

2α,3β-DIHYDROXY-4(18)-NEO-CLERODEN-15-OIC ACID FROM CISTUS POPULIFOLIUS

JULIO G. URONES,* ISIDRO S. MARCOS, PILAR BASABE, ALICIA JIMENEZ, ANTONIO GOMEZ and ANNA M. LITHGOW

Departamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain

(Received in revised form 11 July 1994)

Key Word Index—Cistus populifolius; Cistaceae; diterpenes; neo-clerodanes.

Abstract—Besides the previously described diterpenes isolated from *C. populifolius*, one minor metabolite has been isolated and identified as methyl $2\alpha,3\beta$ -dihydroxy-4(18)-neo-cleroden-15-oate. The structure of the new diterpene was confirmed by hemisynthesis.

INTRODUCTION

In previous papers on the chemical composition of Cistus populifolius L. a series of neo-clerodane diterpenoids was isolated and their structure established by means of spectroscopic techniques and thereafter confirmed by chemical transformations [1–4]. The requirement of the major components as homochiral† templates for the synthesis of possibly bioactive neo-clerodanes has prompted a new study of the acid fraction. We have now isolated a new neo-clerodane diol, 3.

RESULTS AND DISCUSSION

In addition to the previously isolated major components 1 and 2, from the more polar chromatographic fractions of the esterified Na₂CO₃ soluble part of the acid fraction obtained from a hexane extract of Cistus populifolius, a minor component 3 has been isolated, that showed in its IR spectrum strong absorption bands of hydroxyl groups (3400 cm⁻¹), a terminal double bond (3080, 1645 and 910 cm⁻¹) and an ester group (1735 cm⁻¹). The mass spectrum showed a parent molecular ion at m/z 352 corresponding to a molecular formula C₂₁H₃₆O₄. The data agree with the methyl ester of a bicyclic diterpene with a terminal double bond and two hydroxyl groups.

The ^{13}C NMR spectrum showed peaks corresponding to 21 carbon atoms. The protonated ones are sorted by DEPT subspectra as five methyls, seven methylenes (one of them sp² at δ 101.7) and five methines. The four remaining ones are fully substituted, one being olefinic at δ 158.0 and a carboxyl at δ 173.6. The ^{1}H NMR spectrum showed as characteristic signals two singlets at δ 4.97 and

4.76, respectively, assignable to the terminal double bond protons; the protons geminal to the hydroxyl groups appear at δ 4.10 ppm (1H, d, J = 8.0 Hz) and δ 3.23 (1H, m). Double irradiation experiments of the multiplet at δ 3.23 cause the doublet at δ 4.10 to collapse into a singlet, indicating that the two hydroxyl groups are located in contiguous positions. Moreover, the value of the coupling constant needs a great dihedral angle between the two hydrogens, suggesting that these have to be *trans* and equatorial. The methyl pattern: δ 1.03 (3H, s), 0.90 (3H, s), 0.77 (3H, s) and 0.70 (3H, s) suggested a *neo*-clerodane skeleton. Because the ¹³C NMR data indicated no substantial changes in ring B or in the side chain, the hydroxyl groups must be located at C-2 and C-3.

The final structure assignment and stereochemical determination of 3 was achieved by hemisynthesis (Scheme 1) from the major component 1, whose structure was determined previously [1]. When 1 was treated with OsO_4 the diol 4 was obtained. Its acetylation and further elimination of the tertiary hydroxyl group led to the diacetyl derivative 6 that after hydrolysis and esterification gave the dihydroxy ester 3.

EXPERIMENTAL

Spectral analysis. NMR: 200 MHz for 1 H and 50.3 MHz for 13 C. Chemical shifts are given in δ (ppm) and are referenced in CDCl₃ to the residual CHCl₃, 7.26 ppm for 1 H and 77.2 ppm for 13 C, respectively, unless otherwise stated. EIMS: VG TS 250 mass spectrometer, 70 eV. CC was carried out using silica gel Merck 60 (40–63 μ m.).

Cistus populifolius L. was collected at Valle de las Batuecas (Salamanca, Spain). Air-dried material was extracted according to the description in ref. [1]. Beside the compounds previously isolated, the minor compound 3 was isolated from the more polar frs eluted with hexane—EtOAc (1:1).

^{*}Author to whom correspondence should be addressed.

[†]The term homochiral has been defined by Davies, S. G. Brown, J. M., Pratt, A. J. and Fleet, G. (1989) in *Chemistry in Britain*, p. 260.

AcO
$$\frac{1}{HO}$$
 $\frac{1}{HO}$ $\frac{1}{$

 $R = -(CH_2)_2 - CH(CH_3) - CH_2 - CO_2Me$

Scheme 1. (a) OSO₄; (b)Ac₂O-pyridine; (c) POCl₃-pyridine; (d) KOH-MeOH; (e) CH₂N₂.

Methyl 2α,3β-dihydroxy-4(18)-neo-cleroden-15-oate (3). Oil. [α]_D -7.3° (CHCl₃; c 1.0). EIMS, m/z (rel. int.): 352 [M]⁺ (16.5), 337 (6), 257 (6), 206 (11), 175 (9), 137 (24), 123 (35), 109 (28), 99 (28.5), 83 (43.3), 69 (45), 40 (100). IR v_{max}^{film} cm⁻¹: 3400, 3080, 2900, 1730, 1645, 1450, 1380, 910. ¹H NMR: δ4.97 (1H, s, H-18a), 4.76 (1H, s, H-18b). 4.10 (1H, d, d = 8.0 Hz, H-3), 3.66 (3H, s, COOMe), 3.23 (1H, d, d = 6.0 Hz, Me-16), 0.77 (3H, d, d = 6.0 Hz, Me-17), 0.70 (3H, s, Me-20).

