

DITERPENOIDS FROM EUPHORBIA MICRACTINA

JIAN-GONG SHI* and ZHONG-JIAN JIA†

Institute of Organic Chemistry, State Key Laboratory of Applied Organic Chemistry at Lanzhou University, Lanzhou 730 000, P. R. China

(Received in revised form 1 July 1994)

Key Word Index—Euphorbia micractina; Euphorbiaceae; diterpenoids; euphoractine C-E.

Abstract—Three new diterpenoids, euphoractine C-E, were isolated from *Euphorbia micractina*. Their structures were established on the basis of spectroscopic methods including 2D NMR techniques.

INTRODUCTION

In a preliminary publication, we reported on the isolation and structural elucidation of two new diterpene esters [euphoractine A (1) and B (2)] with a novel tetracyclic diterpene skeleton from the acetone extract of Euphorbia micractina [1]. The relative stereochemistry of euphoractine A was confirmed as 1 by X-ray analysis, however, the structure of euphoractine B was wrongly assigned, the reported spectral data of euphoractine B [1] revealed that 2 is the correct structure. ‡We now wish to report the structural determination of three further diterpene esters, euphoractine C (3), D (4) and E (5), from the same source.

RESULTS AND DISCUSSION

Euphoractine C (3) was obtained as prisms (EtOAc). It was assigned the molecular formula $C_{27}H_{36}O_6$ on the basis of elemental analysis and HR mass spectrometry. The IR spectrum of 3 exhibited the characteristic absorptions of hydroxyl groups (3489 cm⁻¹), carbonyls (1714 cm⁻¹) and an aromatic ring (1602 and 1499 cm⁻¹). In the EI mass spectrum the base peak at m/z 105 $[C_6H_5CO]^+$ suggested the presence of a benzoyl moiety, which was confirmed by the ¹H and ¹³C NMR spectral data (Tables 1 and 2). In addition, the ¹³C NMR spectrum indicated that the remaining part consisted of 20 carbons corresponding to $Me(\times 5)$, $CH_2(\times 3)$, $CH(\times 7)$ (three CH–O, δ 74.9, 73.6 and 63.7) and five quaternary carbons (an oxygenated, δ 93.8; and a carbonyl, δ 205.2). Thus, 3 is a benzoyl diterpene ester [2, 3].

The ¹H NMR spectrum showed four methyl singlets at δ 1.16, 0.91, 0.78 and 0.37, and one methyl doublet at δ 1.01 (J = 7.5 Hz), two doublets at δ 5.06 (J = 11.5 Hz) and 3.36 (J = 8.7 Hz), and one double doublet at δ 4.57 (J

= 5.5 and 5.5 Hz) which were due to three oxymethines. A comparison of the 1 H and 13 C NMR spectral data with those of euphoractine A (1) suggested a benzoyl moiety at C-15 instead of the C-15 cinnamoyl moiety of 1. The close spatial proximity of the benzoate to Me-19 and H₃-19 caused an unusual high field [3] shift of H-19 (δ 0.37) in the 1 H NMR spectrum of 3.

The ¹H and ¹³C NMR spectral chemical shifts of 3-5 were assigned by 2D NMR techniques (¹H-¹H COSY, ¹³C-¹H COSY and COLOC).

Euphoractine D (4), prisms (EtOAc), showed almost identical IR and EI mass spectral data to those of 3. The 1H NMR spectral data of 4 differ from those of 3 mainly in the chemical shifts and couplings of H-1-H-3 and H-16 (Table 1). In the ^{13}C NMR spectrum, the chemical shifts of C-1 to C-4 and C-16 of 4 were clearly different from those of 3 (Table 2). These facts suggested that 4 is a epimer of 3 at C-2 [4], which was confirmed by a NOE experiment. Irradiation of H-3 gave enhancements of H-4 (6%) and H-16 (9%), and irradiation of H-2 gave a 11% enhancement of H-1 β .

