

Phytochemistry, Vol. 38, No. 6, pp. 1501–1504, 1995 Copyright (†) 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved (0031–9422-95 59:50 + 0.00

AN OLIGOSTILBENE FROM VITIS ROOTS*

SIEGFRIED KORHAMMER, † FABIANO RENIERO† and FULVIO MATTIVITS

†Commission of the European Communities, Joint Research Centre, Environment Institute, I-21020, Ispra, Italy; ‡Istituto Agrario, Dipartimento Laboratorio Analisi e Ricerche, I-38010, S. Michele all'Adige, Italy

(Received in revised form 19 September 1994)

*IN MEMORY OF HILMAR SPIESECKE WHO DIED IN JULY 1993

Key Word Index—Vitis; Vitaceae; vine roots; oligostilbenes; r-2-viniferin; resveratrol; isochronous double bond.

Abstract—Isolation and structural identification of a new tetramer of resveratrol (3,5,4'-trihydroxystilbene), r-2-viniferin, from the roots of species and hybrids of the genus *Vitis* is reported.

INTRODUCTION

This work is part of a systematic investigation of stilbenoids present in vine roots, for a subsequent assessment of their biochemical role. In a previous paper [1] we reported on the identification of three oligostilbenes from the vine roots. Two of the compounds, ε-viniferin and gnetin H, are already known in the literature. The first one is a dimer, recognized as a 'stress metabolite' in the leaves of *Vitis* plants, where it was first isolated. The second is a trimer, previously found in the wood of *Welwitschia mirabilis* (Gnetatae). The third compound is a newly identified tetrastilbene present in large quantities as the main free phenolic in the roots of *Vitis*, and it was named r-viniferin (1). The novel compound we present in this paper is also a tetramer, named r-2-viniferin (2) and it is related to 1.

RESULTS AND DISCUSSION

The mass spectrum showed an [M] $^+$ ion at m/z 906, which together with the data from 13 C and 1 H NMR spectra (Table 1), allowed us to deduce the molecular formula $C_{56}H_{42}O_{12}$. The 1 H NMR spectra showed signals integrating for 10 hydrogens between δ 7.7 and 8.7. By acetylation a deca-acetate was obtained, whose IR and 1 H NMR spectra did not show signals caused by hydroxyls, thus confirming the presence of 10 phenolic hydroxyl groups in the original compound. The UV spectra suggested the presence of a *trans* stilbene double bond with a bathochromic shift of 6.6 nm with respect to the band I of 1, in agreement with the presence of an extra free p-hydroxyl instead of an ether group [2]. Measurements performed in sodium ethoxide–ethanol showed a

very short shift and a lowering of band I that did not provide additional information on the position of the hydroxyl groups.

Two carbon atoms (δ 122.7 and 131.0) were connected to a signal in the 1 H spectrum at δ 6.4, integrating for two protons. This proton resonance showed neither a 3J nor a long-range coupling. After addition of benzene- d_6 to the solvent acetone- d_6 (acetone-benzene ca 1:1), the isochronous (accidentally overlapping) signals split into an AB spin system of the expected double bond, δ 6.61 (δ _C131.1) and δ = 6.68 (δ _C122.8), with 3J = 19 Hz, confirming a trans configuration. The presence of two 2,3-diaryl-2,3-dihydrobenzofuran rings, three 1,4-disubstituted benzene rings, one 1,3,5-trisubstituted benzene ring, three 1,2,3,5-tetrasubstituted benzene rings and one 1,3,4-trisubstituted benzene ring were deduced on the basis of the data reported in Table 1.

