

CUCURBITACIN GLYCOSIDES FROM CAPUT NIGRI

KIMIKO NAKANO, YUU KANAI, KŌTARO MURAKAMI and YOSHIHISA TAKAISHI

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima, 770, Japan

(Received 6 September 1994)

Key Word Index—Caput nigri; Cucurbitaceae; roots; Cabeça-de-negro; cucurbitacin glycoside; cabenosides I-L.

Abstract—The chemical structures of cabenosides I–L were investigated. These are four of the 12 cucurbitacin glycosides isolated from 'Cabeça-de-negro', the roots of *Caput nigri*. By means of chemical analyses the structures of cabenosides I–L were elucidated as 10α -cucurbit-5-ene- 3β , 11α ,20S, 24ξ ,25-pentaol [3, 25-di-O- β -D-glucopyranoside, and 3-O- β -D-glucopyranosyl-(1-2)- β -D-glucopyranosyl (sophorosyl), 25-O- β -D-glucopyranoside], and 10α -cucurbit-5,20,24-triene-11-oxo- 3β ,26-diol [3-O- β -D-glucopyranosyl-(1-6)- β -D-glucopyranosyl (gentiobiosyl), 26-O- β -D-glucopyranoside and 3,26-di-O-gentiobioside], respectively.

INTRODUCTION

In one of the two previous papers [1], we reported the structural elucidation of three new nor-cucurbitacin glucosides (cabenosides A-C) isolated from 'Cabeça-denegro', the roots of *Caput nigri*. In the preceding paper [2], we described the isolation of nine cucurbitacin glycosides (cabenosides D-L) from 'Cabeça-de-negro' and the structural elucidation of cabenosides D-H. The present paper reports the structural elucidation of cabenosides I(1), J(2), K(3) and L (4).

RESULTS AND DISCUSSION

Cabenoside I(1), obtained as powder, showed a $[M + Na]^+$ ion peak at m/z 839 in the FAB-mass spectrum. The ¹H and ¹³C NMR spectra indicated the presence of two β -D-glucopyranosyl units [H-1': δ 4.88 (d, J = 7.32 Hz), C-1': $\delta 107.3$ and H-1": $\delta 5.14$ (d, J = 7.82 Hz), C-1": δ 97.5]. A total of 42 carbon signals observed in the ¹³C NMR spectrum of 1 was separated into Me \times 8, CH₂ \times 8, CH \times 7, C \times 7 and D-glucose \times 2 with the help of DEPT spectra. The ¹³C NMR signals at δ 118.5 (CH) and 144.3 (C) and five carbinyl carbon signals at δ 76.3 (CH), 77.8 (CH), 87.9 (CH), 74.6 (C) and 80.6 (C), indicated that the aglycone of 1 should be triterpenoid, having the molecular formula C₃₀H₅₂O₅. Comparison of the 13C NMR spectra between 1 and authentic sample (cabenosides D and E) [2], suggested that 1 should be 10α -cucurbit-5-ene-3 β , 11α , 20S, 24 ξ , 25-pentaol. The linkage position between each D-glucose and the aglycone was established by observations of the ¹H-¹³C long-range COSY spectrum of 1. The carbon signals at δ 107.3 and 80.5 showed correlation with the proton signals at δ 3.69 (br s, 3-H) and 5.14 (d, 1"-H), respectively. Accordingly, the structure of 1 was elucidated to be 10α -cucurbit-5-ene-3 β , 11α , 20S, 24ξ , 25-pentaol 3, 25-di-O- β -D-glucopyranoside.

Cabenoside J (2) obtained as powder, revealed a [M + H + Na]⁺ ion peak at m/z 1002, 162 mass units more than that of 1 in the FAB-mass spectrum. In the ¹H and ¹³C NMR spectral data of 2, signals owing to aglycone moieties were in good agreement with those of 1, while signals owing to sugar moieties were identical with 3-O-sophorosyl, 25-O-glucopyranoside. These were also supported by the ¹H-¹H COSY, ¹H-¹³C COSY and ¹H-¹³C long-range COSY spectra. From the above evidence the structure of 2 was determined as shown and was concluded to be 10α -cucurbit-5-ene- 3β , 11α , 20S, 24ξ , 25-pentaol 3-O- β -D-glucopyranosyl-(1-2)- β -D-glucopyranosyl, 25-O- β -D-glucopyranoside.

Cabenoside K (3), obtained as powder, exhibited a [M + H + Na]⁺ ion peak at m/z 964 in the FAB-mass spectrum. The ¹H NMR spectrum of 3 showed signals for six tertiary methyl protons at δ 0.68, 1.08, 1.09, 1.18, 1.54 and 1.80, two olefinic protons at δ 5.53 (br s) and 5.65 (br t), three anomeric protons at δ 4.83 (d, J = 7.82 Hz), 4.91 (d, J = 7.82 Hz) and 5.16 (d, J = 7.81 Hz) and two protons at δ 4.93 and 5.05 (each 1H, s).

