

SESQUITERPENE DIMERS FROM CHLORANTHUS JAPONICUS*

JUN KAWABATA,† ERI FUKUSHI and JUNYA MIZUTANI‡

Department of Bioscience and Chemistry; ‡Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060, Japan

(Received 5 August 1994)

Key Word Index—Chloranthus japonicus; Chloranthaceae; roots; sesquiterpene dimer; macrocyclic ester; lindenane skeleton; 2D NMR.

Abstract—Five novel dimeric sesquiterpenes, shizukaols E-I, consisting of two lindenane units were isolated from the roots of *Chloranthus japonicus*. Their structures were elucidated principally by 1D- and 2D-NMR methods. Three of them have a unique pendent macrocyclic ester ring found previously in shizukaol B.

INTRODUCTION

In the course of our continuing search for sesquiterpenes in plants of the Chloranthaceae, a series of unusual sesquiterpene lactones having a lindenane skeleton have been isolated from *Chloranthus japonicus* Sieb. [2–4] and *C. serratus* Roem. et Schult. [4, 5]. Lindenane sesquiterpenes are characteristic constituents of the chloranthaceous plants [6]. Recently, a series of dimeric lindenanes, shizukaols A (1), B (2), C (3) and D (4) [7, 8] and cycloshizukaol A (5) [1], were isolated from *Chloranthus* spp. Further investigation of the chemical constituents of *C. japonicus* yielded five novel lindenane dimers named shizukaols E (6), F (7), G (8), H (9) and I (10).

RESULTS AND DISCUSSION

Shizukaol E (6) showed a molecular ion at m/z 562 (FD-MS) and the molecular formula was determined to be $C_{33}H_{38}O_8$ with the aid of the ¹H and ¹³C NMR data. The presence of a significant fragment peak at m/z 274 in the FD-mass spectrum indicated 6 to be a lindenane dimer as found in the previously known shizukaols [7, 8]. The ¹H NMR spectrum of 6 (Table 1) was quite similar to that of shizukaol D (4) [8] except that the 13'-hydroxymethyl signal disappeared and an allyl methyl (δ_H 1.80) appeared in place of it. The ¹³C NMR (Table 2) showed a methyl signal in the high field region (δ 8.6), characteristic of 13-methyl in the series of lindenane sesquiterpene lactones [2, 5–8]. The difference in molecular formula of the two compounds is one oxygen. Hence, 6 was concluded to be 13'-deoxyshizukaol D.

Shizukaol F (7) had a molecular formula of C₄₀H₄₄O₁₃ (FD-MS: $[M]^+$ at m/z 732) and should, therefore, be an isomer of shizukaol B (2) [8]. The ¹H NMR spectrum of 7 was similar to that of 2 except that the olefinic proton in the hydroxytiglate residue of 2 (δ 6.62, br dd, J = 6.9 and 4.7 Hz) was shifted upfield and sharpened in 7 (δ 5.98, brs). Furthermore, the non-equivalent methylene protons included in the hydroxytiglyl moiety in 2 coupled to the olefinic proton were replaced with an isolated methylene $(\delta 4.38 \text{ and } 5.06, \text{ each } br d, J = 17.1 \text{ Hz}) \text{ in } 7. \text{ These facts}$ indicated that 7 had a γ-hydroxysenecioic acid moiety $(-OCH_2-C(Me)=CH-CO-)$ in place of the γ -hydroxytiglic acid moiety $(-OCH_2-C(Me) = CH-CO-)$ in 2. The stereochemistry of the double bond was shown to be the E-configuration by the presence of an NOE between the oxymethylene (H-d) and olefinic (H-b) protons. The assignments of two pairs of methylene protons in the succinic ester residue were determined by the results of the heteronuclear NOE experiments [9]. The irradiation of the outer pair (δ 2.62, ddd, J = 16.2, 6.4, and 4.5 Hz, and 2.94, ddd, J = 16.2, 9.7 and 4.5 Hz) caused the enhancement of a carbonyl carbon at δ 171.7 (C-f) which was unambiguously assigned through an HMBC cross peak with the methylene protons (H-d) of the hydroxysenecioic residue. On the other hand, the irradiation of the inner pair (δ 2.78, ddd, J = 17.4, 9.7 and 4.5 Hz, and 2.86, ddd, J = 17.4, 6.4 and 4.5 Hz) enhanced the intensity of the other carbonyl (C-i, δ 172.0) which was also assigned by an HMBC correlation with H-13'. The details for the heteronuclear NOE experiments will be discussed elsewhere.

