

CUCURBITACIN GLYCOSIDES FROM CABEÇA-DE-NEGRO

KIMIKO NAKANO, YUU KANAI, KŌTARO MURAKAMI and YOSHIHISA TAKAISHI

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima, 770, Japan

(Received 22 August 1994)

Key Word Index—Caput nigri; Cucurbitaceae; Cabeça-de-negro; roots; cucurbitacin glycoside; bryodulcosigenin; cabenoside D-H.

Abstract—Five cucurbitacin glycosides named cabenosides D–L were isolated from 'Cabeça-de-negro', the roots of Caput nigri. Among them, the structures of cabenosides D–H were elucidated as 10α -cucurbit-5-en-11-oxo-3 β ,24R,25-triol-3-O- β -D-glucopyranoside, 10α -cucurbit-5-en-24-oxo-3 β ,11 α ,25-triol-25-O- β -D-glucopyranosyl, [3,O- β -D-glucopyranosyl-(1-2)- β -D-glucopyranoside, 3-O- β -D-glucopyranosyl-(1-6)- β -D-glucopyranoside] and 10α -cucurbit-5-en-11,24-dioxo-3 β ,25-diol-25-O- β -D-glucopyranosyl, 3-O- β -D-glucopyranosyl-(1-6)- β -D-glucopyranoside, respectively, on the basis of chemical and spectral evidence.

INTRODUCTION

In the preceding paper [1], we reported the isolation and structure elucidation of three new nor-cucurbitacin glucosides named cabenosides A-C from 'Cabeça-de-negro' the roots of *Caput nigri*. In the continuing study on glucosidic constituents, we obtained nine additional cucurbitacin glucosides, named cabenosides D(1), E(2), F(3), G(4), H(5), I, J, K and L. This paper reports the structural characterization of 1-5.

RESULTS AND DISCUSSION

Cabenoside D(1), amorphous powder, $[\alpha]_D + 80.0^{\circ}$ (MeOH), showed a $[M + Na]^+$ peak at m/z 659 in the FAB-mass spectrum. The ¹H NMR spectrum of 1 exhibited signals due to seven tertiary methyl groups ($\delta 0.73$, 0.95, 1.12, 1.17, 1.54, 1.57 and 1.61) and one secondary methyl group ($\delta 0.94$, d, J = 6.35 Hz), those due to methylene groups (δ 2.49 and 2.91, each 1H, d, J = 14.16 Hz) adjacent to a carbonyl group, those due to two hydroxy methine groups (δ 3.69, br s and 3.79, br d, J = 7 Hz) and an olefin (δ 5.53, d, J = 5.37 Hz). It also gave doublet signal at $\delta 4.88$ (J = 7.32 Hz) ascribable to an anomeric proton. These results, combined with ¹³C NMR data, suggested 1 should be bryodulcosigenin [2, 3] glucoside. This was supported by the 2D-NMR experiments; the H-3 at δ 3.79 showed a long range correlation with the anomeric carbon at δ 107.3, which was confirmed by direct comparison with an authentic sample mogroside IE₂ [4]. Thus, the structure of 1 was concluded to be 10α-cucurbit-5-en-11-oxo-3β,24R,25triol-3-O-β-D-glucopyranoside.

Cabenoside E (2) obtained as a powder, $[\alpha]_D + 7.7^\circ$ (pyridine), showed a peak m/z 821 $[M + Na]^+$ in the FAB-mass spectrum. The ¹H NMR spectrum of 2 dis-

$$R_1O$$
 R_2
 R_1O
 R_2
 R_1O

	\mathbf{R}_1	\mathbf{R}_{2}	R_3	R_4
Cabenoside D (1):	glc	O	OH	Н
Cabenoside E (2):	glc	αОН	o	glc
Cabenoside F (3):	glc(1-2)glc	αOH	O	glc
Cabenoside G (4):	glc(1-6)glc	αOH	O	glc
Cabenoside H (5):	glc(1-6)glc	O	O	glc

played seven tertiary methyl signals, one secondary methyl signal, one olefinic proton signal and two anomeric proton signals. The ^{13}C NMR spectrum revealed the presence of five quaternary carbon signals at $\delta40.1$, 42.4, 47.3, 49.7 and 82.8, a set of olefinic carbon signals at $\delta118.4$ and 144.2, one carbonyl carbon signal at $\delta214.3$ and two anomeric carbon signals at $\delta99.6$ and 107.4.

On acid hydrolysis, 2 afforded D-glucose and an aglycone (2a). In the ¹H NMR spectrum of 2a, an hydroxyl methine proton appeared at $\delta 4.20$ as a double doublet signal (J = 4.88, 11.23 Hz). Furthermore, the ¹³C NMR signals of 2a arising from C-1, C-10 and C-19

210 K. Nakano et al.

were displaced downfield, while the signals from C-12 and C-13 moved upfield as compared with those of 1. These results suggested cabenoside E should be a 24-oxo-cucurbit-5-en type triterpenoid having 3β ,11 α ,25-trihydroxyl groups. Comparison of the ¹³C NMR spectrum of **2** with that of **2a** showed glycosylation shifts [5] for the C-3 and C-25 signals of the aglycone. These were also supported by the ¹H-¹H COSY, ¹H-¹³C COSY and ¹H-¹³C long range COSY spectra. From the above evidence the structure of **2** was concluded to be 10α -cucurbit-5-en-24-oxo- 3β , 11α ,25-triol-3,25-di-O- β -D-glucopyranoside.

