

TWO CYTOTOXIC PENTACYCLIC TRITERPENOIDS FROM NERIUM OLEANDER

BINA SHAHEEN SIDDIQUI,* SABIRA BEGUM, SALIMUZZAMAN SIDDIQUI and WOLF LICHTER*†

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; †School of Medicine, Department of Microbiology and Immunology, University of Miami, FL 33101, U.S.A.

(Received 11 August 1994)

Key Word Index— Nerium oleander; Apocynaceae; pentacyclic triterpenoids; 3β -hydroxy-28-Z-p-coumaroyloxy-urs-12-en-27-oic acid (cis-karenin); 3β -hydroxy-28-E-p-coumaroyloxy-urs-12-en-27-oic acid (trans-karenin); cytotoxicity.

Abstract—The isolation and structure elucidation of two novel cytotoxic pentacyclic triterpenoids cis-karenin $(3\beta$ -hydroxy-28-Z-p-coumaroyloxy-urs-12-en-27-oic acid) and trans-karenin $(3-\beta$ -hydroxy-28-E-p-coumaroyloxy-urs-12-en-27-oic acid) from the leaves of Nerium oleander is described.

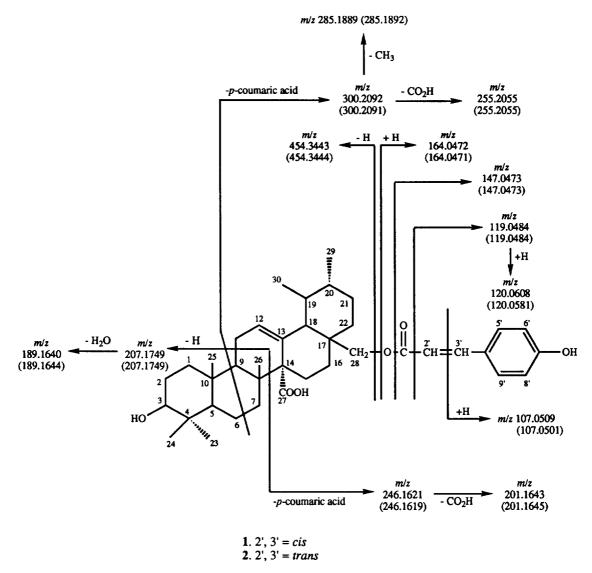
INTRODUCTION

Nerium oleander distributed in the Mediterranean region and subtropical Asia, is indigenous to the Indo-Pakistan subcontinent. Its various parts are reputed to have cardiotonic and antibacterial properties [1, 2]. We herein report the isolation and structure elucidation of two new cytotoxic pentacyclic triterpenoids, cis-karenin (1) and trans-karenin (2), with ED₅₀ 15.0 and 7.5 µg ml⁻¹, respectively, on KB cell line. Their structures have been elucidated on the basis of detailed ¹H and ¹³C NMR studies including 2D experiments (COSY-45, NOESY, J-resolved and heteroCOSY) which allowed a complete assignment of all of the protons and carbons.

RESULTS AND DISCUSSION

cis-Karenin (1) (C₃₉H₅₄O₆, confirmed by ¹³C NMR; broad band and DEPT) produces an HR-mass spectral fragment at m/z 454.3443 (C₃₀H₄₆O₃) corresponding to the molecular ion minus coumaric acid (C₉H₈O₃; HR-MS m/z 164.0469). The structures of the moieties $C_{30}H_{46}O_3$ and $C_9H_8O_3$ as an ursane derivative [3, 4] and cis-coumaric acid, respectively, were deduced from the spectral data (see Experimental, and Tables 1 and 2). The resonance of the H-12 triplet at δ 5.5 and the shifts of C-12 (δ 130.7), C-13 (δ 134.8) and C-14 (δ 57.8) were not comparable with those of ursolic acid [5]. These features were consistent with a carboxyl group (v_{max} 3400–2670, 1710 cm⁻¹) at C-14 [6]. An interaction of H-28a with H-18 in the NOESY spectrum established the position of the cis-p-hydroxy cinnamoyloxy moiety at C-28 (Table 2). The retro-Diels-Alder cleavage and other significant fragments drawn on the structure fully support the structure of 1 as 3β -hydroxy-28-cis-p-coumaroyloxy-urs-12-en-27-oic acid.

The main features differentiating the spectral data (Tables 3 and 4) of **2** from those of **1** were the coupling constant (J=15.99 Hz) and chemical shifts of H-2' ($\delta 6.29$) and H-3' ($\delta 7.57$) and the absence of an interaction of these protons in the NOESY spectrum. Thus a *trans-p*-coumaroyloxy moiety was considered to be present in **2**, cf. *cis-p*-coumaroyloxy group in **1** in which H-2' and H-3' resonated at $\delta 5.74$ and 6.84, respectively, with a coupling constant of 12.84 Hz and showed an interaction in the NOESY spectrum (Table 2).