The FD-mass spectrum of shizukaol G (8) showed a molecular ion peak at m/z 748 giving a molecular formula of $C_{40}H_{44}O_{14}$. The ¹H NMR spectrum was quite similar to that of shizukaol B (2) except for the relatively less complex pattern of the side chain methylene region

^{*}Part 10 in the series 'Studies on the Chemical Constituents of Chloranthaceae Plants'. For Part 9, see ref. [1].

[†]Author to whom correspondence should be addressed.

J. KAWABATA et al.

 $(\delta 2.5-3.0)$ compared to that of 2. An oxymethine (H-g, $\delta 4.63$, ddd, J=7.0, 6.8 and 2.6 Hz) and its coupled methylene (H-h, $\delta 2.90$, dd, J=17.7 and 2.6 Hz and 2.98, dd, J=17.7 and 7.0 Hz) indicated the presence of a malic ester moiety in place of the succinic ester in 2. The orientation of the malic residue was again determined by

a heteronuclear NOE (H-h \rightarrow C-i) as well as by an HMBC cross-peak between OH-g (δ 3.84, d, J = 6.8 Hz) and C-f(δ 173.4). The presence of a malic ester residue and its absolute configuration were confirmed as follows. Alkaline hydrolysis of **8** with cesium carbonate followed by methylation and subsequent esterification with an

Table 1. ¹H NMR spectral data of compounds 6-10 (500 MHz, CDCl₃)