Euphoractine E (5), gum, showed a molecular formula of C₂₉H₃₆O₅ from HR mass spectrometry. Its IR spectrum revealed the characteristic absorptions of hydroxyl (3447 cm⁻¹) and carbonyl (1719 and 1694 cm⁻¹) groups, and an aromatic ring (1579 and 1496 cm⁻¹). The ¹H and ¹³C NMR spectra suggested the presence of a cinnamoyl moiety (Tables 1 and 2). In addition, the ¹³C NMR and DEPT spectra indicated that the remaining moiety consisted of 20 carbons: Me (\times 5), CH₂(\times 3), CH (\times 6) (three CH-O) and six quaternary carbons. A quaternary carbon at δ 21.2 indicated a gem-dimethyl three-membered ring [5, 6]. Two quaternary sp² carbon signals at δ 157.5 and 137.7, and the conjugated carbonyl signal at δ 199.1 indicated a $\Delta^{4,15}$ double bond. In the ¹H NMR spectrum the doublet at δ 5.29 indicated that the cinnamoyl moiety was located at C-12 α of the diterpene moiety, and the doublet at $\delta 4.80$ (1H, J = 6.4 Hz) and the singlet at $\delta 5.20$ (1H) indicated the presence of a hydroxyl group at C-3 and C-5. The relative stereochemistry of 5 was deter-

^{*}Present address: Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730 000, P. R. China.

[†]Author to whom correspondence should be addressed.

[‡]A corrigendum was included in Phytochemistry 33, 1554.

5 R=cinnamoyl

Table 1. ¹H NMR spectral data of euphoractine C-E (3-5, 400.13 Hz, CDCl₃, TMS)

Н	3	4	5
1α	2.63 dd (15.2, 11.3)	2.75 dd (14.5, 7.5)	2.64 m
1β	2.10 dd (15.2, 4.5)	1.65 dd (14.5, 10.7)	2.32 m
2	2.48 m	2.40 m	2.35 m
3	4.57 dd (5.5, 5.5)	4.20 dd (6.6, 2.4)	4.80 d (6.4)
4	2.05 dd (11.5, 5.5)	2.15 dd (11.5, 6.6)	
5	5.06 d (11.5)	5.02 d (11.5)	5.20 brs
7	2.20 m	2.20 m	1.93 m
7′	1.18 m	1.18 m	1.70 m
8	1.43 m	1.43 m	1.56 m
8′	1.43 m	1.43 m	1.51 m
9	1.15 m	1.15 m	0.83 m
11	3.36 d (8.7)	3.36 d (8.7)	0.76 m
12	2.50 dd (12.0, 8.7)	2.50 dd (11.9, 8.7)	5.29 d (9.1)
16	1.01 d (7.5)	1.03 d (6.7)	1.08 d (7.1)
17	0.78 s	0.78 s	0.83 s
18	0.91 s	0.93 s	1.14 s
19	0.37 s	0.36 s	1.04 s
20	1.16 s	1.16 s	1.40 s
acid moie	ety		
2"/6"	8.10 dd (7.2, 1.1)	8.12 dd (7.2, 1.0)	7.50 m
3"/5"	7.46 ddd (7.2, 7.2, 0.4)	7.45 ddd (7.2, 7.2, 0.4)	7.35 m
4′′	7.58 m	7.58 m	7.35 m
7''		_	7.59 d (16.0)
8''		_	6.32 d (16.0)

Coupling constants (J in Hz) are given in parentheses.

Table 2. ¹³C NMR spectral data of euphoractine C-E (3-5, 100.62 Hz, CDCl₃, TMS)

С	3	4	5	Multiplicity
1	38.8	39.6	35.4	t
2	35.3	41.8	35.8	d
3	74.9	79.6	78.3	d
4	55.6 d	53.9 d	157.5 s	
5	63.7	63.8	65.0	d
6	47.4	47.6	47.6	s
7	32.7	32.6	32.7	t
8	22.0	22.0	19.9	t
9	39.3	39.3	25.0	d
10	41.5	41.6	21.2	s
11	73.6	73.6	29.5	d
12	48.8	48.7	71.0	d
13	56.7	56.6	60.7	S
14	205.2	205.7	199.1	S
15	93.8	93.4	137.7	S
16	16.1	19.5	15.9	q
17	18.0	18.1	18.1	q
18	27.9	27.9	28.4	q
19	14.2	14.2	13.6	q
20	13.7	13.6	11.9	q
Acid moiety				
1"	130.3	130.2	134.2	S
2"	129.9	130.1	128.8	d
3"	128.7	128.6	128.1	d
4"	134.6	133.5	130.5	d
5"	128.7	128.6	128.1	d
6"	129.9	130.1	128.8	d
7"	166.5 s	166.6 s	145.8 d	
8"			118.9	d
9"	-		166.0	s

mined by a difference NOE experiment. Irradiation of H-3 gave a 19% enhancement of H-2, on irradiation of H-5 a 7% enhancement of H-7' was observed, and irradiation of H-12 gave a 15% enhancement of H_3 -19. Consequently, the structure of euphoractine E was assigned as 5.