A total of 48 carbon signals observed in the 13 C NMR spectrum of 3 were separated into Me × 6, CH₂ × 13, CH × 21 and C × 8 with the help of DEPT spectra. The 13 C NMR spectrum indicated that it had the same nucleus as authentic samples (cabenosides D and H) [2] and differed in the structure of the side chain. Signals from the sugar moieties were almost superimposable on those of cabenosides G and H (gentiobiose and glucose) [2].

The ¹H-¹³C COSY and long-range COSY (Fig. 1) showed that the terminal methylene group placed at C-21 and hydroxy methylene and olefinic methyl groups were placed at C-26 and C-27. To determine the position of the hydroxy methylene group, difference NOE spectra were

206 K. Nakano et al.

measured. When the olefinic proton $(\delta 5.65, br\ t)$ was irradiated, NOE was observed on the signal of hydroxy methylene group $(\delta 4.28)$ and methylene $(\delta 2.24)$. Furthermore, long-range correlations were seen between the anomeric carbon $(\delta 106.9)$ and H-3 $(\delta 3.68)$, the anomeric carbon $(\delta 103.2)$ and H₂-26 $(\delta 4.28$ and 4.51), the carbinol carbon $(\delta 74.9)$ and anomeric proton $(\delta 4.91)$ and the carbinol carbon $(\delta 70.3)$ of glucose C-6 and anomeric proton $(\delta 5.16)$ in the $^1H^{-13}C$ long-range COSY spectrum.

Fig 1. \(\simeq\^1\H^{-13}C\) long-range correlations of side chain of cabenoside K.

Cabenoside I (1): R = glcCabenoside J (2): R = glc (1 - 2) glc -

Cabenoside K (3): $R_1 = glc (1-6) glc - R_2 = glc$

Cabenoside L (4): $R_1 = R_2 = glc (1 - 6) glc - Fig. 2$.

Table 1. ^{13}C NMR spectral data of cabensoides I-L (pyridine- d_5 , δ values)

С	I (1)	J (2)	K (3)	L (4)	С	I (1)	J (2)	K (3)	L (4)
1	26.8	26.4	22.1	22.2	g-1'	107.3	104.7	106.9	106.9
2	29.5	29.9	28.5	28.5	2'	75.5	82.1	75.3	75.3
3	87.9	87.1	86.6	86.6	3′	78.1	77.1	78.3	78.3
4	42.4	42.1	41.9	42.0	4′	71.7	71.6	71.6	71.4
5	144.3	144.1	141.3	141.4	5′	78.7	78.4	77.2	77.2
6	118.5	118.8	118.3	118.4	6′	62.7	62.8	70.3	70.3
7	24.5	24.5	24.6	24.7	1"		105.2	105.3	105.2
8	42.7	42.7	44.3	44.3	2"		75.5	75.1	75.1
9	40.1	40.1	48.7	48.7	3"		77.8	78.3	78.4
10	36.9	36.7	35.8	35.8	4"		71.6	71.6	71.7
11	77.8	77.8	213.1	213.4	5"		78.8	78.4	78.5
12	41.6	41.6	47.6	47.6	6"		62.8	62.7	62.7
13	48.3	48.2	49.3	49.4	25-g				
14	50.0	50.0	50.0	50.1	1′′′	97.5	97.5	103.2	103.2
15	34.2	34.2	34.8	34.9	2""	75.5	75.5	75.1	74.9
16	29.9	29.9	24.1	24.1	3′′′	78.5	78.2	78.3	78.3
17	53.7	53.7	49.5	49.5	4′′′	71.8	71.6	71.6	71.5
18	18.7	18.7	18.5	18.6	5'''	78.9	78.9	78.4	77.1
19	26.4	26.2	20.3	20.3	6'''	63.0	62.8	62.7	69.9
20	74.6	74.5	148.5	148.6	1''''				105.3
21	26.3	26.3	111.5	111.5	2''''				75.1
22	43.1	43.1	37.4	37.5	3′′′′				78.4
23	26.5	26.4	27.0	27.1	4''''				71.7
24	76.4	76.2	127.9	128.0	5''''				78.5
25	80.6	80.5	132.7	132.7	6′′′′				62.7
26	22.6	22.6	74.9	74.9					
27	22.9	22.9	14.2	14.3					
28	26.3	26.4	28.3	28.3					
29	27.7	27.6	25.8	25.8	•				
30	19.5	19.4	18.4	18.4					

From the above evidence, the structure of **3** was revealed to be 10α -cucurbit-5,20,24-triene-11-oxo-3 β ,26-diol 3-O- β -D-glucopyranosyl-(1-6)- β -D-glucopyranosyl, 26-O- β -D-glucopyranoside.

