very low value for ²⁰⁴Pb. It also should be noted that the behavior of the ratios for a given Z as shown for Ru and Pt nuclei is opposite to the expectation that the B(E2) ratio will approach 1.43 as the $2 \rightarrow 0$ enhancement increases.

Data on $4 \rightarrow 2$ transition probabilities are increasing at a rapid rate due to the availability of heavy-ion beams. It will be most interesting to investigate the high lying 4+ states in nuclei where the energy ratio E(4+)/E(2+) is close to 2.

ACKNOWLEDGMENTS

The author would like to thank Dr. L. Grodzins for calling to his attention the apparent anomaly in the old 192 Pt lifetime measurement. Dr. M. Perlman has frequently made his double focusing β -ray spectrometer available for conversion studies. We appreciate greatly his aid and hospitality.

APPENDIX

The Decay Scheme of 192Ir-192Pt

The decay of 192 Ir has been investigated by many authors. Most of the properties of the level scheme of 192 Pt are established on the basis of very precise γ ray and internal-conversion energy measurements and conversion-coefficient data. Most of the previous work (to May 1963) has been enumerated in the Nuclear Data Sheets.⁷

One point in the decay scheme of particular relevance to this work has been investigated. In the early work of Cork *et al.*¹⁵ and of Johns and Nablo, ¹⁶ a γ ray of \sim 174 keV was observed. This transition was assumed to be between the 4+ level and the second 2+ state

and to have an intensity of about 2% of the 468-keV transition between the 4+ and the first 2+ state. If this assignment were correct, then the reduced transition probability for the $4 \rightarrow 2'$ transition would be greater by a factor of about 3 than that of the $4 \rightarrow 2$ transition.

The transition energy between the 4+ and the second 2+ state should be (172.105 ± 0.020) keV (based on energies of Graham *et al.*, see Fig. 1). The line reported by Johns and Nablo had an energy of (174.0 ± 0.4) keV. (Almost all of the γ -ray energies reported by Johns and Nablo in 1954 agree extremely well with the more recent high-precision measurements.) We therefore suspected that this γ ray does not belong in the decay scheme as previously placed.

A careful search was made with a high-resolution β spectrometer for the internal conversion line of the "174"-keV transition observed by Johns and Nablo. In the region of K internal conversion of γ rays between 170 and 177.5 keV we have found no line with intensity greater than 1/40 of the K conversion line of the 468-keV $(4 \rightarrow 2)$ transition [Combining this result with theoretical conversion coefficients one finds that $I_{\gamma}(170-177.5)/I_{\gamma}(468) < 7 \times 10^{-3}$ even if the transition were an E1.] A more careful search in the immediate region of 172.1 keV yielded a limit for the intensity of conversion line of a transition of 172.1 keV. The limit is $I_K(172.1)/I_K(468) < 1.5$ $\times 10^{-2}$. Combining this result with theoretical E2 conversion coefficients we find $I_{\gamma}(4 \rightarrow 2')/I_{\gamma}(4-2) < 1.3$ $\times 10^{-3}$. We therefore believe that the 174-keV line observed by Johns and Nablo is not present in the ¹⁹²Ir decay. Using the above limit on the $I_{\gamma}(4 \rightarrow 2')$ and the measured $\tau(4+)$ we find that the transition probability for the $4 \rightarrow 2'$ transition is enhanced by less than a factor 7 relative to the Weisskopf estimate and that $B(E2; 4 \rightarrow 2')/B(E2; 4 \rightarrow 2) < 0.23$. This result does not seem particularly surprising.

Errata

Measurement and Statistical Theory Analysis of Fe⁵⁶(He³,p) and Cu⁶³(He³,p) Energy and Angular Distributions—Nuclear Shell Effects, Jean-Pierre Hazan and George Merkel [Phys. Rev. 139, B835 (1965)]. Equation (3), p. B839 should read

$$a = 0.0748(\bar{j}_n + \bar{j}_p + 1)A^{2/3}$$

instead of

 $a = 0.0748(\bar{j}_n + \bar{j}_p + 1)$.

Analysis of Triple Correlation Measurements, GALE I. HARRIS, HANS J. HENNECKE, AND D. D. WATSON [Phys. Rev. 139, B1113 (1965)]. The coefficient in the denominator of Eq. (5) should read

 $\bar{Z}_1(\Lambda_2 J_2 \Lambda_2 J_2; \mathfrak{J}_3 M)$ instead of $\bar{Z}_1(\Lambda_2 J_2 \Lambda_2 J_2, \tau_3 M)$.

In Eq. (7), the quantum number in the second row, second column of the 9-J symbol should be L_1' instead of J_1' .

M. Cork, J. M. LeBlanc, A. E. Stoddard, W. J.Childs,
E. Branyan, and D. W. Martin, Phys. Rev. 82, 258 (1951).
M. W. Johns and C. V. Nablo, Phys. Rev. 96, 1599 (1954).