Erratum

Muon Capture and Inelastic Electron Scattering in C¹² and O¹⁶, Taber de Forest, Jr. [Phys. Rev. 139, B1217 (1965)].

Equation (5) for M_{P^2} should be replaced by

$$M_{P^{2}} = 2\pi \sum_{b'} \left(\frac{\nu_{ab}}{\nu_{\mu}}\right)^{2} \left|\sum_{L} i^{L} (2L+1)^{1/2} \begin{pmatrix} 1 & L & J_{b'} \\ 0 & 0 & 0 \end{pmatrix} \langle b'J_{b'}, T = 1 \|\sum_{i=1}^{A} \tau^{(3)}(i) j_{L}(\nu_{ab}x_{i}) \mathfrak{Y}_{J_{b'}L1} \cdot \sigma(i) \|0^{+}, T = 0 \rangle \right|^{2}.$$

Since only the dipole matrix elements were considered, the remaining equations are correct. Note that there is a misprint in Eq. (7). The factor (2l'+2) should be replaced by (2l'+1). Due to a computational error, the values of $(M_A{}^2)_D{}^{(i)}$ and $(M_P{}^2)_D{}^{(i)}$ given in Table III for the J=0 and J=1 states of C^{12} are incorrect and should be replaced by

	C^{12}				$C^{12}(RPA)$				
J_i	E_{i}	$(M_A^2)_D^{(i)}$	$(M_{P^2})_{D^{(i)}}$	${J}_i$	E_{i}	$(M_A^2)_D^{(i)}$	$(M_{P^2})_{D^{(i)}}$		
0	25.66 35.78	0.037 0.035	0.110 0.106	0	25.53 35.37	0.034 0.028	0.101 0.085		
1	19.57 23.26 25.01 35.80	0.015 0.032 0.114 0.051		1	19.76 23.08 24.95 35.61	0.014 0.032 0.093 0.041			

The corresponding changes in Tables IV and V are

Nucleus	$(M_A^2)_D$	$(M_{P^2})_D$	$(M_{A^2})_{UD}$	$(M_{P^2})_{UD}$	$(M_{A^2})_D/(M_{A^2})_{UD}$	$(M_{P^2})_D/(M_{P^2})_{UD}$
C ¹²	0.562	0.550	0.792	0.774	0.710	0.711
C ¹² (RPA)	0.496	0.490	0.701	0.692	0.708	0.708

and, therefore, $(M_V^2)_D = (M_A^2)_D = (M_P^2)_D$ is good to 3% for C^{12} .

The author would like to thank F. J. Kelly and J. L. Friar for pointing out these errors.