Cabenoside L (4), obtained as a powder, exhibited a $[M + H + Na]^+$ ion peak at m/z 1126, 162 mass units more than that of 3 in the FAB-mass spectrum. In the 1H and $^{13}CNMR$ spectral data of 4, signals owing to aglycone moieties were in good agreement with those of 3, while signals from the sugar moieties were identical with 3,26-di-O-gentiobioside. These were also supported by the 1H - 1H , 1H - ^{13}C and 1H - ^{13}C long-range COSY spectra. From the above evidence the structure of 4 was determined as shown in Fig. 2, and it was concluded to be 10α -cucurbit-5,20,24-triene-11-oxo-3 β ,26-diol, 3,26-di-O- $[\beta$ -D-glucopyranosyl-(1-6)- β -D-glucopyranoside].

EXPERIMENTAL

General experimental procedures were as described in ref. [2].

Cabenoside I (1). Amorphous powder, $[\alpha]_D^{21} + 2.0^\circ$ (pyridine; c 0.49), IR v_{max} cm⁻¹: 3470, 1687, 1560, 1480, 1380, 1078. FAB-MS m/z: 839 [M + Na]⁺. ¹H NMR (pyridine- d_5): δ 1.04 (3H, s, Me-30), 1.18 (3H, s, Me-29), 1.32 (3H, s, Me-19), 1.37 (3H, s, Me-18), 1.43 (3H, s, Me-27), 1.51 (3H, s, Me-26), 1.55 (3H, s, Me-28), 1.57 (3H, s, Me-21), 3.69 (1H, br s, H-3), 4.89 (1H, d, d = 7.32 Hz, H-1'), 5.14 (1H, d, d = 7.82 Hz, H-1"), 5.52 (1H, br d, d = 5.37 Hz, H-6). ¹³C NMR data: Table 1.

Cabenoside J (2). Amorphous powder, $[\alpha]_D^{23} - 1.9^{\circ}$ (pyridine; c 0.53), IR v_{max} cm⁻¹: 3400, 1686, 1562, 1460, 1389, 1078. FAB-MS m/z: 1002 [M + H + Na]⁺. ¹H NMR (pyridine- d_5): δ 1.06 (3H, s, Me-30), 1.15 (3H, s,

Me-29), 1.34 (3H, s, Me-19), 1.37 (3H, s, Me-18), 1.40 (3H, s, Me-27), 1.52 (3H, s, Me-26), 1.55 (3H, s, Me-28), 1.60 (3H, s, Me-21), 3.66 (1H, br s, H-3), 4.91 (1H, d, J = 6.83 Hz, H-1'), 5.17 (1H, d, J = 7.81 Hz, H-1'''), 5.41 (1H, d, J = 7.81 Hz, H-1'''), 5.84 (1H, br d, J = 5.21 Hz, H-6). ¹³C NMR data: Table 1.

Cabenoside K (3). Amorphous powder, $[\alpha]_D^{21} + 34.1^\circ$ (pyridine; c 0.50), IR ν_{max} cm⁻¹: 3400, 1689, 1460, 1385, 1078. FAB-MS m/z: 964 [M + H + Na]⁺. ¹H NMR (pyridine- d_5): δ 0.68 (3H, s, Me-18), 1.08 (3H, s, Me-28), 1.09 (3H, s, Me-30), 1.18 (3H, s, Me-19),1.54 (3H, s, Me-29), 1.80 (3H, s, Me-27), 2.33 (1H, d, J = 14.16 Hz, H-12), 2.78 (1H, t, J = 9.28 Hz, H-17), 3.03 (1H, d, J = 13.68 Hz, H-12), 3.68 (1H, br s, H-3), 4.28, 4.51 (each 1H, AB q, J = 12.69 Hz, H₂-26), 4.83, 4.91 (each 1H, d, J = 7.82 Hz, H-1' and H-1'''), 4.93, 5.05 (each 1H, s, H₂-21), 5.16 (1H, d, J = 7.81 Hz, H-1''), 5.53 (1H, br s, H-6), 5.65 (1H, t-like, J = 6.34 Hz, H-24). ¹³C NMR data: Table 1.

Cabensoide L (4). Amorphous powder, $[\alpha]_D^{21} + 27.3^\circ$ (pyridine; c 0.55), IR v_{max} cm⁻¹: 3400, 1678, 1655, 1562, 1460, 1383, 1078. FAB-MS m/z: 1126 [M + H + Na]⁺. ¹H NMR (pyridine- d_5): δ 0.67 (3H, s, Me-18), 1.08 (3H, s, Me-28), 1.09 (3H, s, Me-30), 1.18 (3H, s, Me-19), 1.54 (3H, s, Me-29), 1.80 (3H, s, Me-27), 3.69 (1H, br s, H-3), 4.84, 4.87, 5.18, 5.33 (each 1H, d, d) = 7.32–7.82 Hz, anomeric H), 4.92, 5.04 (each 1H, s, H₂-21), 5.53 (1H, br s, H-6), 5.68 (1H, t-like, H-24). ¹³C NMR data: Table 1.

REFERENCES

- 1. Nakano, K., Kanai, Y., Murakami, K., Takaishi, Y. and Tomimatsu, T. (1994) *Phytochemistry* 37, 817.
- Nakano, K., Kanai, Y., Murakami, K. and Takaishi, Y. (1994) Phytochemistry (in press).