EXPERIMENTAL

General. Mps: uncorr.; IR: KBr; ¹H NMR (400.13 MHz) and ¹³C NMR (100.62 MHz). TMS as int. standard and CDCl₃ as solvent; HRMS and EIMS: 70 eV. All solvents were re-distilled prior to use.

Plant material. Euphorbia micractina was collected in Maqu Gansu Province of China in September 1990 and identified by Associate Prof. Zhi-Li Zhao. A voucher specimen (no. 9043) was deposited at the Herbarium in the Department of Pharmacy, Lanzhou Medical College.

Extraction and isolation. Air-dried powdered whole plants of E. micractina (10 kg) were extracted with

Me₂CO at room temp., and the extract concd to obtain a residue (345 g). The residue (250 g) was chromatographed on a silica gel column and eluted with a gradient of petrol (60–90°) and Me₂CO. The fr. petrol–Me₂CO (3:1) was repeatedly chromatographed on silica gel columns eluting with cyclohexane–EtOAc (3:1) to yield the following compounds in order of elution: euphoractine C (20 mg), D (17 mg), A (40 mg), E (14 mg) and B (24 mg).

Euphoractine C (3). Mp 214–216°, $[\alpha]_{2}^{24.5}$ +57.5° (CHCl₃; c0.50). IR v_{max} cm⁻¹: 3489, 3064, 1714, 1637, 1602, 1499, 1453, 1382, 1288, 1148, 1118, 1066, 1031, 994, 714; HRMS m/z 456.5846, $C_{27}H_{36}O_{6}$ requires: 456.5851. Analyt.: Found: C, 70.89; H, 7.98. $C_{27}H_{36}O_{6}$ requires: C, 70.96; H, 7.95. EIMS m/z (rel. int.): 456 [M]⁺ (4), 438 [M - H₂O]⁺ (10), 423 (7), 334 (19), 319 (37), 245 (10), 105 (100), 77 (50), 69 (27), 55 (34); ¹H and ¹³C NMR: Tables 1 and 2.

Euphoractine D (4). Mp 212–214°, $[\alpha]_{\rm D}^{24.5}$ +43.6 (CHCl₃; c 1.30). IR $v_{\rm max}$ cm⁻¹: 3487, 3065, 2949, 2867, 1716, 1639, 1602, 1499, 1455, 1382, 1286, 1152, 1116, 1037, 995, 714; HRMS m/z 456.5839, $C_{27}H_{36}O_6$ requires: 456.5851. EIMS m/z (rel. int.): 456 [M] + (5), 439 (12), 401 (14), 383 (18), 334 (19), 319 (27), 105 (100), 77 (48), 69 (37) 55 (42); ¹H and ¹³C NMR: Tables 1 and 2.

Euphoractine E (5). $[\alpha]_0^{24.5} + 17.3^{\circ}$ (CHCl₃; c 1.22). IR v_{max} cm⁻¹: 3447, 3061, 2927, 2870, 1719, 1694, 1635, 1579, 1496, 1452, 1381, 1280, 1171, 1098, 978, 960, 768, 712; HRMS m/z 464.6056, $C_{29}H_{36}O_5$ requires: 464.6063. EIMS m/z (rel. int.): 464 [M]⁺ (20), 446 [M – H₂O]⁺ (14), 316 (8), 298 (64), 283 (33), 270 (18), 225 (18), 227 (12), 191 (42), 163 (61), 131 (100), 103 (100), 77 (48), 69 (33), 55 (38); ¹H and ¹³C NMR: Tables 1 and 2.

Acknowledgements—This work was supported by the National Natural Science Foundation of China and the Doctoral Programme from the State Education Commission of China.

REFERENCES

- 1. Shi, J. G., Jia, Z. J. and Yang, L. (1993) *Phytochemistry* 32, 208
- Seip, E. H. and Hecker, E. (1983) Phytochemistry 22, 1791.
- 3. Adolf, W., Hecker, E. and Becker, H. (1984) *Planta Med*. 259.
- 4. Yamamura, S., Shizuri, Y., Kosemura, S., Ohtsuka, J., Tayama, T., Ohba, S., Ito, M., Saito, Y. and Terada, Y. (1989) *Phytochemistry* 28, 3421.
- Khan, A. Q., Rasheed, T. and Malik, A. (1988) Heterocycles 27, 2851.
- Itokawa, H., Ichihara, Y., Yahagi, M., Watanabe, K. and Takeya, K. (1990) Phytochemistry 29, 2025.