

SIX FLAVONOSTILBENES AND A FLAVANONE IN ROOTS OF SOPHORA ALOPECUROIDES

MUNEKAZU IINUMA,* MASAYOSHI OHYAMA and TOSHIYUKI TANAKA

Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan

(Received in revised form 1 September 1994)

Key Word Index—Sophora alopecuroides; Leguminosae; roots; flavonostilbenes; flavanone; alopecurones A-G.

Abstract—Six novel flavonostilbenes, alopecurones A–F, were isolated from the roots of *Sophora alopecuroides*, in addition to a new 5-deoxyflavanone with a lavandulyl group, alopecurone G. The structures of alopecurones A–F, which are flavonostilbenes composed of a flavanone [5, 7, 2', 4'-tetrahydroxy-8-lavandulylfavanone (sophoraflavanone G) or its 2'-methyl ether (leachianone A)] condensed with a stilbene [3, 5, 4'-trihydroxystilbene (resveratrol)] through the A ring of the flavanone skeleton, were established by spectroscopic analysis. Chemical relationships between S. alopecuroides, S. leachiana and S. moorcroftiana are discussed on the basis of their phenolic components.

INTRODUCTION

As to the chemical constituents of Sophora alopecuroides [1] (syn. Vexibia alopecuroides, Goebelia alopecuroides), distributed in west and middle Asia, the presence of matrine-type quinolizidine alkaloids [2], flavanones with a lavandulyl and/or an isoprenyl groups [3, 4], and several isoflavonoids has been reported. In the present paper, we describe the isolation and structural determination of six novel flavonostilbenes, alopecurones A (1) - F (6), and a new flavanone, alopecurone G (7) from the roots of this species. In addition, vexibidin (8') and vexibinol (9') [4, 5], the structures of which have been revised to leachianone A (8) [5] and sophoraflavanone G (9), respectively [16], were isolated and confirmed the preceding revision.

RESULTS AND DISCUSSION

Purification of an acetone extract of the roots of Sophora alopecuroides by a combination of silica gel and Sephadex LH-20 column chromatography, and vacuum liquid chromatography, resulted in the isolation of 15 phenolics, including seven new compounds.

Alopecurone A (1), obtained as a yellow amorphous solid, showed a $[M - H]^-$ ion at m/z 649 in the negative ion FAB mass spectrum, which corresponds to the empirical formula $C_{39}H_{38}O_9$. In the ¹H NMR spectrum, typical one-proton double doublets at $\delta 2.78$ (dd, J = 17.1 and 2.7 Hz), 3.12 (dd, J = 17.1 and 13.2 Hz) and 5.73 (dd, J = 13.2 and 2.7 Hz) assigned to H-2 and H-3 of a 2'-

oxygenated flavanone [7] were observed, in addition to proton signals for a lavandulyl group [δ 1.50, 1.58, 1.66 (3H each, br s, vinylic Me), 2.05 (2H, m, CH₂), 2.58 (1H, m, CH), 2.65 (1H, m, CH₂) 4.57, 4.67 (1H each, $br \, s$, CH₂ =) and 5.01 (1H, t like m, CH =)], and six hydroxyl groups $[\delta 8.15 \ (\times 2), 8.39, 8.49, 8.67 \ and 12.28 \ (chelated)]$. Aromatic methine protons coupled in an ABX-system at δ 6.48 (dd, J = 8.3 and 2.2 Hz), 6.51 (d, J = 2.2 Hz) and 7.41 (d, J = 8.3 Hz) indicated that 1 has a 2',4'dihydroxyphenyl moiety as its B ring. Furthermore, the ¹H NMR spectrum showed the presence of a 4-hydroxyphenyl [δ 6.87 (2H, d, J = 8.8 Hz) and 7.23 (2H, d, J= 8.8 Hz)] and a 3,5-dihydroxyphenyl group [δ 6.20 (2H, d, J = 2.4 Hz) and 6.27 (1H, t, J = 2.4 Hz)], as well as mutually coupled benzyl methine protons at $\delta 5.50 (d, J)$ = 5.4 Hz, Ph-CH-O) and 4.40 (d, J = 5.4 Hz, Ph-CH), indicating the presence of 3,5,4'-trihydroxystilbene (resveratrol). In the ¹H-¹H long range COSY spectrum, the benzyl methine protons at δ 5.50 and 4.40 were correlated with the ortho-coupled doublet at δ 7.23 and the metacoupled doublet at $\delta 6.20$ through 4J , respectively. The positions condensed with the resveratrol moiety and substituted with the lavandulyl group were determined as follows. In the COLOC spectrum (Fig. 1), the chelated hydroxyl group at C-5 was correlated with three carbons at δ 104.0 (C-10), 108.1 (C-6) and 158.3 (C-5) through 3J and 2J . Moreover, the benzyl methine proton at $\delta 4.40$, assigned to H-8" of resveratrol, caused a cross-peak with C-6 through ²J. On the other hand, the methylene protons of the lavandulyl group at $\delta 2.65$ were coupled with three quaternary carbons at δ 103.5 (C-8), 162.7 (C-9) and 167.9 (C-7). Consequently, the resveratrol moiety was condensed with an oxygen at C-7 and C-6; the lavandulyl group was at C-8. Thus, 1 was regarded as a new natural

^{*}Author to whom correspondence should be addressed.