Treatment of 1 with OsO₄. Methyl 2α acetoxy- 3β ,4 β dihydroxy-neo-clerodan-15-oate (4). To 87 mg (0.23 mmol) of 1 was added 31 mg (0.23 mmol) of N-methylmorfoline-N-oxide and 3.7 ml of t-BuOH-THF-H₂O (10:3:1). The mixt. was maintained under Ar and 0.05 ml of 2.5% OsO₄-t-BuOH was added. The reaction was left at room temp. for 53 hr and then it was chilled at 0° and 10 ml of satd soln of sodium sulphite added. After reaching room temp., stirring was maintained for 2 hr, the mixt. filtered over a celite pad, extracted with CH2Cl2, washed with H₂O, dried over Na₂SO₄, filtered and evapd to dryness affording 75 mg of crude product. This material was subjected to flash chromatography affording with hexane-EtOAc (1:1), 4 (55 mg, 58%). IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 3490, 2860, 1740, 1735, 1460, 1380, 1260, 1040, 1050, 960, 940. ¹H NMR: δ 4.82 (1H, m, H-3), 3.55 (1H, m, H-2), 3.65 (3H, s, COOMe), 2.09 (3H, s, OCOMe), 1.17 (3H, s, Me-18), 0.95 (3H, s, Me-19), 0.91 (3H, d, J = 6.5 Hz, Me-16). 0.78(3H, d, J = 6.5 Hz, Me-17), 0.69 (3H, s, Me-20).¹³C NMR: Table 1.

Acetylation of **4** to yield methyl 2α,3β-diacetoxy-4β-hydroxy-neo-clerodan-15-oate (**5**). Compound **4** (50 mg) was treated with Ac₂O in pyridine at room temp. to afford **5** (49 mg, 92.8%). 1 H NMR: δ5.15 (2H, m, H-2, H-3), 3.65 (3H, s, COOMe), 2.06 (3H, s, OCOMe), 2.00 (3H, s, OCOMe), 1.01 (3H, s, Me-18), 0.99 (3H, s, Me-19), 0.92

Table 1. ¹³C NMR spectral data for 3, 4 and 6 ([δ (ppm) in CDCl₃]

С	3	4	6
1	28.4	26.0	26.0
2	75.3	75.3	73.4
3	76.8	77.1	75.1
4	158.0	78.4	153.2
5	39.9	41.5	39.9
6	37.2	31.6	36.4
7	27.2	26.8	27.0
8	36.4	36.0	36.3
9	38.9	38.5	38.9
10	44.9	37.5	44.5
11	35.4	35.6	35.0
12	29.2	29.4	29.1
13	30.9	31.0	30.8
14	41.4	41.4	41.3
15	173.6	173.8	173.6
16	19.9	20.0	20.0
17	15.8	15.9	15.7
18	101.7	19.5	103.2
19	21.4	17.2	21.3
20	18.2	18.4	18.0
COOMe	51.4	51.4	50.4
OCOMe		172.1	170.1
OCOMe		21.4	21.4
OCOMe			170.1
OCOMe			21.2

(3H, d, J = 6.5 Hz, Me-16), 0.75 (3H, d, J = 6.5 Hz, Me-17), 0.68 (3H, s, Me-20).

Dehydration of 5 to yield methyl 2α, 3β-diacetoxy-4(18)-neo-cleroden-15-oate (6). To a soln of 5 (44 mg, 0.1 mmol) in pyridine (2 ml), cooled in an ice-bath was added

POCl₃ (0.3 ml). The mixt. was then heated at 100° for 10 hr. After cooling to room temp., ice was added and the mixt. extracted with Et₂O. After usual work-up, 31 mg of 6 (70%) was obtained, EIMS, m/z (rel. int.): 394 [M]⁺ (2), 334 (100), 303 (6), 205 (27), 187 (27), 159 (6), 135 (10), 123 (16), 95 (16), 81 (8), 69 (17), 19 (17). IR $v_{\rm max}^{\rm film}$ cm⁻¹: 3080, 2900, 1730, 1645, 1450, 1380, 1250, 910. ¹H NMR: δ5.55 (1H, d, J = 8.0 Hz, H-3), 4.75 (2H, m, H-18), 4.67 (1H, m, H-2), 3.63 (3H, s, COOMe), 2.08 (3H, s, OCOMe), 2.01 (3H, s, OCOMe), 1.14 (3H, s, Me-19), 0.89 (3H, d, d = 6.0 Hz, Me-16), 0.77 (3H, d, d = 6.0 Hz, Me-17), 0.69 (3H, s, Me-20). ¹³C NMR: Table 1.

Saponification and esterification of 6 to yield methyl 2α , 3β -dihydroxy-4(18)-neo-cleroden-15-oate (3). To 31 mg (0.07 mmol) of 6 was added a soln of 2 N KOH–MeOH (1 ml). The mixt, was left at room temp, during 3 hr with monitoring by TLC. After that time the solvent was removed in vacuo, H_2O was added and the soln acidified

and then extracted with Et₂O. After usual work-up the crude product was esterified with CH₂N₂ affording 26 mg of diol 3.

Acknowledgement—The authors thank the CICYT for financial support (PB 91 0193).

REFERENCES

- Pascual Teresa, J. de, Urones, J. G. and Agustín Herrero, J. (1976) An. Quim. 72, 867.
- Pascual Teresa, J. de, Urones, J. G., Agustín Herrero, J., Cinos de la Mano, M. S. and Grande, M. (1978) An. Quim. 74, 166.
- Pascual Teresa, J. de, Urones, J. G. and Agustín Herrero, J. (1978) An. Quim. 74, 476.
- Pérez Alvarez, A. M. (1990) M.Sc. Thesis, Universidad de Salamanca.