	9	7	∞	6	10
,					
-	2.04 ddd (7.4, 5.5, 3.9)	2.08 ddd (8.3, 5.7, 4.3)	2.06 ddd (8.5, 6.8, 3.1)	2.08 ddd (8.4, 5.7, 4.0)	2.08 ddd (8.2, 5.9, 4.2)
2α	0.98 ddd (7.4, 7.1, 3.2)	1.02 ddd (8.3, 8.0, 4.5)	1.02 ddd (8.6, 8.5, 4.7)	103 ddd (91 84 42)	101 444 (8 2 7 4 4 1)
2β	0.27 ddd (3.9, 3.4, 3.2)	0.38 ddd (4.5, 4.3, 3.8)	032 ddd (50 47 31)	034 444 (42 42 40)	0.32 444 (4.7, 4.1.)
٠,-	183 444 (71 55 34)	196 444 (90 67 29)	100 111 (00 00)	0.57 true (4.2, 4.2, 4.0)	0.33 aua (4.2, 4.1, 3.2)
, ,	2.03 uuu (7.1, 5.3, 5.4)	1.00 dad (6.0, 5.7, 3.8)	1.80 dad (8.0, 6.8, 5.0)	1.86 ddd (9.1, 5.7, 4.2)	1.87 ddd (7.4, 5.9, 3.2)
0 (3.8 / br d (3.3)	3.95 br d (3.8)	3.95 br d (2.5)	3.93 br d (3.5)	3.93 br d (4.0)
6	4.05 s	3.95 s	3.89 s	3.97 s	4.00 \$
13	1.80 s	1.93 s	1.87 s	1.85 s	1928
14	1.01 s	1.01 s	1.03 s	101	5761
15α	2.72 dd (16.5, 1.7)	2.82 dd (16.2, 1.6)	2.78 dd (16.3, 1.6)	277 dd (163-15)	282 44 (16.3.1.5)
15β	2.61 ddd (16.5, 5.7, 3.3)	2.57 ddd (16.2. 6.0. 3.8)	2.59 ddd (163.59.25)	2 50 444 (163 60 35)	2.92 un (10.3, 1.3) 2 57 444 (16.3, 6.2, 4.0)
1,	1.41 ddd (8.3, 8.1, 4.2)	1.63 ddd (8.7, 74, 4.0)	160 444 (8 5 76 36)	1 50 444 (8 8 8 0 4 4)	1 62 343 (0 4 7 0 3 0)
2'α	0.76 ddd (83 82 54)	073 444 (8 9 8 7 5 8)	0.73 444 (0.2 0.5 4.0)	0.72 333 (0.0, 0.0, 4.4)	1.03 aua (6.4, 7.6, 3.9)
2'8	083 ddd (54 42 42)	1 31 ddd (5 8 40 3 7)	1 22 444 (4 0 4 7 2 6)	0.73 dada (6.6, 6.6, 5.0)	$0.71 \ ada \ (9.1, 8.4, 5.7)$
· ?~	1 09 dddd (8 2 8 1 4 2 3 2)	1.01 and (5.0, 4.0, 5.1)	1.33 uuu (4.6, 4.1, 3.6)	1.55 ada (5.6, 4.4, 3.7)	1.28 add (5.7, 3.9, 3.6)
ı -	1.57 Jaja (11.1 0.0 6.9.2)	1.40 add (6.3, 1.4, 5.1)	1.39 add (9.3, 7.6, 4.7)	1.38 dad (8.8, 8.0, 3.7)	1.47 ddd (9.1, 7.8, 3.6)
,	1.37 adad (11.1, 5.0, 6.8, 3.2)		ļ	1	ļ
Š.	1.75 ddd (13.4, 11.1, 6.1)	1.96 dd (13.5, 6.4)	1.86 dd (13.6, 6.1)	1.86 m	1.92 dd (13.6, 6.0)
6/α	2.40 ddq (18.0, 6.1, 2.0 (q))	2.67 br dd (19.2, 6.4)	2.60 dd (18.9, 6.1)	2.84 m	2.32 br dd (18.3, 6.0)
θ,9	2.25 dd (18.0, 13.4)	2.78 dd (19.2, 13.5)	2.81 dd (18.9, 13.6)	2.82 m	2.72 dd (18.3, 13.6)
6,	1.82 dd (5.7, 1.7)	1.94 dd (6.0, 1.6)	1.81 dd (5.9, 1.6)	1.80 dd (6.0, 1.5)	1.92 dd (6.2, 1.5)
13′	1.80 br s	4.71 d (12.6)	4.43 d (11.9)	4.55 d (12.4)	4.33 d (13.1)
13′		4.91 dd (12.6, 1.0)	5.14 d (11.9)	5.02 d (12.4)	4404(131)
14′	0.61 s	0.80 s	0.82 s	0.79 s	0.87 s
15′	3.77 dd (11.0, 8.0)	3.51 d (11.8)	3.62 d (11.9)	3.45 d (120)	3814(118)
15′	3.95 dd (11.0, 6.8)	4.79 d (11.8)	4.63 d (11.9)	4.82 d (12.0)	7.01 u (11.0) 4.26 d (11.9)
ОМе	3.79 s	3.76 s	3.69 s	3.75.8	3.76 8
þ	2.09 s	5.98 br q (1.4)	1	6.26 a (1.4)	601 a (10)
ပ	ļ		6.73 tq (5.8 (t), 1.0 (q))		(6:1) \$ -2:1
q	1	4.38 br d (17.1)	4.91 dd (14.9, 5.8)	4.43 br d (17.2)	4.18.8
p		5.06 br d (17.1)	5.17 dd (14.9, 5.8)	5.26 br d (17.2)	
e e	1	2.14 s	1.93 d (1.0)	2.17 s	2.11 d (1.0)
50	1	2.62 ddd (16.2, 6.4, 4.5)	4.63 ddd (7.0, 6.8, 2.6)	4.54 ddd (9.4, 4.4, 4.0)	(21.7) =
500	1	2.94 ddd (16.2, 9.7, 4.5)			
4	1	2.78 ddd (17.4, 9.7, 4.5)	2.90 dd (17.7, 2.6)	3.05 dd (17.7, 4.4)	İ
ų		2.86 ddd (17.4, 6.4, 4.5)	2.98 dd (17.7, 7.0)	3.08 dd (17.7, 4.0)	
g-OH	-		3.84 d (6.8)	3.97 d (9.4)	

124 J. KAWABATA et al.

Table 2. 13C NMR spectral data of compounds 6-10 (125 MHz, CDCl₃)

