

ACYLATED ANTHOCYANINS IN VERBENA FLOWERS

KENJIRO TOKI, NORIO SAITO,* HARUMITSU KUWANO,† NORIHIKO TERAHARA‡ and TOSHIO HONDA§

Laboratory of Floriculture, Minami-Kyushu University, Takanabe, Miyazaki 884, Japan; *Chemical Laboratory, Meiji-Gakuin University, Totsuka Yokohama 224, Japan; †Institute of Science and Technology, Inc., Shinagawa, Tokyo 140, Japan; †Department of Food Science and Technology, Minami-Kyushu University, Takanabe, Miyazaki 884, Japan; \$Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142, Japan

(Received 17 June 1994)

Key Word Index—*Verbena hybrida*; Verbenaceae; flower colour; acylated anthocyanins; cyanidin and pelargonidin 3,5-di-(6-acetylglucoside); pelargonidin 3-(6-malonylglucoside)-5-(6-acetylglucoside).

Abstract—Three new acylated anthocyanins were isolated from the deep red-purple flowers of verbena, strain UR-RP-3, and identified as the 3,5-di-O-(6-O-acetyl- β -D-glucopyranosides) of cyanidin and pelargonidin, and the 3-O-(6-O-malonyl- β -D-glucopyranoside)-5-O-(6-acetyl- β -D-glucopyranoside) of pelargonidin.

INTRODUCTION

In the course of investigation of the flower colour variation in *Verbena hybrida*, we found seven acylated anthocyanins with malonic and acetic acids in the blue-purple, red-purple, maroon, magenta and scarlet flowers [1-3]. In further studies on a deep red-purple strain of this species, three new diacyl anthocyanins were isolated and identified.

RESULTS AND DISCUSSION

We isolatated three anthocynanins, one red (1) and two orange red pigments (2 and 3) from the deep red-purple flowers of *Verbena* (strain UR-RP-3) by extraction with 3% formic acid and purification with Diaion HP-20 and Sephadex LH-20 CC, PC and HPLC. Compound 2 was

present as a main anthocyanin (48%) and the other two (1: 21%, 3: 5%) as minor ones.

The chromatographic and spectral data of these pigments are summarized in Table 1. Acid hydrolysis of 1-3 gave cyanidin, pelargonidin and pelargonidin, respectively, as the aglycones, and glucose as the sole sugar component. On alkaline hydrolysis of 1 and 2, cyanidin 3,5-diglucoside and pelargonidin 3,5-diglucoside were obtained, but no acyl group was detected on TLC. By contrast, pigment 3 gave pelargonidin 3,5-diglucoside and malonic acid on the same treatment.

Pigments 1 and 2: the FAB mass spectra of 1 and 2 showed the [M]⁺ 695 and 679, respectively, which correspond to cyanidin or pelargonidin 3,5-diglucoside with two acetic acids. The detailed structures were elucidated by ¹H NMR measurements (Table 2). The proton signals

Table 1. Chromatographic and spectral data of Verbena anthocyanins

Anthocyanins*	R_f values (×100)†				D ±	In 0.1% HCl-MeOH		_FABMS
	BAW	BuH	1%HCl	HAc-HCl	_ R _t † (min)	$\lambda_{\max}(nm)$	E_{440}/E_{VIS}	[M] ⁺
Verbena pigments								
Cy3aG5aG (1)	45	34	21	56	27.1	279, 527	12	695
Pg3aG5aG (2)	61	42	36	69	29.4	269, 508	18	679
Pg3mG5aG (3)	47	38	37	67	23.5	268, 508	19	723
Related pigments								
Cv3G5G	25	6	10	27	8.2	279, 527	12	
Pg3G5G	39	13	20	43	10.5	269, 508	19	

^{*}Cy3aG5aG, cyanidin 3,5-diacetylglucoside; Pg3aG5aG, pelargonidin 3,5-dicacetyl-glucoside; Pg3mG5aG, pelargonidin 3-malonylglucoside-5-acetylglucoside.

[†]BAW, n-BuOH-AcOH-H₂O (4:1:5); BuOH, n-BuOH-2 N HCl (1:1); HAc-HCl, AcOH-HCl-H₂O (15:3:82), $R_{\rm p}$ retention time, see experimental.