520 M. IINUMA et al.

1: R = H, alopecurone A 4: R = Me, alopecurone D

2: R = H, alopecurone B 5: R = Me, alopecurone E

3: R = H, alopecurone C 6: R = OH, alopecurone F

7: alopecurone G

8: R = Me, leachianone A 9: R = H, sophoraflavanone G

8': R = Me, vexibidin 9': R = H, vexibinol

product formed by coupling of sophoraflavanone G and resveratrol to give a new framework, e.g. $(C_6)_2$ - C_2 - AC_6 -C₃-BC₆ [A and B superscript refer to rings A and B in the flavonoid numbering system]. The CD data [$(\Delta \varepsilon: +3.3)$ (336), -11.2(297)] suggested the configuration at C-2 to be S [8]. NOE enhancements I (Fig. 2) indicated that the aryl groups of the resveratrol molecule were trans-oriented [9]. The absolute stereochemistry at C-7" was S for 1 (negative Cotton effect at 279 nm), which was established by CD evidence in comparison with the following compounds: gnetin F (10) [negative Cotton effect at 300 nm) [9], 7,8,7',8'-tetrahydro derivative of (–)- ε -viniferin (11) [positive Cotton effect at 294 nm] [10], the neolignans 12 (negative Cotton effect at 280 nm) and 13 (positive Cotton effect at 280 nm) [11]. Consequently, these data confirmed the absolute configurations at C-7" and C-8" to be S.

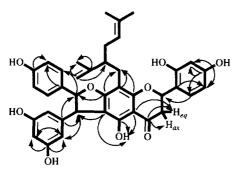


Fig. 1. Long-range correlations of alopecurone A (1) in COLOC spectrum (J = 5 Hz).

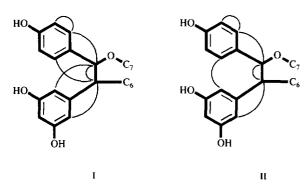


Fig. 2. NOE interactions in partial structures of alopecurones A (I) and B (II) in PSNOESY and DIFNOE spectra.

Alopecurone B (2), obtained as a yellow amorphous solid, also showed a $[M - H]^-$ ion at m/z 649 in the negative ion FAB mass spectrum, which is consistent with the molecular formula of 1. The ¹H NMR spectrum was closely similar to that of 1. In the COLOC spectrum, a proton signal of the C-5-OH was correlated with carbon signals of C-5 (δ 158.2), C-6 (δ 109.9) and C-10 (δ 104.3). A benzyl methine proton at $\delta 4.62$ (H-8") was correlated with a signal of C-6. Hence, the resveratrol in 2 formed a dihydrofuran ring between the C-7-OH and C-6, the same as in 1. The position of a lavandulyl group was established to be at C-8 by correlations between a methylene proton at δ 2.68 (H-1"') and a carbon at δ 103.9 (C-8). The structure of 2 is compatible with that of 1, except for the absolute configuration. The orientation of C-2 was concluded to be S by a positive $[\Delta \varepsilon: +5.6 (336)]$ and a negative Cotton effect [$\Delta \varepsilon$: – 3.9 (293)] in the CD spectrum. In the phase-sensitive NOESY (PSNOESY) spectrum, NOE interactions were observed, II (Fig. 2). The enhancement between H-2" (6") and H-10" (14") was explainable if each aryl group was cis-oriented. The NOE results and the positive Cotton effect $[\Delta \varepsilon: +6.3 (315)]$ in the CD spectrum supported the absolute configurations of C-7" and C-8" top be R and S, respectively.

Comparison of the ¹H NMR spectral data of 1 and 2 revealed a significant difference in the chemical shifts of protons (H-2", 3", 5", 6" and H-10", 12", 14") on the aryl groups of a 4-hydroxyphenyl group at C-7" and of a 3,5-dihydroxyphenyl group at C-8". In the case of 2, the

signals appeared at a relatively higher field than those of 1; this was attributed to the shielding effect produced by the spatial proximity of the aryl groups. Furthermore, the orientations of C-7" and C-8" were reflected in the coupling constants between H-7" and H-8"; the values of 1 (J = 5.4 Hz) and 2 (J = 8.3 Hz) are compatible with those of ε -viniferin derivatives [14 (trans): J = 6.2 Hz and 15 (cis): J = 8.3 Hz] [10].

The chemical shifts of the chelated hydroxyl group at C-5 give valuable information on whether the alkyl side chain, e.g. an isoprenyl and a lavandulyl group is substituted at C-6 or C-8 [12]. The shift values (1: δ 12.28 and 2: 12.22), which are consistent with those of a flavanone lacking such an alkyl side chain at C-6, showed that they are not affected by the dihydrofuran moiety in the above flavonostilbenes, suggesting that they can be applied to the eludiation of the substitution of an A ring moiety in the flavonostilbenes described above.