Cabenoside F (3) and G (4), obtained as powder, $[\alpha]_D$ + 19.5° (pyridine) and + 3.8° (pyridine), exhibited a $[M + Na]^+$ peak at m/z 983 and a $[M + H + Na]^+$ peak at m/z 984 in their FAB-mass spectra. In the ¹H and ¹³C NMR spectra of 3 and 4, signals due to the aglycone moieties were in good agreement with those of 2, while signals due to the sugar moieties were identical with 3-O- β -sophorosyl, 25-O- β -D-glucopyranoside and 3-O- β -gentiobiosyl, 25-O- β -D-glucopyranoside, respectively. From the above evidence, the structures of 3 and 4 were deduced for these compounds.

Cabenoside H (5), obtained as powder, $[\alpha]_D + 42.5^\circ$ (pyridine), exhibited a $[M + Na]^+$ peak at m/z 981 in the FAB-mass spectrum. The ¹H NMR spectrum showed seven singlet methyl signals and one doublet methyl signal, one olefinic proton signal and three anomeric proton signals. The ¹³C NMR spectrum revealed the presence of five quaternary carbon signals at δ 41.4, 49.0, 49.0, 49.6 and 82.8, a pair of olefinic carbon signals at δ 118.4 and 141.3, two carbonyl carbon signals at δ 213.3 and 214.3 and three anomeric carbon signals at δ 99.6, 105.4 and 106.9. From the analysis of ¹H-¹H COSY, ¹H-¹³C COSY and ¹H-¹³C long range COSY spectra, the structure of 5 was determined as shown and it was concluded to be 10α -cucurbit-5-en-11,24-di-oxo-3 β ,25-diol-3-O- β -sophorosyl,25-O- β -D-glucopyranoside.

EXPERIMENTAL

The instruments used to obtain physical data and the experimental conditions for chromatography were the same as described in the preceding paper [1].

Isolation of compounds 1–5. Fr. 2 (13.8 g), Fr. 5 (5.7 g), Fr. 7 (5.24 g) and Fr. 8 (13 g) [1] were repeatedly chromatographed on silica gel, Sephadex LH-20 and ODS column with CHCl₃–MeOH–EtOAc–H₂O (4:4:10:1, 6:6:8:1), CHCl₃–MeOH (1:1), MeOH–H₂O (1:1, 3:2) respectively, to afford cabenoside D (1, 166 mg), E (2, 349 mg), F (3, 222 mg), G (4, 180 mg), H (5, 69 mg), I (134 mg), J (12 mg), K (69 mg) and L (15 mg).

Cabenoside D (1). Amorphous powder, $[\alpha]_D + 80^\circ$ (MeOH; c 0.5), IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1687, 1656. FAB-MS m/z: 659 [M + Ma]⁺. ¹H NMR (d_5 -pyridine): δ 0.73 (3H, s, Me-18), 0.90 (3H, d, d = 6.35 Hz, Me-21), 0.95 (3H, s, Me-30), 1.12 (3H, s, Me-28), 1.17 (3H, s, Me-19), 1.54, 1.57, 1.61 (each 3H, s, Me-26, Me-27, Me-29), 2.49 (1H, d, d = 14.16 Hz, H-12), 2.92 (1H, d, d = 14.16 Hz, H-12), 3.62 (1H, d d +

Table 1. 13 C NMR spectral data of aglycone moieties of cabenosides D, E and H (d_5 -pyridine, δ values)

С	D (1)	E (2)	H (5)
1	22.1	26.8	22.2
2	28.5	29.5	28.6
3	87.2	87.9	86.5
4	42.0	42.4	41.4
5	141.2	144.2	141.3
6	118.5	118.4	118.4
7	24.1	24.5	24.1
8	43.9	43.5	43.9
9	49.0	40.1	49.0
10	35.9	36.8	35.9
11	213.8	77.8	213.3
12	48.7	41.0	48.7
13	49.6	47.3	49.6
14	49.1	49.7	49.0
15	34.5	34.5	34.5
16	28.1	28.2	28.0
17	49.9	50.9	49.8
18	16.9	16.8	16.9
19	20.3	26.2	20.2
20	36.0	36.1	35.9
21	18.2	18.8	18.2
22	34.0	30.8	30.5
23	28.7	33.8	33.6
24	79.0	214.3	214.3
25	72.8	82.8	82.8
26	25.9	24.6	24.6
27	26.0	23.6	23.7
28	28.3	27.7	28.3
29	26.1	26.2	25.7
30	18.2	19.2	18.5

