

TWO C₁₀ LACTONES FROM CEPHALOSPORIUM APHIDICOLA

AFGHAN FAROOQ, JOHN GORDON, JAMES R. HANSON and JACQUELINE A. TAKAHASHI School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ, U.K.

(Received 9 August 1994)

Key Word Index—Cephalosporium aphidicola; fungus; cephalosporolide G; diplodialide B; lactones.

Abstract—Cephalosporolide G, diplodialide B and Z-3-methylpent-2-en-1,5-dioic acid have been obtained from the fungus, Cephalosporium aphidicola.

INTRODUCTION

The fungus, Cephalosporium aphidicola, produces a number of 10-membered ring lactones, known as the cephalosporolides [1, 2]. The diplodialides from Diplodia pinea [3], the pyrenolides from Pyrenophora teres [4] and the decarestrictines from Penicillium simplicissimum and P. carylophilum [5] belong to the same class of compound. Some of these lactones are inhibitors of various stages in steroid biosynthesis. In this report, we describe the isolation of a further novel member of this series, cephalosphorolide G (1) and the known diplodialide B (3) from C. aphidicola.

RESULTS AND DISCUSSION

Cephalosporolide G (1), C₁₀H₁₆O₅, is an isomer of cephalosporolide C (2) [2]. The ¹³CNMR spectrum (Table 1) showed similarities to the other cephalosporolides. Spin decoupling studies in the ¹H NMR spectrum established the presence of the fragments

1 R α-H, β-OH 2 R α-OH, β-H

3

tion of the doublet (J = 11.5 Hz) of triplets (J = 2.5 Hz)at δ 4.34 removed a small coupling (J = 2.5 Hz) from the other CH(OH) signal at δ 4.41 and also from a doublet (J= 17 Hz) of doublets (J = 2.5 Hz) at $\delta 2.52$. A large coupling (J = 11.5 Hz) was removed from a doubledoublet (J = 11.5 and 17 Hz) at $\delta 2.83$. Irradiation at the CH(OH) signal, $\delta 4.41$ (ddd, J = 2.5, 5 and 10.5 Hz) removed a 2.5 Hz coupling from the signal at δ 4.34, a 5 Hz coupling from δ 2.73 and a 10.5 Hz coupling from δ 2.64. The latter signals formed an AB system (J = 18 Hz). Irradiation of the signal at δ 5.09 showed that it was coupled to two one-proton multiplets at 2.05 and 2.10, and to the methyl group doublet (δ 1.25, J = 6.4 Hz). Bearing in mind the presence of a carbonyl group, this leads to the overall structure (1). The stereochemistry of cephalosporolide C (2) has been established by X-ray crystallography [2]. Comparison of the ¹H NMR coupling constants, $J_{3:4}$ and $J_{4:5}$, leads to the stereochemistry (1) from cephalosporolide G. This is the same stereochemistry as found in thiobiscephalosporolide A [1].

Table 1. ¹H and ¹³C NMR data for the C₁₀ lactones 1 and 3

	1		3	
C	13C	1H	13C	¹ H
1	169.7		171.0	
2	35.9	2.52, 2.83	35.3	2.55, 2.61
3	67.2	4.34	68.0	4.66
4	69.9	4.41	132.8	5.60
5	46.1	2.64, 2.73	128.2	5.68
6	209.7		44.8	1.95, 2.30
7	40.4	2.35	32.5	n.a.
8	33.9	2.05, 2.08	35.3	n.a.
9	72.1	5.09	72.8	4.86
10	19.5	1.25	21.7	1.18

558 Short Reports

These C_{10} lactones are often produced by fermentations which give an oily extract and fail to produce much aphidicolin. Diplodialide B (3) was isolated from the oily residues of a group of such fermentations. It was identified by its NMR spectra (Table 1). It has previously been described [3] as an oil, but in this work it was recrystallized as its 3,5-dinitrobenzoate.

The more polar fractions from the fermentation contained a dicarboxylic acid, Z-3-methylpent-2-en-1,5-dioic acid (4) [6]. The stereochemistry of the double bond of this acid was confirmed by NOE experiments. Irradiation of the methyl group resonance produced an enhancement of 2% at δ 3.64 (= C·CH₂·CO) and 7.8% at δ 5.86 (HC = C), whilst irradiation at the alkene resonance (δ 5.86) produced a 2% enhancement of the methyl group signal (δ 1.98). The formation of this compound may represent a 'dumping' mechanism for un-utilized hydroxymethyl-glutaryl co-enzyme A. 6-Hydroxymethyleugenin [7] was also isolated from these fermentations.