Alopecurone C (3), isolated as a powder, gave a [M -H] ion peak at m/z 565 in the negative ion FAB mass spectrum, which is consistent with the molecular formula C₃₄H₃₀O₈. On the basis of the ¹H NMR spectrum, the framework was thought to be a flavonostilbene, e.g. 1. The presence of an isoprenyl group [δ 1.59, 1.64 (3H) each, br s, vinylic Me), 3.26 (2H, d, J = 7.3 Hz, CH₂) and 5.27 (1H, t, J = 7.3 Hz, CH =)] was supposed in 3, instead of a lavandulyl group. In the COLOC spectrum, long-range couplings were observed between a proton signal of the C-5-OH and carbon signals of C-5 (δ 158.5), C-10 (δ 104.3) and C-6 (δ 108.4); the last carbon signal was coupled with H-8" (δ 4.36). In addition, a methylene proton at δ 3.26, assigned to H-1" in the isoprenyl group, was coupled with carbons at δ 161.8 (C-9), 167.5 (C-7) and 103.9 (C-8) through ${}^{3}J$ and ${}^{2}J$. The position of the isoprenyl group was thus at C-8, which was also supported by the chemical shift to the chelated hydroxyl group at δ 12.25. The structure of 3 was therefore elucidated to be a flavonostilbene consisting of 5, 7, 4'trihydroxy-8-isoprenylflavanone (sophoraflavanone B) [13, 14] and resveratrol. Considering the coupling constant (J = 4.9 Hz) between H-7" and H-8" in the resveratrol molecule, and the chemical shifts of protons on the 4-hydroxyphenyl and the 3,5-dihydroxyphenyl groups at C-7" and C-8", the aryl groups are suggested to be in a trans-configuration; this was supported by NOE correlation between H-7"/H-10" (14") and H-8"/H-2" (6") in the PSNOESY spectrum. The absolute stereochemistry was concluded from the CD spectrum as follows. As in the case of 1, the CDs $[\Delta \varepsilon: + 5.5 (338) \text{ and } - 14.4 (297)]$ characterized the configuration at C-2 to be S, and that at C-7" and C-8" to be $S [\Delta \varepsilon: -11.0 (283)]$.

Alopecurone D (4), obtained as a yellow oil, showed a $[M-H]^-$ ion at m/z 663 in the negative ion FAB mass spectrum consistent with the formula $C_{40}H_{40}O_9$ which corresponds to a monomethyl ether of 1 or 2. The 1H NMR spectral signals of 4, which showed the presence of a methoxyl group at δ 3.84 were similar to those of 1. A 4-hydroxy-2'-methoxyphenyl substituent was proposed from the NOE enhancement observed between a *meta*-coupled aromatic proton at δ 6.57 and the methoxyl

522 M. IINUMA et al.

group in the PSNOESY spectrum. Substitution on the B ring was further confirmed by comparison of the 13 C NMR spectral data with those of leachianone A (8) [5]. The chemical shifts of the chelated hydroxyl and the aryl groups, including the resveratrol moiety, were similar to those of 1, indicating that the lavandulyl group was substituted at C-8 and that the aryl groups at C-7" and C-8" were trans-oriented. The absolute configurations of C-2, C-7" and C-8" were shown to be S, by the Cotton effects at 33δ (positive), 297 (negative) and 281 nm (negative in the CD spectrum. The structure of alopecurone D is therefore the 2'-methyl ether of alopecurone A.

Alopecurone E (5), a yellow amorphous solid, showed a $[M - H]^-$ ion at m/z 663 in the negative ion FAB mass spectrum, the same empirical formula C₄₀H₄₀O₉ as 4. In the ¹H NMR spectrum, differences of the coupling constants between H-7" and H-8", and of the chemical shifts of aromatic protons in a resveratrol moiety as found in 1 and 2 were observed in 4 and 5, indicating that 5 is a stereoisomer of 4. Among them, the higher shifts of proton signals attributable to the resveratrol moiety than those of 4 and the coupling constant (J = 8.3 Hz) between H-7" and H-8" characterized that the aryl groups at C-7" and C-8" are cis-oriented; this was further confirmed by NOE interactions between H-2" (6") and H-10" (14") in the PSNOESY spectrum. The similar Cotton effects to those of 2 confirmed that the absolute configuration at C-2, C-7" and C-8" to be S, R and S, respectively.

Alopecurone F (6), obtained as a yellow amorphous solid, showed a $[M-H]^-$ ion at m/z 581 for an empirical formula of $C_{34}H_{30}O_9$. In the 1H NMR spectrum, the presence of an isoprenyl; $[\delta 1.60, 1.64 (3H each, br s), 3.27 (2H, d, J = 7.3 Hz)$ and 5.29 (1H, t like m)] was observed. The chemical shift of the chelated hydroxyl group at $\delta 12.28$ showed the position of the isoprenyl group to be at C-8, not at C-6. The PSNOESY spectrum showed crosspeaks between H-8" H-2" (6") and H-7" H-10" (14"), indicating that the aryl groups were trans-oriented. The absolute stereochemistry of C-2, C-7" and C-8" in 6 was concluded to be S by the CD spectrum; the structure was therefore the 2'-hydroxy derivative of alopecurone C.