A seven-carbon ring was also present, with two α aliphatic hydrogens, H-7" and H-8", whose 3J value (3.5 Hz) and homonuclear dipolar couplings were in agreement with a Z configuration, similar to that proposed for balanocarpol (Dipterocarpaceae) [3]. The same ring in E configuration was also found in other molecules like hopeaphenol (Dipterocarpaceae) [4, 5], and ampelopsin A (Vitaceae) [6]. The results of the 1D- and 2D-NOE-measurements indicate the E configuration of H-7, H-8 and H-7", H-8". The different 3J coupling constants, 5.3 and 11.5 Hz, respectively, could be explained with the widening of the angle between H-7" and H-8" owing to the seven-membered ring and, therefore, an increasing of the coupling constant. From the above evidence, structure2 is proposed for the new oligostilbene.

The bond between C-3' and C-8" can be formally regarded as a linkage of a balanocarpol with an ε -viniferin unit. The involvement of the C-3' atom in the formation of a C-C bond in resveratol oligomers has, as far as we know, never been reported to date except for 1. This

1

2

peculiarity let us to hypothesize 1 to be the precursor for the biosynthesis of 2 via acid-catalysed opening of a dihydrobenzofuran ring. This hypothesis is supported by the experimental evidence that 2 can be easily obtained in acidic media (HCl 0.1% in MeOH at room temperature) from 1.

EXPERIMENTAL

The isolation of 2 from grapevine roots was carried out on the hybrid 44-53, but it was also found in all the other *Vitis* species and hybrids tested [1]. Phenolic compounds were cold-extracted from 100 g of frozen roots, by MeOH

Table 1. ¹H and ¹³C NMR spectral data of r-2-viniferin

C,H	¹³ C	¹H	J(Hz)	C-H l.r.*	Н-Н І.г.*	NOE
1	133.9			6.84,4.41		
2,6	127.9	7.20	8.7	5.37	5.37	4.41,5.37
3,5	116.2	6.84	8.7		5.37	,
4	157.9a					
7	93.9	5.37	5.3	4.41,7.20	7.20,6.84	7.20,6.17
8	57.1	4.41	5.3	5.37,6.17	6.17,6.27	6.17,6.40,7.20
9	147.2			5.37,4.41		
10,14	106.9	6.17	2.2	4.41,6.23	4.41	4.41,5.37,6.40
11,13	159.8					
12	102.2	6.23	2.2	6.17	6.17	
1′	129.0			6.70,6.40		
2′	132.5	6.10	2.3	6.88,6.40		6.40
3′	132.8			6.70		
4′	155.2			6.88		
5′	115.5	6.70	8.4			
6′	123.7	6.88	8.4,2.3	6.40	6.10	6.40
7′	122.7	6.40			6.53	§ 4.41,6.10,6.17
3′	131.0	6.40			6.53	6.53,6.88
9′	136.6			6.40,4.41		•
10′	119.0			4.41,6.53		
11'	162.5			4.41		
12'	96.6	6.27	2.3	6.53	4.41	
13′	158.2a					
14′	104.5	6.53	2.3	6.40		6.40
l"	135.4			6.67,5.40		
2′′,6′′	128.8	7.04	8.6	5.40	5.40	5.49,5.40
3",5"	115.5	6.67	8.6		5.40	
4′′	156.0			7.04,6.67		
7′′	40.7	5.40	3.5	7.04	6.67,7.04	7.04
3′′	41.3	5.49	3.5	5.40,6.06	4.25	5.40,6.06,7.04
)"	141.2					
10''	120.4					
11"	158.5ª					
12"	96.1	6.10	2.1	6.06		
13"	158.8a					
l 4 "	110.1	6.06	2.1	6.10		5.49
l'''	131.1			6.78,5.89,4.25		
2''',6'''	130.1	7.15	8.7	5.89	5.89	4.25,5.89
3′′′,5′′′	116.0	6.78	8.7		5.89	
1′′′	159.6ª					
7'''	88.5	5.89	11.5	7.15,4.25	6.27,6.78,7.15	6.27,7.15
3′′′	49.5	4.25	11.5	5.89,6.27	6.03,5.49,6.27	7.15
)'''	142.3			5.89,4.25		
10′′′	120.2			4.25,6.03,5.40,6.27		
11'''	160.3ª					
12′′′	101.0	6.03	2.0	6.27	4.25	
13'''	157.0			6.03,6.27		
14'''	105.0	6.27	2.0	6.03	4.25,5.89	5.89,7.15