These and other spectral observations (see Experimental) led to the structure of **2** as 3β -hydroxy-28-transp-coumaroyloxy-urs-12-en-27-oic acid, the geometric isomer of **1**.

All the protons and ¹³C signals of 1 and 2 have been assigned on the basis of heteroCOSY (Tables 1 and 3) and COSY-45° (Tables 2 and 4) experiments. The stereochemical assignments are based on coupling constants and NOESY experiments (Tables 2 and 4).

EXPERIMENTAL

Mps: uncorr.; MS: Finnigan MAT 112 and 312 double focussing mass spectrometers connected to a PDP 11/34 computer system; NMR (Me₂CO- d_6): 300 MHz for 1 H and 75 MHz for 13 C. The chemical shifts are reported in δ (ppm) and the coupling constants are in Hz. The 13 C NMR spectral assignments have been made partly through a comparison of the chemical shifts with the published data for similar compounds [6, 7] and partly through heteronuclear correlation and the appearance of signals in the DEPT spectrum (Tables 1 and 3). VLC/TLC and flash CC: silica gel PF₂₅₄ and silica gel E.

^{*}Author to whom correspondence should be addressed.

Scheme 1. Mass spectral fragmentation of 1 and 2 (m/z values in parentheses).

Merck 9385, respectively. The plant was identified by Prof. S. I. Ali (Department of Botany, University of Karachi) and a voucher specimen (N.OL-1) is deposited in the Herbarium.

The residue left on removal of the solvent from the combined methanolic percolates of the fresh, undried and uncrushed leaves (20 kg) of *N. oleander* collected in July from the Karachi region, was divided into acidic, basic and neutral fractions. From the neutral petrol-insoluble portion a mixture of ursolic and oleanolic acid was separated according to the procedure described earlier [8]. The mother liquor thus obtained was again divided into petrol-soluble and -insoluble fractions. The latter fraction was subjected to VLC [9] (CHCl₃, CHCl₃–MeOH in order of increasing polarity). The eluate from CHCl₃–MeOH (19:1) showed two major spots on TLC. This fraction was then subjected to thick layer chromatography (CHCl₃–MeOH, 19:1) which furnished

1 and 2 as homogeneous constituents in the order of increasing polarity in 0.00134 and 0.000485% yield, respectively, per 20 kg of fresh leaves.

3β-Hydroxy-28-Z-p-coumaroyloxy-urs-12-en-27-oic acid (1). Needles; mp 205–206°; UV $_{\rm max}^{\rm HOH}$ nm: 205, 312; IR $_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3600–2670, 3450, 1710, 1630, 1600–1420 (4 peaks); 1 H and 13 C NMR: Table 1; COSY-45 and NOESY: Table 2; HR-MS m/z: 454.3443 ($C_{30}H_{46}O_{3}$) [M -p-coumaric acid] $^{+}$, 439.3229 ($C_{29}H_{43}O_{3}$), 421.3082 ($C_{29}H_{41}O_{2}$), 410.3428 ($C_{25}H_{46}O_{4}$), 393.3148 ($C_{28}H_{41}O$), 300.2093 ($C_{20}H_{28}O_{2}$), 285.1889 ($C_{19}H_{25}O_{2}$), 255.2055 ($C_{19}H_{27}$), 246.1621 ($C_{16}H_{22}O_{2}$), 207.1749 ($C_{14}H_{23}O$), 201.1643 ($C_{15}H_{21}$), 189.1640 ($C_{14}H_{21}$), 164.0472 ($C_{9}H_{8}O$), 147.0473 ($C_{9}H_{7}O_{2}$), 120.0608 ($C_{8}H_{8}O$), 119.0484 ($C_{8}H_{7}O$) and 107.0509 ($C_{7}H_{6}O$).

 3β -Hydroxy-28-E-p-coumaroyloxy-urs-12-en-27-oic acid (2). Rods; mp 230–231°; UV $^{\text{MeOH}}_{\text{max}}$ nm: 205, 280; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3600–2650, 3445, 1715, 1625, 1600–1435 (4

(heteroCOSY)

Table 1. 13C and 1H NMR spectral data of compound 1 Table 3. 13C and 1H NMR spectral data of compound 2 (heteroCOSY)