Alopecurone G (7), a pale yellow oil, gave positive reactions to Gibbs and Mg-HCl tests, and a negative one to FeCl₃ reagent. The ¹H NMR spectrum showed three one-proton double doublets at $\delta 2.67$, 2.90 and 5.65 assigned to H-3 and H-2 of a 2'-oxygenated flavanone. In the spectrum, the presence of a methoxyl (δ 3.82) and a lavandulyl group [δ 1.48, 1.56, 1.67 (3H each, br s, vinylic Me), 2.05 (2H, m, CH₂), 2.61 (1H, t-like m, CH), 2.74 (2H, d, J = 6.8 Hz, CH_2), 4.55, 4.59 (1H each, br s, $CH_2 =$), 5.00 (1H, t-like m, CH =)] was observed. Aromatic methine protons coupled in an ABX-system at $\delta 6.53$ (dd, J = 7.8, 2.0 Hz), 6.55 (d, J = 2.0 Hz) and 7.46 (d, J= 7.8 Hz), and a set of ortho-coupled aromatic protons at δ 6.61 (1H, d, J = 8.8 Hz) and 7.60 (1H, d, J = 8.8 Hz) were also observed. In the EI mass spectrum, prominent fragment ions at m/z 149 and 150 suggested that the lavandulyl group and a hydroxyl group were located on the A ring, and the methoxyl and another hydroxyl group on the B ring. In the difference NOE spectrum, enhancement of the *meta*-coupled aromatic proton at $\delta 6.55$ appeared after irradiation of the methoxyl group at $\delta 3.82$, which indicated the substitution pattern of the B ring to be 4'-hydroxy-2'-methoxyl. On the contrary, the deshielded *ortho*-coupled proton at $\delta 7.60$ showed the A ring to have a 7-hydroxy-8-lavandulyl substitution. In the CD spectrum [$\Delta \varepsilon$: + 6.0 (333), - 10.3 (302)], C-2 in 7 was shown to have S-configuration. The structure of alopecurone G was concluded to be (2S)-7,4'-dihydroxy-8-lavandulyl-2'-methoxyflavanone (7).

The other compounds isolated were characterized by spectral analysis as known flavanones of leachianone A (8) [5], sophoraflavanone G (9) [6], glabrol [15] and lehmannin [16], a pterocarpan of sophoracarpan B [17], a coumestanol of medicagol [18], an isoflavone of 2'-hydroxygenistein [19] and a resveratrol dimer of ε -viniferin [9], respectively.

Previously, 5,7,4'-trihydroxy-6-lavandulyl-2'-methoxy-flavanone (8') and 5,7,2',4'-tetrahydroxy-6-lavandulylflavanone (9') were obtained from roots of *Vexibia alopecuroides* and named vexibidin and vexibinol [4]. From the physical properties and the chemical shifts of the chelated hydroxyl group, the lavandulyl group was proposed to be substituted, not at C-6 but at C-8, and the tentative structures of vexibidin and vexibinol were revised to (2S)-5,7,4'-trihydroxy-8-lavandulyl-2'-methoxy-flavanone (leachianone A, 8) [5] and (2S)-5,7,2',4'-tetrahydroxy-8-lavandulylflavanone (sophoraflavanone G, 9) [5, 6].

Up to now, the occurrence of flavonostilbenes which have a resveratrol condensed with a flavone through its B ring have been reported in the roots of S. leachiana [20, 21] and S. moorcroftiana [22]; their framework is designated ${}^{A}C_{6}$ - C_{3} - ${}^{B}C_{6}$ - C_{2} - $(C_{6})_{2}$. On the other hand, flavonostilbenes in S. alopecuroides have a resveratrol found with a flavanone through its A ring to form a different framework $(C_6)_2$ - C_2 - AC_6 - C_3 - BC_6 . In our previous papers [23-25], the differences between S. leachiana and S. moorcroftiana were shown by the kind of oligostilbenes present, i.e. the oligostilbene in S. leachiana is characterized as a product oligomerized through a pallidol. In contrast, the oligostilbenes in S. moorcroftiana are through &-viniferin. From the roots of S. alopecuroides, resveratrol oligomers involving leachianols A [23], F, G [25] and pallidol [23, 26] were isolated, which indicates the similarity between S. alopecuroides and S. leachiana from the standpoint of oligostilbene production, but the two species have different pathways for the formation of flavonostilbenes.

EXPERIMENTAL

Plant material. Roots of S. alopecuroides L. were collected at Xinjiang, China in June 1993. A voucher specimen is deposited in the Herbarium of Gifu Pharmaceutical University.