Table 2. ¹H and ¹³C NMR spectral data of Verbena anthocyanins

	Cy3aG5aG (1)	Pg3aG5aG (2)	Pg3mG5aG (3)	
H or C	¹H	¹ H	¹ H	¹³ C
Anthocyanidin				, <u></u>
2				162.7
3				144.6
4	8.74 s	8.77 s	8.83 s	132.7
5				155.0
6	6.96 br s	6.94 d (1.9)	6.97 d (1.4)	104.1
7				167.8
8	7.13 br s	7.15 d (1.2)	7.21 d (1.4)	96.4
8a				155.6
4a				101.9
1'				119.4
2'	8.05 d (2)	}	1	
6'	8.27 dd (2, 8.8)	$\int 8.58 d (9.3)$	$\int 8.62 \ d \ (8.8)$	135.2
3′		}	}	
5′	7.09 d (8.8)	7.07 d (9)	$\int 7.12 \ d \ (8.8)$	117.2
4'				165.4
3-Glucose (A)				
1	5.56 d (7.8)	5.52 d (7.6)	5.57 d (7.3)	100.4
2	3.63 t (8.8)	3.54 t (8.4)	3.59 t (8.3–8.8)	72.7
3	3.53 t (8.8)	3.45 t (8.9)	3.50 t (8.8)	76.5
4	3.29 t (9.8)	3.25 t (9.4)	3.31 t (9.3–9.8)	70.0
5	3.93 m	3.77 m	3.97 ddd (1.5, 7.8, 9.3)	74.1
6a	4.05 dd (7.8, 11.2)	4.12 dd (6.4, 12.2)	4.18 dd (7.8, 12.2)	64.6
6b	4.41 d (11.2)	4.31 d (10.5)	4.41 d (11.7)	
5-Glucose (B)				
1	5.23 d (7.9)	5.19 d (7.6)	5.22 d (7.8)	101.3
2	3.49 t (8.3)	3.50 t (7.7)	3.54 t (7.8–9.3)	73.1
3	3.44 t (8.8)	3.40 t (8.9)	3.44 t (8.8–9.3)	75.8
4	3.27 t (9.8)	3.23 t (9.3)	3.31 t (9.3–9.8)	70.1
5	3.81 dd (6.3, 9.8)	3.90 ddd (1.5, 9, 10)	3.82 ddd (2, 7.3, 9.8)	74.4
6a	4.15 dd (6.3, 11.7)	4.01 dd (7.8, 12.0)	4.11 dd (7.3, 12.2)	63.6
6b	4.34 d (11.7)	4.37 d (10.5)	4.41 d (11.7)	
Acetic acid (Ac)				
I Me-	2.04 s	1.99 s		
CO-				
II Me-	1.96 s	1.91 s	2.05 s	20.7
CO-				170.5
Malonic acid				
-CO- (1)				167.3
-CH ₂ - (2)			3.45	41.6
-CO- (3)				167.9

Coupling constants (J, Hz) in parentheses.

of 1 and 2 were mainly assigned by ${}^{1}H^{-1}H$ COSY, and also linkages of sugars were confirmed by DIFNOE [4, 5]. The characteristic signals in the low field region were assigned to cyanidin (1) or pelargonidin (2) protons. In the sugar region 5.56-3.23 ppm, as anomeric proton signals were shifted to lower magnetic field (1: δ 5.56 and 5.23, 2: δ 5.52 and 5.19) with large coupling constant (J = 7.6-7.8 Hz), the glycosylated sugars were shown to be the β -anomers. The large coupling constant of the sugar ring protons (1: J = 6.3-11.7 Hz, 2: J = 6.4-12.2 Hz) showed the glucosyl residues are in the pyranose form. The low field shifts of both C-6 methylene protons. (1:

 δ 4.41, 4.05 and δ 4.34, 4.15, **2**: δ 4.31, 4.11 and δ 4.37, 4.01) of glucoses indicated that both primary CH₂OH were acylated. The methyl protons of both acetic acids in **1** and **2** were assigned at δ 2.04 and 1.94 (**1**) or δ 1.99 and 1.91 (**2**). Furthermore, both glucose moieties in **1** and **2** were confirmed to be attached to 3-OH and 5-OH of the anthocyanidins by DIFNOE experiments. Therefore, the new pigments **1** and **2** are the 3-*O*-(6-*O*-(acetyl)-β-D-glucopyranoside)-5-*O*-(6-*O*-(acetyl)-β-D-glucopyranosides) of cyanidin and perlargonidin, respectively.

Pigment 3: the FAB mass spectrum gave its molecular ion at 723 m/z [M]⁺ in good agreement with the mass

Fig. 1. Diacylated *Verbena* anthocyanins: 1 R = OH, Ac-1 = Ac-2 = acetyl; 2 R = H, Ac-1 = Ac-2 = acetyl; 3R = H, Ac-1 = Malonyl, Ac-2 = acetyl. Observed NOEs are indicated by arrows.

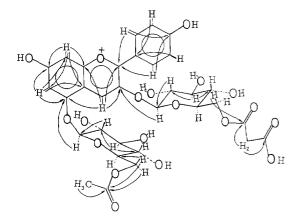


Fig. 2. HMBC correlations in pigment 3.

calculated for $C_{32}H_{35}O_{19}$. Analysis of the ¹H and ¹³C NMR, DQF-COSY and HOHAHA spectra [8–10] indicated the presence of one molecule of pelargonidin, two of glucose, one each of acetic acid and malonic acid. Because all observed vicinal J values of ring protons of both glucose units were ca 6–10 Hz, these must be β -D-glucopyranose forms (Table 2). The four methylene protons of both glucose units assigned by DQF-COSY and difference HOHAHA experiments were shifted to a low magnetic field (δ 4.41, 4.18 and δ 4.41, 4.11), indicating that these two hydroxyl groups (OH-6) of 3-Glc and 5-Glc are acylated.