C δ Correlated ¹ H C δ Correlated ¹ H 1 39.5 1.25 2H m 1 39.6 1.25 2H m 2 28.3 1.50, 1.55 2H m 2 28.6 1.50, 1.55 2H m 3 78.4 3.10 1H dd (10.5, 5.3) 3 78.5 3.08 1H dd (11.28, 40.1	
2 28.3 1.50, 1.55 2H m 2 28.6 1.50, 1.55 2H m 3 78.4 3.10 1H dd (10.5, 5.3) 3 78.5 3.08 1H dd (11.28, 40.1) 4 40.1 — 4 40.1 — 4 40.1 — 5 56.3 0.80 1H dd (11.5, 1.5) 5 56.2 0.79 1H dd (11.4, 10.2) 1.75 2H m — 6 19.1 1.75 2H m — 7 37.7 1.72 2H m — 8 41.0 —	
3 78.4 3.10 1H dd (10.5, 5.3) 3 78.5 3.08 1H dd (11.28, 44) 40.1 — — 6 14.0 — — 6 11.28, 40.1 — — 11.28, 40.1 — — — 11.28, 40.1 — <th></th>	
4 40.1 — 4 40.1 — 5 56.3 0.80 1H dd (11.5, 1.5) 5 56.2 0.79 1H dd (11.4, 1) 6 19.2 1.75 2H m — 6 19.1 1.75 2H m — 7 37.8 1.7, 1.72 2H m — 7 37.7 1.72 2H m — 8 41.2 — — 8 41.0 — — — 9 49.3 1.7 1H dd (10.2, 3.6) 9 49.3 1.69 1H dd (10.4, 3) 10 38.0 — — — — — — — 11 24.6 1.95, 1.97 2H m — 11 24.4 2.10 2H m — 12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.6 —	
5 56.3 0.80 1H dd (11.5, 1.5) 5 56.2 0.79 1H dd (11.4, 1.4) 1.6 19.2 1.75 2H m — 6 19.1 1.75 2H m — 7 37.7 1.72 2H m — — 8 41.0 — <t< td=""><td>1.83)</td></t<>	1.83)
6 19.2 1.75 2H m — 6 19.1 1.75 2H m — 7 37.8 1.7, 1.72 2H m — 7 37.7 1.72 2H m — 8 41.2 — — 8 41.0 — — — 9 49.3 1.7 1H dd (10.2, 3.6) 9 49.3 1.69 1H dd (10.4, 3) 10 38.0 — — — — — — 11 24.6 1.95, 1.97 2H m — 11 24.4 2.10 2H m — 12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.8 — — — — — — 14 57.8 — — — — —	
7 37.8 1.7, 1.72 2H m — 7 37.7 1.72 2H m — 8 41.2 — — — 8 41.0 — — — 9 49.3 1.7 1H dd (10.2, 3.6) 9 49.3 1.69 1H dd (10.4, 3) 10 38.0 — — — — — — 11 24.6 1.95, 1.97 2H m — 11 24.4 2.10 2H m — 12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.8 — — — — — — 14 57.8 — — — — — —	.6)
8 41.2 —	
9 49.3 1.7 1H dd (10.2, 3.6) 9 49.3 1.69 1H dd (10.4, 3) 10 38.0 — — — — — 11 24.6 1.95, 1.97 2H m — 11 24.4 2.10 2H m — 12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.8 — — — — 14 57.8 — — —	
10 38.0 — — 11 24.6 1.95, 1.97 2H m — 11 24.4 2.10 2H m — 12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.8 — — — — 14 57.8 — — —	
11 24.6 1.95, 1.97 2H m — 11 24.4 2.10 2H m — 12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.8 — — — — 14 57.8 — — —	.4)
12 130.8 5.51 1H t — 12 130.6 5.54 1H t (3.39) 13 134.8 — — — — 14 57.8 — — — 14 59.0 — —	
13 134.8 — 14 57.8 — 13 134.6 — 14 59.0 —	
14 57.8 — 14 59.0 — —	
15 253 095 2H m — 15 25.2 0.98 2H m —	
16 28.1 0.99 2H m — 16 28.1 1.01 2H m —	
17 38.2 — 17 38.1 — —	
18 53.6 2.30 1H d (11.0) 18 53.6 2.36 1H d (11.40)	
19 39.5 1.25 1H m — 19 39.4 1.26 1H m —	
20 40.1 1.15 1H m — 20 40.1 1.17 1H m —	
21 31.2 2.1 2H m — 21 31.2 2.06 2H m —	
22 34.6 0.85 2H m — 22 34.5 0.87 2H m —	
23 28.6 0.99 3H s — 23 28.6 0.97 3H s —	
24 18.9 0.84 3H s — 24 19.1 0.85 3H s —	
25 16.3 0.76 3H s — 25 16.3 0.75 3H s —	
26 18.1 0.93 3H s — 26 18.2 0.96 3H s —	
27 180.6 — 27 179.5 — —	
28 66.3 4.40 1H d (12.72) 28 66.2 4.39 1H d (12.80)	
4.13 1H d (12.72) 4.18 1H d (12.80)	
29 16.4 0.75 3H d (7.26) 29 18.2 0.86 3H d (7.02)	
30 21.5 0.92 3H d (6.24) 30 21.5 0.90 3H d (6.37)	
1' 166.8 — 1' 167.1 — —	
2' 117.0 5.74 1H d (12.84) 2' 115.9 6.29 1H d (15.99)	
3' 143.9 6.84 1H d (12.84) 3' 145.2 7.57 1H d (15.99)	
4' 127.0 — — —	
5'/9' 133.6 7.75 2H d (8.55) 5'/9' 130.8 7.48 2H d (8.67)	
6'/8' 115.8 6.83 2H d (8.55) 6'/8' 116.8 6.90 2H d (8.67)	
7' 159.7 — 7' 161.0 — —	