Extraction and isolation of compounds. Dried and pulverized roots (600 g) were extracted with Me₂CO at room temp. After concn, the extract (40 g) was subjected to

Table 1. ¹H NMR data for alopecurones A (1) – F (6) in acetone- d_6

SZ		2	6	4	5	9
Ç	573 CEL PP 573	5.77 (dd. 13.7, 2.9)	5.51 (dd. 13.3, 2.9)	5.70 (dd, 13.7, 2.9)	5.74 (dd, 13.2, 2.9)	5.75 (dd, 13.2, 2.9)
202	(12 121)21	280 (dd 171 29)	277 (dd 17.1, 2.9)	2.72 (dd. 17.1. 2.9)	2.74 (dd, 17.1, 2.9)	2.76 (dd, 17.1, 2.9)
peq 1	2.10 (dd, 11.1, 2.1)	2.20 (dut, 17.1, 2.2)	2.16 (da) 17.11 (2.2)	312 (44 171 137)	313 (dd 171 132)	317 (dd. 171, 13.2)
3ax	3.12 (dd, 17.1, 13.2)	3.13 (dd, 1/.1, 13.7)	3.10 (dd, 1/.1, 15.3)	3.12 (dd, 1/.1, 19.7)	2.12 (uu, 17.1, 19.2)	(mm) (1.1.1)
2,			7.44 (a, 6.3)		() () () () () () () () () ()	(0 (1) 3 4)
3,	6.51 (d, 2.2)	6.52(d, 2.0)	6.93 (d, 8.3)	6.57 (d, 2.4)	6.57(d, 2.4)	6.50 (d, 2.4)
5,	6.48 (dd, 8.3, 2.2)	6.49 (dd, 8.3, 2.0)	6.93 (d, 8.3)	6.55 (dd, 8.3, 2.4)	6.56 (dd, 8.3, 2.4)	6.46 (dd, 8.6, 2.4)
۷ ،	741 (4 8 3)	7,42 (d. 8.3)	7.44 (d, 8.3)	7.45 (d, 8.3)	7.46 (d, 8.3)	7.38 (d, 8.6)
(9)c	723(d. 8.8)	7.02 (4. 8.5)	7.20 (4,8.5)	7.23 (d, 8.8)	7.02 (d, 8.3)	7.20 (d, 8.5)
3"(5")	6.87 (4, 8.8)	6.64 (4, 8.5)	6.86 (d, 8.5)	6.86 (d, 8.8)	6.63 (d, 8.3)	6.86 (d, 8.5)
7/	\$ 50 (4 \$ 4)	5.96 (d. 8.3)	5.58 (d. 4.9)	5.49 (d, 5.4)	5.97 (d, 8.3)	5.56 (d, 4.9)
· òx	4 40 (d. 5 4)	4 62 (d. 8.3)	4.36 (d. 4.9)	4.39 (d, 5.4)	4.62 (d, 8.3)	4.35 (d, 4.9)
10"(14")	6.20 (d. 2.4)	5.82 (d. 2.0)	6.22 (d, 2.0)	6.19(d, 2.2)	5.81 (d, 2.0)	6.20 (d, 2.0)
12"	$\frac{1}{6.27} \frac{1}{(t_1, 2.4)}$	6.03 (t. 2.0)	6.28 (t, 2.0)	6.27(t, 2.2)	6.03 (t, 2.0)	6.26 (t, 2.0)
1 =	2.65 (2H. m)	2.68(2H, m)	3.26 (d, 7.3)	2.63 (2H, m)	2.68 (2H, m)	3.27 (d, 7.3)
γ	2 S8 (m)	2.62 (m)	5.27 (1, 7.3)	2.58 (m)	2.60(m)	5.29 (t-like m)
, ir	2.05 (2H, m)	2.08 (2H, m)		2.05 (2H, m)	2.05 (2H, m)	
4	5.01 (t-like m)	5.05 (t-like m)	1.64 (3H, br s)	4.99 (t-like m)	5.02 (<i>t</i> -like <i>m</i>)	1.64 (3H, br s)
	(1.59 (3H, br s)		1	$1.60(3\mathrm{H},brs)$
·.'9	1 58 (3Hm br s)	1.58 (3H. br s)		1.58 (3H, br s)	1.58 (3 H , br s)	1
L	1.50 (3H. br s)	1.52 (3H, br s)		1.50(3H, br s)	1.53 (3H, br s)	
6	4.57 (br s)	4.63 (br s)	ļ	4.56 (br s)	$4.61 (br \ s)$	
	4.67 (br s)	4.74 (br s)	I	4.68 (br s)	4.76 (br s)	
10	1,66 (3H, br s)	1.69 (3H, br s)		$1.65 (br \ s)$	1.69 (3H, br s)	
OMe				3.84 (3H, s)	3.86 (3H, s)	1
OHs	8.15 (× 2), 8.38 .	$7.80 (\times 2), 8.21,$	$8.13 (\times 2)$	$8.15 (\times 2), 8.50,$	$7.78 (\times 2), 8.18,$	$8.14 (\times 2), 8.38,$
	8.49, 8.67 (br. s)	8.39, 8.64 (br s)	$8.44 (\times 2, br s)$	8.56 (br s)	$8.55 (br \ s)$	8.45, 8.65 (br s)
C _s -OH	12.28 (s)	12.22 (s)	12.25 (s)	12.26 (s)	12.21 (s)	12.28 (s)

Values in ppm ($\delta_{\rm h}$) at 400 MHz. All protons were assigned with the aid of ¹³C....¹H COSY and COLOC. Figures in parentheses are coupling constants (J) in Hz.

