X. (40) 

If the values of j3 are different at different points of 
space-time, VM% transforms according to 

V . x - ^ x + ^ x , (41) 
and hence the Dirac equation is transformed into 

T ^ X + ^ M ^ X - 0 , (42) 

which is not generally a free-neutrino equation. This 
implies that the stress-energy tensor of the form (35) 
does not necessarily represent the neutrino physics. 

With a choice of the chirality function ft such that 
d/#yMX=0, the transformed field again satisfies the 
neutrino equation. In this case, the gauge can have any 
value provided that its gradient is either orthogonal or 
proportional to <pM. For the restricted field, this de­
generacy does not exist. Therefore, in a way analogous 
to the Einstein-Maxwell case, specifying an extremal 
field as standard of reference, one would be able to 
determine the restricted neutrino field by the chirality 
transformation with a very special gauge. 

To see this, we choose the field X0 appearing in Eq. 
(30) as the extremal field. Now the chirality trans­
formation generates on the basis of the extremal field a 
new field 

X=eVX0. (43) 

If the gauge function is taken as 

^ / ? = e ^ , (44) 

then the field x obeys the restricted neutrino equation 
(24) and coincides with the plane-wave-like solution 
(29). Following Misner and Wheeler's terminology of 
duality complexion in the case of electromagnetism, we 
call the particular gauge p in Eq. (44) the chirality 
complexion of neutrinos. Thus, by assuming the exist­
ence of the extremal field X0, and by imposing the condi­
tion that the null vector ^ is the gradient of the 
chirality complexion, we may read the restricted 
neutrino physics out of a Rainich null geometry. 

From Eq. (25a), the chirality-invariant null current 
is covariantly constant or uniform. This uniform condi­
tion is, as is seen in Appendix B, sufficient as well as 
necessary for the null current to be the gradient of the 
chirality complexion of the restricted neutrino field. In 
summary, neutrino geometry is characterized by a 
uniform null curvature: 

R=0;Roo^O; RARv
x=0; V A i ^ = 0 . (45) 

Since the uniform condition on the current (25a) is 
obviously stronger than the Peres condition (6), 
neutrino geometry is more restrictive than the Rainich-
Peres null geometry. The uniform condition is the 
counterpart, in gravito-neutrinodynamics, of the Rain-
ich-Misner-Wheeler equation in gravito-electro-
dynamics. 

VI. CONCLUSIONS 

As is shown in Table I, there is striking parallelism 
between the null neutrino situation and the non-null 
electromagnetic situation. The neutrino field is pre­
sented as a square root of the null curvature vector, in 

T A B L E I . Comparison between the non-null and null cases. 

Geometry 

Invariance groups 

Ext remal fields 

Complexions 

Physical fields 

Field equations 

Physics 

Non-null case* 

W/i\toMX=0; coo\coox ̂  0 

o<v —> e^co^y 

C O V ^ V = ^/MX^/"X 

a = fafidx^+ao 

<*V = 0*a«'/w 

V a v = 0 

Gravito-
electrodynamics 

Null case 

X —> e^X 

VMX0=0 

P = ef<Pndx»+pQ 

X = e^X0 

VliX = it<plX 

Gravito-
neutrinodynamics 

a (dnv=fnv-{-i(*fnv) and coMj> =/)*>» — i(*fnv) are complex electromagnetic 
fields; see Ref. 13. 
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much the same way that the non-null electromagnetic 
field is described as a square root of the non-null curva­
ture tensor. The chirality transformation defines the 
complexion of neutrinos, while the duality rotation 
designates the complexion of electromagnetism. The 
uniform condition bestows neutrinodynamics on a null 
geometry and the Rainich-Misner-Wheeler condition 
endows a non-null geometry with electrodynamics. 

It is common to both the null and non-null cases that 
there is a free scale factor independent of all geometric 
conditions. In other words, if a curvature tensor R^ 
satisfies the algebraic and the differential conditions, so 
does another tensor which differs from the R^ by a 
constant multiple. On the other hand, the Einstein 
equation (38) shows that different multiples in geometry 
give rise to different field strengths in physics. Neither 
the duality rotation nor the chirality transformation 
can remove or generate such a multiple. In order that 
the theory be self-consistent, any dynamical restriction 
imposed on the physical field such as Eq. (24) must be 
completely integrable in the geometry formed with the 
restricted field itself. This requirement works to de­
termine the multiple in principle. For a field which is 
two-component ab initio, the restricted Eq. (24) is 
integrable in a null geometry with an arbitrary multiple, 
and the ambiguity does still remain unresolved. To get 
rid of this difficulty, we have adopted the view that the 
neutrino is the two-component limit of a Heisenberg 
field rather than an essentially two-component field. 
The limiting procedure demands the gravitational cou­
pling K to be equated to the self-interaction 2e, ensuring 
positive-definiteness of neutrino geometry. The Ein­
stein equation is then put into the form 

2^=2er#w(e), (46) 

which signifies that the gravito-neutrino coupling is 
directly related to the internal structure of neutrinos. 