Multiplicities and coupling constants were measured from normal ¹H NMR and 2D-J resolved spectra.

Multiplicities and coupling constants were measured from normal ¹H NMR and 2D-J resolved spectra.

Table 2. Selected correlations of cis-karenin (1) from NOESY and COSY-45 experiments

		Spatial connectivities Correlated protons (COSY-45 spectrum) (NOESY spectrum)				
Н	δ	Н	δ	H	δ	
3	3.10			2	1.50, 1.55	
9	1.7		_	11	1.97	
12	5.51		_	11	1.97	
18	2.3	28a	4.40	19	1.25	
		3′	6.84	_	*******	
		5′, 9′	7.75			
19	1.25	-		20	1.15	
26	0.93	5', 9'	7.75			
28a	4.40			28Ъ	4.13	
2′	5.74	3′	6.84	3′	6.84	
6', 8'	6.83	5', 9'	7.75	5', 9'	7.75	

Table 4. Selected correlations of trans-karenin (2) from NOESY and COSY-45 experiments

Н	δ	Spatial connectivities with protons (NOESY spectrum)		(COS	Correlated protons (COSY-45 spectrum)	
		Н	δ	Н	δ	
3	3.08			2	1.55	
12	5.54			11	2.10	
18	2.36	28a	4.39			
28a	4.39			28b	4.18	
2′	6.29			3′	7.57	
6', 8'	6.90	5', 9'	7.48	5', 9'	7.48	

peaks); ¹H and ¹³C NMR: Table 3; COSY-45 and NOESY: Table 4; HR-MS m/z: 454.3444 ($C_{30}H_{46}O_3$) [M -p-coumaric acid]⁺, 439.3224 ($C_{29}H_{43}O_3$), 421.3087 ($C_{29}H_{41}O_2$), 410.3426 ($C_{25}H_{46}O_4$), 393.3143 ($C_{28}H_{41}O$), 300.2091 ($C_{20}H_{28}O_2$), 285.1892 ($C_{19}H_{25}O_2$), 255.2055 ($C_{19}H_{27}$), 246.1619 ($C_{16}H_{22}O_2$), 207.1749 ($C_{14}H_{23}O$), 201.1645 ($C_{15}H_{21}$), 189.1644 ($C_{14}H_{21}$), 164.0471 ($C_{9}H_{8}O_3$), 147.0473 ($C_{9}H_{7}O_2$), 120.0581 ($C_{8}H_{7}O$), 119.0484 ($C_{8}H_{7}O$) and 107.0501 ($C_{7}H_{6}O$).

REFERENCES

1. Dymock, W., Warden, C. J. H. and Hooper, D. (1891) Pharmacographia Indica Vol. II, p. 398. The Institute of Health and Tibbi Research, republished under the

- auspices of Hamdard National Foundation of Pakistan.
- Chopra, R. N., Nayer, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants, p. 175. CSIR Publications, New Delhi.
- Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963)
 J. Am. Chem. Soc. 85, 3688.
- 4. Pyrek, J. St. (1979) Pol. J. Chem. 53, 1071.
- 5. Kang, S. S. (1987) J. Pharmacogn. 18, 151.
- 6. Aquino, R., Simone, F. D., Pizza, C., Cerri, R. and DeMello, F. (1988) *Phytochemistry* 27, 2927.
- 7. Jimenez, C., Villaverde, M. C., Riguera, R., Castedo, L., Stermitz, F. R. (1988) *Phytochemistry* 27, 2947.
- 8. Siddiqui, S. S., Begum, S., Hafeez, F. and Siddiqui, B. S. (1989) *Phytochemistry* 28, 1187.
- 9. Coll, J. C. and Bowden, B. F. (1986) J. Nat. Prod. 49,