M. IINUMA et al.

silica gel CC (n-hexane-Me₂CO₃ 10:1 to 1:1, finally MeOH) to afford 22 frs. Frs 4-7 were further purified by repeated vacuum liquid chromatography (VLC) eluting with a n-hexane-EtOH system to obtain caffeic acid alkyl ester (44 mg), maackiain (2 mg), sophoracarpan B (32 mg), glabrol (62 mg), leachianone A (8, 977 mg), sophoraflavanone G (9, 733 mg) and alopecurone G (7, 56 mg). From frs 10-11, lehmanin (2 mg) and 2'-hydroxygenistein (2 mg) were isolated by prep. TLC (CHCl₃-MeOH, 20:1); further VLC (CHCl₃-MeOH system, gradient) and Sephadex LH-20 CC (MeOH, or Me₂CO-H₂O, 4:1) yielded alopecurones A (1, 804 mg), B (2, 349 mg), C (3, 151 mg), D (4, 677 mg), E (5, 3 mg) and F (6, 3 mg). Frs 17–18 gave leachianol A (10 mg) and a mixt. of leachianols F and G (16 mg), in addition to ε-viniferin (111 mg), using similar separating procedures.

Alopecurone A (1). Yellow amorphous solid. Negative ion FABMS: m/z 649. $[\alpha]_D^{27} - 13.5^{\circ}$ (MeOH; c 0.13). CD

(MeOH; $c 3.69 \times 10^{-5}$): $\Delta \epsilon^{20} + 3.3$ (336), -11.2 (297), -2.3 (279), +1.0 (255), -1.5 (248). UV $\lambda_{\rm max}^{\rm MeOH}$ nm): 228, 287, 300, 333sh. IR $\nu_{\rm max}^{\rm KRr}$ cm⁻¹: 3320, 1640, 1600, 1510. ¹H and ¹³C NMR: Tables 1 and 2.

Alopecurone B (2). Yellow amorphous solid. Negative ion FABMS: m/z 649. $[\alpha]_D^{27} - 1.5^\circ$ (MeOH; c 0.13). CD (MeOH; c 3.38 × 10⁻⁵): $\Delta \varepsilon^{20} + 5.6$ (336), + 6.3 (315), - 3.9 (293), - 3.2 (245), + 6.1 (238). UV $\lambda_{\rm max}^{\rm MeOH}$ nm): 228, 287, 299, 355sh. IR $\nu_{\rm max}^{\rm KRr}$ cm⁻¹: 3350, 1650, 1610, 1520. 1 H and 13 C NMR: Tables 1 and 2.

Alopecurone C (3). Powder. Negative ion FABMS: m/z 565. $[\alpha]_D^{27}$ 50.7° (MeOH; c 0.10). CD (MeOH; c 4.59 \times 10⁻⁵): $\Delta \varepsilon^{20}$ + 5.5 (338), -14.4 (297), -11.0 (283), +1.7 (253), -0.6 (248). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 228, 285, 300, 333sh. IR $\nu_{\rm max}^{\rm KRr}$ cm⁻¹: 3300, 1660, 1610, 1520. ¹H and ¹³C NMR: Tables 1 and 2.

Alopecurone D (4). Yellow oil. Negative ion FABMS: m/z 663. $[\alpha]_D^{26} - 10.1^\circ$ (MeOH; c 0.12). CD (MeOH;