	6	7	8	9	10
1	25.4	26.4	25.9	25.9	26.0
2	15.8	16.1	16.0	16.0	16.0
3	24.7	24.9	24.8	24.8	24.8
4	142.3	142.7	142.4	142.7	142.5
5	131.5	132.9	132.0	132.0	132.1
6	40.5	41.7	40.9	41.1	41.0
7	131.8	130.5	131.6	130.9	131.2
8	200.6	200.2	200.9	200.5	200.0
9	80.1	79.7	80.0	80.0	79.7
10	51.2	51.0	50.9	51.1	51.0
11	147.1	147.5	147.4	147.6	147.2
12	170.8	170.4	170.5	171.0	171.6
13	20.3	19.9	19.8	19.9	20.4
14	15.1	15.6	15.2	15.3	15.5
15	25.6	25.4	25.4	25.4	25.2
1′	24.3	26.2	25.6	26.0	25.6
2'	16.6	11.7	11.7	11.9	11.7
3′	21.8	27.5	27.8	27.4	28.3
4′	43.0	77.8	77.2	78.0	77.4
5′	59.3	61.0	61.4	61.6	60.1
6′	25.0	24.7	24.0	25.1	22.6
7′	165.5	174.2	175.3	175.5	168.6
8'	92.5	93.5	93.4	93.4	93.4
9′	54.7	54.8	55.9	55.6	55.0
10'	44.0	44.8	45.0	44.6	44.8
11'	124.2	123.5	122.9	122.6	127.2
12'	173.4	171.5	171.8	171.7	172.4
13'	8.6	55.2	54.8	55.7	54.8
14'	23.9	25.8	26.1	26.1	26.3
15'	66.2	71.1	72.2	71.2	71.4
OMe	52.6	52.5	52.8	53.0	52.9
a	171.0	166.1	167.3	166.4	166.8
b	20.8	112.8	129.0	113.7	112.4
c	_	154.0	135.7	152.9	159.9
d	_	65.6	62.3	66.1	67.1
e		15.6	13.1	15.7	15.7
f		171.7	173.4	172.3	_
g		29.1	67.1	67.8	_
h		29.0	38.8	39.1	_
i	_	172.0	170.6	170.9	_

optically active (–)-MTPA chloride [10] of the resultant acidic products gave a mixture of the MTPA esters of dimethyl malate and methyl γ -hydroxytiglate which were easily separated by preparative TLC. The ¹H NMR spectrum of the resulting (S)-MTPA-dimethyl malate was superimposable on that of the authentic (S)-MTPA ester of dimethyl L-malate. Hence, the stereochemistry of the malic ester residue of 8 was elucidated to be the L-form.

Shizukaol H (9) was an isomer of 8. Analysis of the NMR spectra revealed the difference in structure of 9 and 8 corresponded to that of shizukaols F (7) and B (2). Thus, shizukaol H contained y-hydroxysenecioic and malic acids in the macrocyclic ester chain. The selective INEPT experiments [11] supported the direction of the malic residue by the fact that the C-f peak (δ 172.3) appeared

when a hydroxyl proton (δ 3.97, d, J = 9.4 Hz, OH-g) was selectively excited.

Shizukaol I (10) showed a molecular ion at m/z 650 by FD-mass spectrometry. The molecular formula was concluded to be C₃₆H₄₂O₁₁ with the help of the NMR data. The ¹H NMR spectrum showed the lack of C₄-acid unit found in shizukaols B and F-H. The presence of a γhydroxysenecioic residue was supported by the similarity in the NMR pattern compared to that of shizukaol F (7). Therefore, it was concluded that 10 was a des-succinyl derivative of 7.

So far, 10 lindenane dimers have been isolated from Chloranthus spp. Nine of them seem to be from the same biogenetic route starting from a Diels-Alder-type cycloaddition of 11 and 12. An increasing number of naturally occurring Diels-Alder reaction products have been identified and the possibility for the enzyme-catalysed biosynthesis of such a molecule has recently been reported [12]. This biogenetic route for the series of lindenane dimers also strongly suggests the presence of the biological Diels-Alder reaction since consecutive hydroxylation and acylation occurred after the cyclo-addition. In addition, four dimers, shizukaols B (2), F (7), G (8) and H (9), carried an unusual macrocyclic ester ring as a pendent side chain composed of both C₅-hydroxy acid, yhydroxytiglic (2, 8) or γ -hydroxysenecioic (7, 9) acid, and C₄-dicarboxylic acid, succinic (2, 7) or L-malic (8, 9) acid.

EXPERIMENTAL

¹H and ¹³C NMR spectra were measured in CDCl₃ using TMS as int. standard. The air-dried roots (400 g) of C. japonicus were extracted with Et₂O at room temp. The extracts were washed with 5% NaHCO, and chromatographed over silica gel using an Et₂O-Me₂CO gradient. The first half of the Et₂O eluates were subjected to silica gel prep. TLC developed with hexane-EtOAc (2:1) to give 6 (18 mg), whereas prep. TLC (CHCl₃-MeOH, 50:1) of the latter half gave 7 (72 mg). The Et₂O-Me₂CO (9:1) and (7:3) eluates were separated by prep. TLC (Et₂O-MeOH, 25:1) to give 8 (25 mg), 9 (2 mg) and 10 (18 mg), respectively.

Shizukaol E (6). Oil, $[\alpha]_D^{23} - 184^\circ$ (CHCl₃; c 1.09); FD-MS m/z (rel. int.): 562 [M]⁺ (100), 274 (14).

