

Phytochemistry, Vol. 38, No. 6, pp. 1519–1520, 1995 Elsevier Science Ltd Printed in Great Britain 0031–9422/95 \$9.50 + 0.00

A PERSICOGENIN 3'-GLUCOSIDE FROM THE STEM BARK OF PRUNUS AMYGDALUS

M. S. M. RAWAT, G. PANT, RAKHI KUKRETI, J. SAKAKIBARA* and A. NAGATSU*

Department of Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, U.P. India, *Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-Dori, Mizuho-Ku, Nagoya, Japan

(Received in revised form 9 September 1994)

Key Word Index—Prunus amygdalus; Rosaceae; stem bark; persicogenin 3'-glucoside; NOE, 2D HOMCOR spectra.

Abstract—A new flavanone glycoside, persicogenin 3'-glucoside (5,3'-dihydroxy-7,4'-dimethyoxyflavanone 3'-glucoside) has been characterized from the stem bark of *Prunus amygdalus*.

INTRODUCTION

Prunus species have been reported as antipyretic, refrigerant, useful against thirst, leprosy and leucoderma [1, 2]. Prunus amygdalus nuts have shown antiinflammatory activity [3]. Kaempferol, quercetin-3-O-diglucoside and 8-methoxykaempferol-3-sophoroside from pollen [4] and flavones from the seed coat [5] have been reported. Here, we report on a novel persicogenin glycoside from the ethanolic extract of the stem bark of P. amygdalus.

RESULTS AND DISCUSSION

The ethanolic extract of the stem bark of P. amygdalus on column chromatography gave 1 which was found to have M_r , of 478 inferred by the presence of a peak at m/z $501 [M + Na]^+$ and $339 [M + Na - 162]^+$ in the + ve ion FAB-mass spectrum recorded in thioglycerol matrix with NaCl. UV absorption of 1 showed λ_{max}^{MeOH} at 287 and 333 nm which shifted bathochromically on adding AlCl₃ indicating a free hydroxyl at C-5 [6]. Compound 1 was insoluble in aqueous Na₂CO₃ and gave a purple colour with conc HNO₃ suggesting a methoxyl group at C-7 [7]. Acidic hydrolysis of 1 gave an aglycone 1a, mass spectrum m/z 316. The ¹H NMR spectrum of 1a revealed a phenolic, a chelated phenolic, two methoxyls and an ABX system corresponding to three aliphatic protons of C-2 and C-3. The two protons (C-6 and C-8 H) in the ring A showed a meta spin spin splitting. The signal pattern of protons in the ring B indicated an ABC pattern. A series of NOE difference spectra recorded on the diacetate (1aAc) confirmed the assignment of substituents on the flavanone skeleton. The sugar in the aqueous hydrolysate of 1 was found to be glucose.

In the ¹H NMR spectrum of 1, the protons of sugar moiety resonated at a very low field around 5 ppm,

probably owing to the anisotropic effect of the C ring. The position of the β -linked glucose ${}^{1}H^{-1}H$ HOMCOR confirmed it at $\delta 4.95$ (J=9.0 Hz) at 3' of the flavanone was inferred by NOE observed between 2' of the genin and anomeric proton in 1. The ${}^{13}C$ signals in 1 and 1a were assigned by comparison [8]. Thus the structure of 1 is persicogenin 3'-glucoside (5,3'-dihydroxy-7,4'-dimethoxyflavanone 3'-glucoside).

EXPERIMENTAL

Mps: uncorr. FAB-MS was measured by JEOL AX-505 mass spectrometer. 1H NMR recorded at 270 and 500 MHz and ^{13}C NMR at 68 MHz. Chemical shifts on a δ (ppm) scale with TMS as an int. standard. GLC of the trimethylsilyl derivative (prepared as described [9]) was carried out on a Shimadzu-GC-8A and recorded by Shimadzu Chromatopac C-R6A. The conditions were as follows: column 3% OV-101 Chromosorb W; column temp. $150-220^{\circ}$ 3 min⁻¹, injection temperature, 250° , carrier gas N_2 , 1 g cm^{-2} .

Extraction and isolation of flavonoid 1. The bark (1 kg) of Prunus amygdalus collected from the Horticulture Research Centre, Srinagar (Garhwal) was extracted with hot EtOH (21×3). The ethanolic extract was evapd to give a residue (120 g) which was partitioned between n-BuOH and H_2O (11 each). The BuOH soluble fraction was concd in vacuo to afford a residue (50 g) which on CC over silica gel (CHCl₃-MeOH- H_2O , 9:1:0.1) gave 1 (60 mg).