Table 2. 13 C NMR data of alopecurones A (1) – F (6) in acetone- d_6

No.	1	2	3	4	5	6
1	75.5 (d)	75.6 (d)	80.0 (d)	75.2 (d)	75.2 (d)	75.5 (d)
3	42.5(t)	42.6(t)	43.3(t)	42.5(t)	42.5(t)	42.5(t)
4	198.4 (s)	198.5 (s)	197.8 (s)	198.4 (s)	198.5 (s)	198.4 (s)
5	$158.3 (s)^a$	158.2 (s)	158.5 (s)	158.5 (s)	158.0 (s)	158.6 (s)
6	108.1 (s)	109.9(s)	108.4 (s)	108.2(s)	110.0(s)	108.2(s)
7	167.9(s)	168.1(s)	167.5(s)	168.0(s)	168.0(s)	166.8 (s)
8	103.5 (s)	103.9 (s)	103.9 (s)	103.5 (s)	103.9 (s)	103.8 (s)
9	162.7(s)	162.5(s)	161.8(s)	162.7(s)	162.5(s)	162.3 (s)
10	104.0(s)	104.3 (s)	104.3 (s)	104.1 (s)	104.3 (s)	104.1 (s)
1'	117.5(s)	117.6 (s)	130.9 (s)	118.9(s)	119.0(s)	117.7(s)
2'	156.1 (s)	156.2(s)	128.8(d)	158.7 (s)	158.8 (s)	156.4 (s)
3'	103.4(d)	103.5 (d)	116.2(d)	99.8 (d)	99.8 (d)	103.5 (d)
4'	159.3 (s)	159.4 (s)	158.6 (s)	159.9 (s)	160.0(s)	159.5 (s)
5'	107.8(d)	107.8(d)	116.2 (d)	107.9(d)	107.9(d)	107.9(d)
6'	128.5(d)	128.6(d)	128.8(d)	128.4(d)	128.5(d)	128.8(d)
1"	132.7(s)	$132.0 (s)^{b}$	133.0(s)	132.8 (s)	$132.0 (s)^{c}$	133.1 (s)
2"(6")	128.0(d)	129.1 (d)	127.7(d)	128.1 (d)	129.1 (d)	127.7(d)
3"(5")	116.2(d)	115.1(d)	116.3(d)	116.3(d)	115.1 (d)	116.3 (d)
4''	158.3 (s)a	157.5 (s)	158.4 (s)	158.4 (s)	157.6 (s)	158.4 (s)
7''	95.2 (d)	91.6(d)	95.2(d)	95.3 (d)	91.7(d)	95.2 (s)
8''	54.7 (d)	50.6 (d)	55.0(d)	54.8(d)	50.7(d)	55.0(d)
9"	145.5 (s)	141.9 (s)	145.6 (s)	145.6 (s)	142.0(s)	145.6 (s)
10"(14")	106.6(d)	108.6(d)	106.6(d)	106.6(d)	108.6(d)	106.6(d)
11"(13")	159.4 (s)	158.5 (s)	159.6 (s)	159.5 (s)	158.6 (s)	159.6 (s)
12"	102.1 (d)	101.7(d)	102.2(d)	102.1 (d)	101.8(d)	102.1 (d)
1′′′	28.0(t)	28.0(t)	22.7(t)	28.1(t)	28.0(t)	22.8(t)
2'''	47.8(d)	48.0(d)	123.0(d)	47.8(d)	47.9(d)	123.1 (d)
3′′′	32.1(t)	32.5(t)	132.0(s)	32.2(t)	32.5(t)	131.9 (s)
4'''	124.0(d)	124.2(d)	25.0(q)	124.1 (d)	124.2(d)	25.9(q)
5'''	131.9 (s)	$132.0 (s)^{b}$	17.9(q)	132.0(s)	$132.0 (s)^{c}$	17.9(q)
6'''	25.8(q)	25.8(q)		25.8(q)	25.8(q)	_
7'''	17.9(q)	17.9(q)		17.9(q)	17.9(q)	_
8′′′	148.4 (s)	148.4 (s)	_	148.5 (s)	148.4 (s)	
9′′′	111.7(t)	112.1 (t)		111.8(t)	112.2 (t)	_
10'''	18.8(q)	19.0(q)	_	18.8(q)	19.0(q)	
OMe	_			55.8 (q)	55.8 (q)	_

Values in ppm ($\delta_{\rm C}$) at 100 MHz. All carbons were assigned with the aid of $^{13}{\rm C}^{-1}{\rm H}$ COSY and COLOC.

a-cOverlapping signals.

c 5.09 × 10⁻⁵): $\Delta \epsilon^{21}$ + 3.6 (335), -12.5 (297), -3.9 (281), +0.9 (256), -0.7 (248). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 206, 224sh, 280, 299, 333sh. ¹H and ¹³C NMR: Tables 1 and 2.

Alopecurone E (5). Yellow amorphous solid. Negative ion FABMS: m/z 663. CD (MeOH; c 3.25 × 10⁻⁵): $\Delta \varepsilon^{21}$ + 4.5 (334), + 6.7 (313), - 1.0 (290), - 3.0 (245), + 3.3 (238). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 205, 225sh, 280, 299, 335sh. ¹H and ¹³C NMR: Tables 1 and 2.

Alopecurone F (6). Yellow amorphous solid. Negative ion FABMS: m/z 581. CD (MeOH; c 3.92 × 10⁻⁵): $\Delta \varepsilon^{21}$ + 1.9 (340), - 4.3 (297), - 2.3 (280), + 0.8 (255), - 1.0 (248). UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 205, 220sh, 285, 296, 335sh. ¹H and ¹³C NMR: Tables 1 and 2.

Alopecurone G (7). Pale yellow oil. EIMS m/z (rel. int.): 422 (13), 299 (21), 269 (11), 203 (45), 150 (24), 149 (100), 123 (18). $[\alpha]_D^{26} - 69.7^{\circ}$ (MeOH; c 0.10). CD (MeOH; c 5.59 $\times 10^{-5}$): $\Delta \varepsilon^{21} + 6.0$ (333), -10.3 (302). UV λ_{max}^{MeOH} nm: 219, 231sh, 285, 307sh, 341sh. ¹H NMR (400 MHz, acetone- d_6): δ 1.48, 1.56, 1.67 (3H, each br s, Me at C-6", 7", 10"), 2.05 (2H, m, H-3"), 2.61 (1H, m, H-2"), 2.67 (1H, dd, J = 16.6, 2.4 Hz, H-3eq), 2.74 (2H, br d, J = 6.8 Hz, H-1"), 2.90 (1H, dd, J = 16.6, 13.2 Hz, H-3ax), 3.82 (3H, s, OMe), 4.55, 4.59 (1H each, br s, H-9"), 5.00 (1H, t like m, H-4"), 5.65 (1H, dd, J = 13.2, 2.4 Hz, H-2), 6.53 (1H, dd, J= 7.8, 2.0 Hz, H-5'), 6.55 (1H, d, J = 2.0 Hz, H-3'), 6.61 (1H, d, J = 8.8 Hz, H-6), 7.46 (1H, d, J = 7.8 Hz, H-6),7.60 (1H, d, J = 8.8 Hz, H-5), 8.80 (br s, OH). ¹³C NMR (100 MHz, acetone- d_6): δ 17.8 (C-7"), 19.1 (C-10""), 25.8 (C-6"), 28.2 (C-1"), 32.0 (C-3"), 43.9 (C-3), 47.5 (C-2"), 55.8 (OMe), 75.5 (C-2), 99.8 (C-3'), 107.9 (C-5'), 110.3 (C-6), 111.2 (C-9"), 115.2 (C-10), 116.1 (C-8), 119.7 (C-1'), 124.4 (C-4"'), 126.4 (C-5), 128.4 (C-6'), 131.7 (C-5"), 149.1 (C-8"), 158.5 (C-2'), 159.7 (C-4'), 162.7 (C-9), 163.0 (C-7), 191.6 (C-4).