In order to determine the attachment positions of the glucose and acyl units in the pigment molecule, DIF-NOE, HMBC [11], HMQC [12] and DEPT [13] spectra were measured. By irradiation using the DIFNOE method of the H-1 at δ 5.57, an NOE effect was observed at H-4 of pelargonidin. Also by irradiation of the H-1 at δ 5.22, an NOE effect was observed at H-6 of pelargonidin. Therefore, the 3-Glc and 5-Glc were attached to OH-3 and OH-5 of pelargonidin, respectively, through a glycosidic bond (Fig. 1). The attachments of acetic and malonic acids were determined to be acylated with both 6-OH of 3- and 5-Glcs by HMQC and HMBC spectral analysis. The carbonyl C-1 of malonyl unit was correlated

with H-6b of 3-Glc, and carbonyl C of acetyl unit was correlated with H-6a and b of 5-Glc as shown in Fig. 2. Therefore, 3 is the new anthocyanin, pelargonidin 3-O-(6-O-(malonyl)- β -D-glucopyranoside)-5-O-(6-O-(acetyl)- β -D-glucopyranoside). This is the first report of a diacylated anthocyanin with two different aliphatic acids [6, 7].

EXPERIMENTAL

Materials. Deep red-purple flower petals of Verbena hybride, strain UR-RP-3 were collected in the garden of Minami-Kyushu University.

Extraction and isolation. The fr. petals (ca 220 g) were extracted with 3% HCO₂H, and filtered. In the crude extract 15 peaks of anthocyanin were detected by HPLC. The filtrate was adsorbed on HP-20 resin column, and successively washed with 0.5% HCO₂H. The pigments were eluted with HCO₂H-MeOH-H₂O (1:10:9), concd, and further purified with LH-20 CC, PC (BAW and 15% HOAc) and HPLC (HCO₂H solvent system). Pigment 1 (25 mg), 2 (150 mg) and 3 (16 mg) were isolated.

Analysis. Characterization of these 3 anthocyanins was carried out by standard procedures involving deacylation with alkaline and acid hydrolysis [1–3, 14]. FAB mass spectra were measured in JMX GX-400 (JEOL), 1 H (400 MHz) and 13 C (100.53 MHz) NMR on JNM GX-400 (JEOL) in TFA-d1-DMSO- d_6 (9:1) with int. standard TMS. Alalyt. HPLC was performed on a Inertsil ODS-2 column (4.6 × 250 mm) at 35° with a flow rate of 0.8 ml min $^{-1}$ monitoring at 520 nm. Solvent systems used were as follows; a linear gradient elution for 40 min from 25 to 85% B (1.5% H_3 PO₄).

REFERENCES

- 1. Terahara, N., Shioji, T., Toki, K., Saito, N. and Honda, T. (1989) *Phytochemistry* 28, 1507.
- 2. Toki, K., Terahara, N., Saito, N., Honda, T. and Shioji, T. (1991) *Phytochemistry* 30, 671.
- 3. Toki, K., Yamamoto, T., Terahara, N., Saito, N., Honda, T., Inoue, H. and Mizutani, H. (1991) *Phytochemistry* 30, 3828.

518 K. Toki et al.

4. Lu, T. S., Saito, N., Yokoi, M., Shigihara, A. and Honda, T. (1991) *Phyochemistry* **30**, 2387.

- Kondo, T., Kawai, T., Tamura, H. and Goto, T. (1987) Tetrahedron Letters 28, 2273.
- 6. Harborne, J. B. and Grayer. R. J. (1988) in *The Flavonoids*, *Advances in Research Since* 1980 (Harborne, J. B., ed.), p. 1. Chapman and Hall, London.
- Strack, D. and Wray, V. (1993) in *The Flavonoids*, *Advances in Research Since* 1986 (Harbone, J. B., ed.).
 p. 1. Chapman and Hall, London.
- 8. Davis, D. G. and Bax, A. (1985) J. Am. Chem. Soc. 107, 7197.

- Edwards, M. W. and Bax, A. (1986) J. Am. Chem. Soc. 108, 918.
- 10. Piantini, U., Sorensen, O. W. and Ernst, R. R. (1982) J. Am. Chem. Soc. 104, 6800.
- Bax, A. and Subramanian, S. (1986) J. Magn. Reson. 67, 565.
- Bax, A. and Summers, M. F. (1986) J. Am. Chem. Soc. 108, 2093.
- Doddrell, D. M., Pegg, D. T. and Bendall., M. R. (1982) J. Magn. Reson. 48, 323.
- 14. Harborne, J. B. (1984) *Phytochemical Methods*, 2nd Edn. Chapman and Hall, London.