Compound 1. Needles from MeOH, mp 204–205°, $[\alpha]_D^{24}$ – 37.24° (DMSO; c 0.114), gave a red colour with Mg/HCl. The UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 287, 333; MeOH + AlCl₃ 309, 365 (no change on adding HCl). ¹H NMR (DMSO- d_6): δ 4.95 (1H, d, J = 9 Hz). ¹³C NMR (DMSO- d_6): δ 196.7 (C-4), 167.4 (C-5), 163.1 (C-3′), 162.7 (C-9), 149.1

(C-4'), 146.2 (C-7), 130.6 (C-6'), 120.5 (C-1'), 113.7 (C-2'), 112.1 (C-5'), 102.5 (C-10), 99.7 (C-1"), 95.3 (C-6), 93.7 (C-8), 79.0 (C-2), 76.9 (C-5"), 76.9 (C-3"), 73.0 (C-2"), 69.7 (C-4"), 60.6 (C-6"), 55.8 (OMe-4'), 55.6 (OMe-7) and 41.9 (C-3).

Acidic hydrolysis of compound 1. Compound 1 (25 mg) in 1 M HCl-50% EtOH was refluxed for 2 hr and the reaction mixture was diluted. The ppt. was collected by filtration and purified by recrystallization from MeOH to afford needles, 1a, mp 162–164°. EI-MS (m/z): 316 [M]⁺ (100%), 315 [M – H]⁺, 193, 166, 150, 137, 81, 69. ¹H NMR (CDCl₃): δ 12.0 (1H, s, OH-5), 7.25 (1H, s, H-2'), 7.05 (1H, d, H-6'), 6.92 (1H, m, H-5'), 6.08 (1H, d, H-6), 6.05 (1H, d, H-8), 5.77 (1H, s, OH-3'), 5.33 (1H, dd, H-2), 3.95 and 3.85 (3H each, s, $2 \times OMe$), 3.04 (1H, dd, H-3 β), 2.81 $(1H, d, H-3\alpha)$. ¹³C NMR (CDCl₃): δ 196.0 (C-4), 168.0 (C-5), 164.1 (C-3'), 162.8 (C-9), 147.0 (C-4'), 145.9 (C-7), 131.5 (C-6'), 118.2 (C-1'), 112.7 (C-2'), 110.7 (C-5'), 103.1 (C-10), 95.1 (C-6), 94.2 (C-8), 79.0 (C-2), 56.1 (OMe-4'), 55.7 (OMe-7), 43.2 (C-3). Diacetate (1aAc), mp 129–131°, ¹H NMR (CDCl₃): δ 7.25 (1H, H-6'), 7.20 (1H, s, H-2'), 7.0 (1H, d, H-5), 6.42 (1H, d, H-6), 6.28 (1H, d, 8H), 5.4 (1H, dd, H-2), 3.82 (3H, s, OMe-4'), 3.80 (3H, s, OMe-7), 3.0 (1H, dd, H-3 β), 2.72 (1H, dd, H-3 α), 2.40 (3H, s, Ac-5), 2.35 (3H, s, Ac-3').

Acknowledgements—The authors are grateful to Prof. R. D. Gaur (Botany Department, HNB Garhwal Univer-

sity) for the identification of plant material. Thanks are due to UGC, New Delhi for providing financial assistance.

REFERENCES

- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants, 2040. CSIR, New Delhi
- Kirtikar, K. R. and Basu, B. D. (1984) Indian Medicinal Plants Vol. II, 959. M/S Periodical Experts, New Delhi.
- 3. Kubo, M., Matsuda, H., Shimoto, H. and Namba, K. (1988) Shoyakugaku Zasshi 44, 105.
- Ferreres, F., Tomas-Barberan, F. A., Tomas Horente, F., Nieto, J. L., Rumbero, A. and Olias, J. M. (1989) Phytochemistry 28, 1901.
- Joshi, B. C., Chauhan, A. K., Dobhal, M. P. and Agrawal, V. P. (1987) Herba Polonica 33, 163.
- Mabry, T. J., Markham, K. R., and Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer, New York.
- Rao, K. V. and Seshadri, T. R. (1949) Proc. Indian Acad. Sci. A 30.
- 8. Markham, K. R., Ternai, B., Stanley, R., Geiger, H. and Mabry, T. J. (1978) *Tetrahedron* 34, 1389.
- 9. Markham, K. R. (1982) Techniques of Flavonoid Identification. Academic Press, London.