Table 2. 13 C NMR spectral data of sugar moieties of cabenosides D-H (d_5 -pyridine, δ values)

С	D (1)	E (2)	F (3)	G (4)	H (5)
Glc-1'	107.3	107.4	104.8	106.9	106.9
2′	75.5	75.5	82.0	75.1	75.2
3′	78.3	78.3	77.1	78.2	78.2
4′	71.7	71.8	71.7	71.5	71.2
5′	78.7	78.7	78.4	77.2	77.3
6′	63.0	63.0	62.8	70.2	70.4
1"			105.2	105.3	105.1
2"			75.5	75.3	75.3
3"			78.3	78.4	78.4
4′′			71.6	71.6	71.7
5"			78.6	78.3	78.6
6′′			62.7	62.7	62.7
1′′′		99.6	99.6	99.5	99.6
2′′′		75.3	75.3	75.3	75.3
3′′′		78.1	78.2	78.2	78.4
4′′′		71.7	71.9	71.8	71.8
5"		78.6	78.4	78.6	78.7
6''		63.0	62.9	62.9	62.9

J = 7.32 Hz, H-1'), 5.52 (1H, br d, H-6). ¹³C NMR data in Tables 1 and 2.

Cabenoside E (2). Amorphous powder, $[\alpha]_D + 7.7^\circ$ (pyridine; c 0.52), $1R \nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1700, 1655, 1662, 1460, 1380. FAB-MS m/z: 821 $[M + Na]^+$. ¹H NMR $(d_5$ -pyridine): δ 0.87 (3H, s, Me-18), 0.88 (3H, s, Me-30), 0.94 (3H, d, d) = 5.86 Hz, Me-21), 1.15 (3H, s, Me-28), 1.32 (3H, s, Me-19), 1.57 (3H, s, Me-29), 1.62 (6H, s, Me-26, Me-27), 3.69 (1H, d) d0 (1H, d0, d0 (1H, d0) d1 (1H, d1) d2 (1H, d1) d3 (1H,

Cabenoside F (3). Amorphous powder, $[\alpha]_D + 19.5^\circ$ (pyridine; c 0.5). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1708, 1460, 1385. FAB-MS m/z: 983 [M + Na]⁺. ¹H NMR (d_5 -pyridine): δ 0.85 (3H, s, Me-18), 0.90 (3H, s, Me-30), 0.91 (3H, d, J=5.86 Hz, Me-21), 1.12 (3H, s, Me-28), 1.33 (3H, s, Me-19), 1.57 (3H, s, Me-29), 1.62 (6H, s, Me-26, Me-27), 3.65 (1H, br s, H-3), 4.91 (1H, d, J=6.83 Hz, H-1'), 5.03 (1H, d, J=7.81 Hz, H-1'''), 5.40 (1H, d, J=7.32 Hz, H-1''), 5.86 (1H, br d, J=5.86 Hz, H-6). ¹³C NMR data in Tables 1 and 2.

 1"), 5.50 (1H, $br\ d$, $J = 5.86\ Hz$, H-6). $^{13}{\rm C}\ {\rm NMR}\ data$ in Tables 1 and 2.

Cabenoside H (5). Amorphous powder, $[\alpha]_D + 42.5^{\circ}$ (pyridine; c 0.61). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1688, 1562, 1460, 1385. FAB-MS m/z: 981 [M + Na]⁺. ¹H NMR (d_s -pyridine): δ 0.69 (3H, s, Me-18), 0.88 (3H, d, J = 5.86 Hz, Me-21), 0.95 (3H, s, Me-30), 1.07 (3H, s, Me-28), 1.17 (3H, s, Me-19), 1.53 (3H, s, Me-29), 1.63 (6H, s, Me-26, Me-27), 2.91 (1H, d, J = 14.6 Hz, H-12), 3.73 (1H, br s, H-3), 4.83 (1H, d, J = 7.31 Hz, H-1'), 5.03 (1H, d, J = 7.32 Hz, H-1'''), 5.17 (1H, d, J = 7.33 Hz, H-1''), 5.52 (1H, br d, J = 4.40 Hz, H-6). ¹³C NMR data in Tables 1 and 2.

Acknowledgements—The authors are grateful to Prof. Shigenobu Arihara (Tokushima-Bunri, University) for supplying an authentic sample of mogroside IE₂.

REFERENCES

- Nakano, K., Kanai, Y., Murakami, K., Takaishi, Y. and Tomimatsu, T. (1994) Phytochemistry 37, 817.
- Oobayashi, K., Yoshikawa, K. and Arihara, S. (1992) *Phytochemistry* 31, 943.
- Takemoto, T., Arihara, S., Nakajima, T. and Okuhira, M. (1983) Yakugaku-Zasshi 103, 1155.
- Takemoto, T., Arihara, S., Nakajima, T. and Okuhira, M. (1983) Yakugaku-Zasshi 103, 1167.
- 5. Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, O. (1979) *Tetrahedron Letters* 35, 1427.