Suppose the gravitational constant K has a universal 
value as it does for all massive sources. Presumably, the 
most natural generalization of the idea of the universal 
gravitational interaction is to choose the value of K as 
unity (=8irG) in natural units. By Eq. (46), the cou­
pling should be positive for the positive energy state 
(r0o>0) and negative for the negative state (T,

0o<0). 
As has been shown in Sec. I l l , the restricted neutrino 
equation (24) has a plane-wave-like solution. In a local 
Lorentz frame, the energy density of the field is given 
by ±%(x*x)2y the form of which is to be compared with 
that of the electromagnetic energy density J(E2+#2) . 
The field density itself can be identified with the energy 
density. Comparing, at the same local point, such a 
solution for the neutrino field and a plane-wave solution 
of the full Dirac equation (17), one may regard the re­
stricted field as standing for a monochromatic wave 
carrying the energy e(x^x)- A general solution of the 
local Dirac equation is to be found by superposition. In 
general, however, the covariant Dirac equation is non­
linear in over-all character, so that the simple^super-

position principle is not applicable. Whether the set of 
restricted neutrino fields may cover all possible solutions 
of the Dirac equation (17) is yet an unanswered ques­
tion.24 A speculation has been made that the Eq. (24) 
would govern the geometrical behavior of two-com­
ponent neutrinos in curved space.25 

It is also important to see how the neutrino field 
relates to the Maxwell null field in the special case of the 
Rainich-Peres geometry. Could both neutrino and 
electromagnetic fields coexist in the null geometry? 
Could the Maxwell field perhaps be composed of neu­
trino fields? Or is there any way to discriminate be­
tween the Maxwell null geometry and the neutrino null 
geometry? At the present stage, however, none of these 
issues can be settled. 

Finally, one may ask: If the two-component limiting 
process be essential, would the neutrino field be no more 
fundamental than the Heisenberg field, contrary to our 
earlier expectation? The Heisenberg nonlinear physics 
is not at all reproducible in the framework of Rainich 
geometry. Only in the two-component limit does the 
Heisenberg physics become significant in the Rainich 
scheme. As a matter of course, geometrodynamics by 
no means claims that Rainich geometry is the only way 
to describe all physical laws. A geometry other than 
Riemannian geometry might be adequate for the 
Heisenberg field. It is already known that the nonlinear 
terms can be understood geometrically as torsion of 
space-time.26 For instance, a Finkelstein space27 with 
uniform torsion is equivalent to the Rainich uniform 
null space.28 Even for understanding the obvious co­
existence of neutrinos and electromagnetism in reality, 
it seems inevitable to introduce a new degree of freedom 
such as torsion into geometry. Geometrodynamics asks 
one ultimately to fashion mass, field, and perhaps spin 
out of geometry itself. In an effort to speak of elemen­
tary particles in the geometric language, it is almost 
meaningless to deal from the beginning with the Dirac 
field with nonvanishing mass. If there exists a purely 
geometrical description for the Heisenberg physics, the 
field is apparently more general than that for neutrinos, 
whichever field is more fundamental. 
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APPENDIX A 

Here we prove Eqs. (20a) and (20b). The proofs are 
direct if we use the following identities: 

TMTXTV—7^7x7^= 2i^x™7*75, (Al) 

7/i7x7.+7.7x7M= 2 ( ^ 7 / - — ^ M T X + ^ T F ) • (A2) 

On substitution of Eqs. (18) and (19), the left-hand side 
of Eq. (20a) becomes 

VM^,= — |^(^7X75^){IA(7M7X7V—7^7X7/*)^} • 

Use of (Al) readily leads to 

V ^ , = ~€^X,K(^7K75^)(^7X75^) = 0. (A3) 

The two-component current <pp is also necessarily 
uniform; 

V ^ , = 0. (A4) 

Next, substituting Eqs. (18) and (19) into the left-
hand side of Eq. (20b) yields 

^^==+i€(^7X75^){^(7M7x7.+7.7x7/*)75^} 
—4e(^7M75^) G/hvystf'). 

Making use of (A2), we find 

11^= -2e{ {HsYtf) (H,y&l')+hgw$y\y&t') (H^y^)} 

or 

U^= UVfi= l^ApAt+lgvAxA*). (A5) 

In the two-component limit, 

UpV=2€<pn<pv. (A6) 

APPENDIX B 

In the following we wish to show that the uniform 
condition (A4) is sufficient for the two-component 
spinor field x to be the restricted neutrino field. 

We assume that the covariant derivative of a spinor 
field can be expressed as a linear combination of 16 
independent products of the y matrices, and write 

VMX=SMX. (Bl) 

In this case, the field % is subject to the constraint 
X—75* and hence 2A takes the simple form 

Z^iAr+C^rf*. (B2) 

Now the uniform condition requires that A^ and Cm^ be 
real. Furthermore, Cm$ must satisfy the condition 

C W ^ = 0 . (B3) 

Since the Fock-Ivanenko connection involves an 
arbitrary vector field, the field A^ may be adjusted so 
as to vanish from the right-hand side of Eq. (Bl). Since 
the field Cm$ under the condition (B3) has only eight 
independent components, we can express it in terms of 
the two real vector fields CM and D^ which are orthogonal 
and proportional to <p^ respectively, 

Clxa(3=CliCaDp--CfJ.CpDa+iefXa(!<rDa'. (B4) 

On insertion of (B4) into (Bl), the first and second 
terms disappear because of the null property of <pM. The 
third term alone contributes to (Bl). Again making use 
of the null property of <pM, we obtain 

V^x^'e^x, (B5) 

where we have put D^= e<pp. Although the proportion­
ality constant seems arbitrary, once the extremal field 
has been specified, the chirality transformation deter­
mines the restricted neutrino field uniquely up to a 
constant-phase gauge. 


