very low value for ²⁰⁴Pb. It also should be noted that the behavior of the ratios for a given Z as shown for Ru and Pt nuclei is opposite to the expectation that the $B(E2)$ ratio will approach 1.43 as the $2 \rightarrow 0$ enhancement increases.

Data on $4 \rightarrow 2$ transition probabilities are increasing at a rapid rate due to the availability of heavy-ion beams. It will be most interesting to investigate the high lying $4+$ states in nuclei where the energy ratio $E(4+) / E(2+)$ is close to 2.

ACKNOWLEDGMENTS

The author would like to thank Dr. L. Grodzins for calling to his attention the apparent anomaly in the old ¹⁹²Pt lifetime measurement. Dr. M. Perlman has frequently made his double focusing β -ray spectrometer available for conversion studies. We appreciate greatly his aid and hospitality.

APPENDIX

The Decay Scheme of ¹⁹²Ir-¹⁸²Pt

The decay of ¹⁹²Ir has been investigated by many authors. Most of the properties of the level scheme of ¹⁹²Pt are established on the basis of very precise γ ray and internal-conversion energy measurements and conversion-coefficient data. Most of the previous work (to May 1963) has been enumerated in the Nuclear Data Sheets.⁷

One point in the decay scheme of particular relevance to this work has been investigated. In the early work of Cork et al.¹⁵ and of Johns and Nablo,¹⁶ a γ ray of $\sim\!174$ keV was observed. This transition was assumed to be between the $4+$ level and the second $2+$ state

and to have an intensity of about 2% of the 468-keV transition between the $4+$ and the first $2+$ state. If this assignment were correct, then the reduced transition probability for the $4 \rightarrow 2'$ transition would be greater by a factor of about 3 than that of the $4 \rightarrow 2$ transition.

The transition energy between the $4+$ and the second $2+$ state should be (172.105 ± 0.020) keV (based on energies of Graham *et al.,* see Fig. 1). The line reported by Johns and Nablo had an energy of (174.0 ± 0.4) keV. (Almost all of the γ -ray energies reported by Johns and Nablo in 1954 agree extremely well with the more recent high-precision measurements.) We therefore suspected that this γ ray does not belong in the decay scheme as previously placed.

A careful search was made with a high-resolution β spectrometer for the internal conversion line of the "174"-keV transition observed by Johns and Nablo. In the region of K internal conversion of γ rays between 170 and 177.5 keV we have found no line with intensity greater than 1/40 of the *K* conversion line of the 468-keV $(4 \rightarrow 2)$ transition [Combining this result with theoretical conversion coefficients one finds that $I_{\gamma}(170-177.5)/I_{\gamma}(468) < 7 \times 10^{-3}$ even if the transition were an E1.⁷ A more careful search in the immediate region of 172.1 keV yielded a limit for the intensity of conversion line of a transition of 172.1 keV. The limit is $I_K(172.1)/I_K(468) < 1.5$ $\times 10^{-2}$. Combining this result with theoretical *E2* conversion coefficients we find $I_{\gamma}(4 \rightarrow 2')/I_{\gamma}(4-2) < 1.3$ \times 10⁻³. We therefore believe that the 174-keV line observed by Johns and Nablo is not present in the ¹⁹²Ir decay. Using the above limit on the $I_\gamma(4 \rightarrow 2')$ and the measured $\tau(4+)$ we find that the transition probability for the $4 \rightarrow 2'$ transition is enhanced by less than a factor 7 relative to the Weisskopf estimate and that $B(E2; 4 \rightarrow 2')/B(E2; 4 \rightarrow 2)$ <0.23. This result does not seem particularly surprising.

Errata

Measurement and Statistical Theory Analysis of Fe⁵⁶(He³ ,£) and Cu⁶³(He³ ,£) Energy and Angular Distributions—Nuclear Shell Effects, JEAN-PIERRE HAZAN AND GEORGE MERKEL [Phys. Rev. **139,** B835 (1965)]. Equation (3), p. B839 should read

$$
a=0.0748(j_n+j_n+1)A^{2/3}
$$

instead of

$$
a = 0.0748(j_n + j_p + 1).
$$

Analysis of Triple Correlation Measurements, GALE I. HARRIS, HANS J. HENNECKE, AND D. D. WATSON [Phys. Rev. **139,** B1113 (1965)]. The coefficient in the denominator of Eq. (5) should read

 $\bar{Z}_1(\Lambda_2 J_2 \Lambda_2 J_2; \mathcal{J}_3 M)$ instead of $\bar{Z}_1(\Lambda_2 J_2 \Lambda_2 J_2, \tau_3 M)$.

In Eq. (7) , the quantum number in the second row, second column of the $9-J$ symbol should be L_1 ['] instead of J_1' .

¹⁵ J. M. Cork, J. M. LeBlanc, A. E. Stoddard, W. J.Childs, C. E. Branyan, and D. W. Martin, Phys. Rev. 82, 258 (1951).
¹⁶ M. W. Johns and C. V. Nablo, Phys. Rev. 96, 1599 (1954).