REFERENCES

- 1. Tsoong, P. C. and Ma, C. Y. (1981) Acta Phytotaxonom, Sin. 19, 1.
- Talkachev, O. N., Monakhova, T. E., Sheichemnko, V. I., Kabanov, V. S., Fesenko, O. G. and Proskurnina, N. F. (1975) Khim, Prir. Soedin. 30.
- 3. Yusupova, S. S., Batirov, E. K., Abdullaev, Sh. V. and Malikov, V. M. (1984) *Khim. Prir. Soedin.* 250.
- Batirov, E. K., Yusupova, S. S., Abdullaev, Sh. V., Vdovin, A. D., Malikov, V. M. and Yagudaev, M. R. (1985) Khim. Prir, Soedin. 35.

- Iinuma, M., Tanaka, T., Mizuno, M., Shirataki, Y., Yokoe, I., Komatsu, M. and Lang, F. A. (1990) Phytochemistry 29, 2667.
- Shirataki, Y., Yokoe, I., Noguchji, M., Tomimori, T. and Komatsu, M. (1988) Chem. Pharm. Bull. 36, 2220.
- 7. Iinuma, M., Ohyama, M., Tanaka, T., Mizuno, M. and Hong, S. K. (1992) *Phytochemistry* 31, 2855.
- 8. Rao, K. N. and Srimannarayana, G. (1983) Phytochemistry 22, 2287.
- Lins, A. P., Yoshida, M., Gottlieb, O. R., Gottlieb, H. E. and Kubitzki, K. (1986) Bull. Soc. Chim. Belg. 95, 737.
- 10. Kurihara, H., Kawabata, J., Ichikawa, S. and Mizutani, J. (1990) Agric. Biol. Chem. 54, 1097.
- 11. Gottlieb, O. R., Mourao, J. C., Yoshida, M., Mascarenhas, Y. P., Rodrigues, M., Rorsenstein, R. D. and Tomita, K. (1977) *Phytochemistry* 16, 1003.
- Fukai, T. and Nomura, T. (1990) Heterocycles 31, 1861.
- Komatsu, M., Yokoe, I. and Shirataki, Y. (1978) Chem. Pharm. Bull. 26, 3863.
- Shirataki, Y., Yokoe, I., Endo, M. and Komatsu, M. (1985) Chem. Pharm. Bull. 33, 444.
- Mizuno, M., Tanaka, T., Tamura, K., Matsuura, N., Iinuma, M. and Cheih, C. (1990) *Phytochemistry* 29, 2738.
- Batirov, E. Kh., Yusupova, S. S., Sattikulov, A., Vdovin, A. D., Malikov, V. M. and Yagudaev, M. R. (1987) Khim. Prir. Soedin. 516.
- 17. Mizuno, M., Matsuura, N., Iinuma, M., Tanaka, T. and Phengklai, C. (1990) *Phytochemistry* 29, 2675.
- Mizuno, M., Tanaka, T., Katsuragawa, M., Saito, H. and Iinuma, M. (1990) J. Nat. Prod 53, 498.
- 19. Ingham, J. L. (1990) Biochem. Syst. Ecol. 18, 329.
- Iinuma, M., Tanaka, T., Kawai, M., Mizuno, M. and Lang, F. A. (1991) *Phytochemsitry* 30, 3773.
- 21. Jinuma, M., Ohyama, M., Tanaka, T. and Lang, F. A. (1994) *Phytochemistry* 37, 1157.
- 22. Shirataki, Y., Noguchi, M., Yokoe, I., Tomimori, T. and Komatsu, M. (1991) Chem. Pharm. Bull. 39, 1568.
- 23. Ohyama, M., Tanaka, T. and Iinuma, M. (1994) *Chem. Pharm. Bull.* 42, 2117.
- 24. Ohyama, M., Tanaka, T. and Iinuma, M. (1994) Tetrahedron Letters 35, 7817.
- 25. Ohyama, M., Tanaka, T. and Iinuma, M. (1994) *Phytochemistry* (in press).
- Khan, M. A., Nabi, S. G., Prakash, S. and Zaman, A. (1986) *Phytochemistry* 25, 1945.