^aExchangeable

(21), in N_2 and in the dark. The methanol extract was evapd to low volume (100 ml) on a rotating evaporator (35°), diluted 10 times with H_2O , and loaded (10 runs) on a column (30 × 3 cm) of styrene-divinylbenzene resin (Amberlite XAD-2, particles size mix. 0.1–0.25 mm), slurry-packed in MeOH and purified through the sequence of

solvents (250 ml of each) MeOH, CH_2Cl_2 , Me_2CO , MeOH, and finally H_2O (700 ml). The extract loaded on top of the column was washed with H_2O (700 ml) as well as with pentane- CH_2Cl_2 (2:1) mixt. (850 ml). Oligostilbenes were finally eluted with EtOAc (500 ml). The isolation of the studied compound was performed by

^{*}l.r. = Long range.

semiprep. HPLC using a LiChrospher 100 RP-18 column (10 μ m particle size, E.Merck, column dimensions 25 \times 1 cm), eluting with a MeCN-H₂O mixt. (linear gradient from 30% MeCN to 50% MeCN in 40 min, with a flow rate of 2.0 ml min ⁻¹). ¹H NMR spectra were taken at 400 and 500 MHz, and ¹³C NMR spectra at 100 and 125 MHz, in Me₂CO- d_6 . The resonances of the methyl group of Me₂CO- d_6 were used as references for δ values: $\delta_{\rm H}=2.04; \delta_{\rm C}=29.8$ FAB-MS were obtained in negative mode, using a glycerol matrix. UV spectra were recorded both in absolute EtOH and with addition of Na ethylate [2]. IR spectra were recorded in KBr. Acetylation was performed under the conditions described in ref. [7].

r-2-*Viniferin* (2). Amorphous solid, yellowish. Mp: > 300°. ¹H and ¹³C NMR: Table 1. $[\alpha]_D^{25} + 132.9$ (MeOH; *c* 1.1). Found: C, 73.84, H, 4.60, C₅₆H₄₂O₁₂ requires C, 74.17, H, 4.63%. IR *v* cm⁻¹: 3385, 1696, 1601, 1513, 1486, 1444, 1366, 1341, 1232, 1173, 1145, 1129, 1005, 833. UV λ_{max}^{EIOH} nm (log ε): 329.0 (4.32), 285.4 (4.30), 224.0sh (4.87). UV $\lambda_{max}^{EIOH,NaOEt}$ nm (log ε): 329.4 (4.27), 294.0 (4.36), 243.4 (4.77).

Acknowledgement—S. Korhammer thanks the Commission of the European Communities for a grant.

REFERENCES

- 1. Mattivi, F. and Reniero, F. (1992) Bull. Liaison Groupe Polyphenols 16, 116.
- Hillis, W. E. and Ishikura, N. (1968) J. Chromatog. 32, 323
- 3. Diyasena, M.N.C., Sotheeswaran, S., Surendrakumar, S., Balasubramanian, S., Bokel, M. and Kraus, W. (1985) J. Chem. Soc. Perkin Trans I 1807.
- Coggon, P., Janes, N. F., King, F. E., King, T. J., Molyneux, R. J., Morgan, J. W. W. and Sellars, K (1965) J. Chem. Soc. 406.
- 5. Madhav, R., Seshadri, T. R. and Subramanian, G. B. V. (1967) *Phytochemistry* **6**, 1155.
- Oshima, Y., Ueno, Y. and Hikino, H. (1990) Tetrahedron 46, 5121.
- 7. Koenig, G., Rimpler, H. and Hunkler, D. (1987) *Phytochemistry* 26, 423.