EXPERIMENTAL

General. 1 H NMR were determined at 360 or 500 MHz. 13 C NMR spectra at 125 MHz, for solns in CDCl₃. IR were recorded in Nujol mulls. Silica for chromatography was Merck 9385. Petrol refers to the fr. bp 60–80°.

Isolation of metabolites. Cephalosporium aphidicola (IMI 68689) was grown in shake culture (100 ml per 250 ml conical flask) on a medium as described previously [8] for 12 days. The broth (5 l) was extracted with EtOAc and the metabolites sepd by chromatography on silica gel. Elution with EtOAc-petrol (1:9) gave ergosterol (73 mg) identified by its IR, UV and ¹H NMR spectra. Elution with EtOAc-petrol (1:4) gave 6-hydroxymethyleugenin [7] identified by its IR and ¹H NMR spectra. Elution with EtOAc-petrol (7:3) gave cephalosporolide G (68 mg), (1), mp 165-166°. (Found: C, 56.1; H, 7.4. $C_{10}H_{16}O_5$ requires C, 55.6; H. 7.5%), IR ν_{max} cm⁻¹: 3300, 1725, 1703, ¹H and ¹³C NMR: in Table 1. Further

elution with EtOAC-petrol (4:1) gave Z-3-methylpent-2-en-1,5-dioic acid (4, 166 mg), mp 146–149° (lit. [6] 147–149°). (Found: C, 49.9; H, 5.3, calcd for $C_8H_8O_4$: C, 50.0; H, 5.6%). IR ν_{max} cm⁻¹: 3300, 1714, 1685, 1642. $\delta_{\rm H}2.01$ (3H, s), 3.62 (2H, s), 5.89 (1H, s); $\delta_{\rm C}$ 26.4 (Me), 39.6 (CH₂), 120.6 (CH=), 153.6 (C=C), 169.9, 174.5 (both CO₂H).

Rechromatography of the combined oily frs from several fermentations on silica gel and elution with EtOAc-petrol (1:3) gave diplodialide B (3) as an oil. MS m/z 184 [M]⁺, IR $\nu_{\rm max}$ cm⁻¹: 3500, 1720, 1260, 1160, 968. Identified by its ¹H and ¹³C NMR spectra (Table 1). The 3,5-dinitrobenzoate, prepd with 3,5-dinitrobenzoyl chloride in pyridine, had mp 127–128°. (Found: C, 54.1; H, 4.9l; N, 7.6. $C_{17}H_{18}N_2O_8$ requires C, 54.0; H, 4.8; N, 7.4%), IR $\nu_{\rm max}$ cm⁻¹: 3090, 1735, 1725, 1630, 1600.

Acknowledgement—We thank CNPq (Brazil) for grant number 202268/91-4 to Mrs J. A. Takahashi and the British Council for a grant to A. Farooq.

REFERENCES

- Ackland, M. J., Hanson, J. R., Hitchcock, P. B., Mabelis, R. P. and Ratcliffe, A. H. (1984) J. Chem. Soc. Perkins Trans. I 2755.
- Ackland, M. J., Hanson, J. R., Hitchcock, P. B. and Ratcliffe, A. H. (1985) J. Chem. Soc. Perkin Trans. I 843.
- Wada, K. and Ishida, T. (1979) J. Chem. Soc. Perkin Trans. I 1154.
- 4. Nukina, M., Ikeda, M. and Sassa, T. (1980) Agric. Biol. Chem. 44, 2761.
- 5. Gohrt, A., Zeeck, A., Hutter, K., Kirsch, R., Kluge, H. and Thiericke, R. (1992) J. Antibiotics 45, 66.
- 6. Payne, G. B. (1968) J. Org. Chem. 33, 1284.
- 7. Hanson, J. R., Hitchcock, P. B., Oebels, D. and Yeoh, B. L. (1987) J. Chem. Research (S) 8, (M) 0239.
- 8. Ackland, M. J., Hanson, J. R. and Ratcliffe, A. H. (1984) J. Chem. Soc. Perkin Trans. I 2751.