Shizukaol F (7). Oil, $[\alpha]_D^{23} - 80^\circ$ (CHCl₃; c 2.50); FD-

MS m/z (rel. int.): 732 [M]⁺ (41), 274 (100). Shizukaol G (8). Oil, $[\alpha]_D^{23} - 100^\circ$ (CHCl₃; c 3.36); FD-MS m/z (rel. int.): 748 [M]⁺ (100), 274 (79).

Shizukaol H (9). Oil, $[\alpha]_D^{23} - 121^{\circ}$ (CHCl₃; c 0.29); FD-MS m/z (rel. int.): 748 [M]⁺ (100), 274 (77).

Shizukaol I (10). Oil, $[\alpha]_D^{23} - 122^\circ$ (CHCl₃; c 3.40); FD-MS m/z (rel. int.): 650 [M]⁺ (100), 274 (94).

Determination of the absolute configuration of the malic residue in compound 8. To a soln of 8 (2.8 mg) in 3 drops of MeOH was added 3 drops of 5% Cs₂CO₃ in $MeOH-H_2O$ (3:1). After 2 hr, the reaction mixture was acidified (1 M HCl) and extracted with EtOAc. The extract was treated with ethereal CH₂N₂. After evapn, the residue was dissolved in dry pyridine (0.2 ml) and (-)-

MTPA chloride (30 μ l) was added to it. The reaction mixture was left overnight and the usual work-up yielded the mixture of (S)-MTPA esters which were easily sepd by prep. TLC (CHCl₃) to give (S)-MTPA ester of dimethyl malate (0.3 mg) as an oil. EI-MS m/z (rel. int.): 348 [M]⁺ (0.2), 309 (2), 216 (4), 189 (100). ¹H NMR (500 MHz, CDCl₃): δ 2.88 (1H, dd, J = 16.7 and 8.8 Hz), 2.95 (1H, dd, J = 16.7 and 4.0 Hz), 3.60 (3H, s), 3.64 (3H, s), 3.82 (3H, s), 5.72 (1H, dd, J = 8.8 and 4.0 Hz), 7.41 (3H, m), 7.62 (2H, m)m). The physicochemical data agreed well with those of the authentic (S)-MTPA ester of dimethyl L-malate prepared from L-malic acid, but did not agree with those of the corresponding D-malate derivative. EI-MS m/z (rel. int.): 348 [M] + (0.3), 309 (2), 216 (4), 189 (100). ¹H NMR (500 MHz, CDCl₃): δ 2.93 (1H, dd, J = 16.9 and 9,2 Hz), 3.02 (1H, dd, J = 16.9 and 3.7 Hz), 3.56 (3H, s), 3.70 (3H, s)s), 3.77 (3H, s), 5.71 (1H, dd, J = 9.2 and 3.7 Hz), 7.42 (3H, s)m), 7.58 (2H, m).

Acknowledgements—We are grateful to Mr Kenji Watanabe (GC-MS and NMR Laboratory of our Faculty) for measing FD-mass spectra. Part of this work was supported by a Grant-in-Aids for Scientific Research (No. 06404011) from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- Kawabata, J., Fukushi, E. and Mizutani, J. (1993) *Phytochemistry* 32, 1347.
- Kawabata, J., Tahara, S. and Mizutani, J. (1981)
 Agric. Biol. Chem. 45, 1447.
- Tahara, S., Fukushi, Y., Kawabata, J. and Mizutani, J. (1981) Agric. Biol. Chem. 45, 1511.
- Kawabata, J. and Mizutani, J. (1989) Agric. Biol. Chem. 53, 203.
- Kawabata, J., Fukushi, Y., Tahara, S. and Mizutani, J. (1985) Agric. Biol. Chem. 49, 1479.
- Kawabata, J. and Mizutani, J. (1988) Agric. Biol. Chem. 52, 2965.
- 7. Kawabata, J., Fukushi, Y., Tahara, S. and Mizutani, J. (1990) *Phytochemistry* 29, 2332.
- 8. Kawabata, J. and Mizutani, J. (1992) Phytochemistry 31, 1293.
- Uzawa, J. and Takeuchi, S. (1978) Org. Magn. Reson. 11, 502.
- Ohtani, I., Kusumi, T., Kashman, Y. and Kakisawa, H. (1991) J. Am. Chem. Soc. 113, 4092.
- 11. Bax, A. (1984) J. Magn. Reson. 57, 314.
- Oikawa, H., Suzuki, Y., Naya, A., Katayama, K. and Ichihara, A. (1994) J. Am. Chem. Soc. 116, 3605.