

TRITERPENOID DIGLUCOSIDE OF ENTEROSPERMUM PRUINOSUM*

P. RASOANAIVO, G. MULTARI,† E. FEDERICI† and C. GALEFFI†

Institut Malgache de Recherches Appliquées, B. P. 3833, 101 - Antananarivo, Madagascar; †Istituto Superiore di Sanità, V. Regina Elena, 299 - 00161 Roma, Italy

(Received in revised form 27 September 1994)

Key Word Index-Enterospermum pruinosum; Rubiaceae; saponins; longispinogenin.

Abstract—From the leaves of *Enterospermum pruinosum* longispinogenin (= olean-12-ene-3 β ,16 β ,28-triol) 3,16-di-O- β -D-glucopyranoside was isolated and identified by chemical and spectroscopic methods.

INTRODUCTION

Enterospermum pruinosum Baillon ex Dubard (= Ixora pruinosa) is a Mahagasy plant whose leaves are used in traditional medicine as an antidiarrhoic and an antihelminthic. By a preliminary chromatographic survey the presence of flavonoids, iridoids and terpenoids was shown as in other Rubiaceae. The most abundant saponin 1, (0.09% of the dried leaves) isolated by counter-current distribution (CCD) corresponded to the formula $C_{42}H_{70}O_{13}$ ([M - H] at m/z 781]). On hydrolysis in dioxane-HCl it gave D-glucose and a pentacyclic triterpene, $C_{30}H_{50}O_3$, identified from ¹³C NMR

data [2] as longispinogenin, (2) (= olean-12-ene- 3β , 16β , 28-triol). It had been obtained previously from the saponins of *Lemaireocereus longispinus* [3] and the fatty acid esters of *L. chichipe* [4] and *Dolichothele longimamma* (Cactaceae) [5], and the saponins of *Bupleurum falcatum* (Umbelliferae) [6] and was isolated from the flowers of *Calendula officinalis* [7].

The ¹H NMR spectrum of the diglucoside 1, besides the well distinguished signals of seven methyl groups, showed the signals of the hydroxymethylene (δ 4.35, d, and 4.37, d, $J_{gem} = 11.0$ Hz) and of the two secondary alcoholic groups at C-3 and C-16 (δ 3.87 and 3.89, dd, J = 5.1 and 12.0 Hz). In longispinogenin (where a sixmembered ring hydrogen bond is between the hydroxy groups at C-16 and C-28) the corresponding signals are remarkably different, i.e. H-a and H-b of C-28 at δ 3.15 and 4.10, H-16 at δ 4.28 and H-3 at δ 3.19.

The ^{13}C NMR spectrum of 1 showed practically identical signals for the two glucose moieties (Table 1) which ruled out any disaccharide linkage. The downfield shifts of the two secondary alcoholic carbons (C-3, δ 90.7, and C-16, δ 75.6) in comparison with longispinogenin (78.9 and 67.8, respectively), observed also for the nonacetyl derivative of 1, 3, in comparison with triacetyllongispinogenin, 4 [2], accounted for the corresponding position of the two glucose units in 1.

The chemical shifts of the two anomeric carbons of 1, $(\delta 102.9 \text{ and } 102.4)$ were consistent with their β -configuration assignable by the coupling constants of the anomeric hydrogens in 3 ($\delta 4.48$ and 4.49, 2d, J=7.5 Hz). The structure of 1 was thus fully established. The only glycoside so far described for longispinogenin is corchorusin A (= longispinogenin $3-O-\beta$ -D-galactopyranoside) isolated from *Corchorus acutangulus* (Tiliaceae) [8].

EXPERIMENTAL

A Craig Post apparatus (200 stages, 10:10 ml, upper and lower phase) was used for CCD. The purification

^{*}Part 35 in the series 'Research on African Medicinal Plants'. For part 34 see ref. [1].

252 Short Reports

Table 1. ¹³C NMR spectral data assignments of compounds 1 and 3

С	1 (CD ₃ OD)	3 (CDCl ₃)
Aglucone m	oiety	
1	40.1	38.5
2	24.6	23.5
3	90.7	90.4
4	38.0	38.8
5	56.9	55.5
6	19.7	18.0
7	35.2ª	33.7ª
8	40.0 ^b	39.9 ^b
9	48.0	46.7
10	35.5	36.5
11	24.6	23.5
12	123.8	123.5
13	144.0	141.4
14	42.9	43.1
15	35.1ª	32.5a
16	75.6	76.6
17	41.1 ^b	40.8 ^b
18	44.7	42.8
19	47.9	46.3
20	31.7	30.7
21	33.7	34.2
22	27.0	25.7
23	27.5	27.6
24	16.9°	16.6°
25	16.1°	16.3°
26	17.4	15.4
27	28.5	27.0
28	66.8	65.9
29	33.5	33.0
30	24.2	23.5
Sugar moie		
1'	106.1, 106.7	102.4, 102.9
2'	77.6	71.4, 71.5
3'	78.2	72.7, 72.8
4′	71.7	68.5, 68.7
5'	78.1	71.5
6'	62.8	62.1, 62.4
MeCO		20.5
Me <u>CO</u>		169.1, 169.4,
		170.3, 170.5,
		171.0

a-c These assignments may be interchanged within the same column.

was monitored by TLC (silica gel F₂₅₄, solvent *n*-BuOH-HOAc-H₂O, 4:1:1, spray reagent anisal-dehyde-sulphuric acid). ¹H and ¹³C NMR: Bruker 500 MHz (TMS as int. ref.). FAB-MS: Kratos MS9/50TC.

Plant material, extraction and separation. Leaves of E. pruinosum were collected in southern Madagascar. Dried leaves (500 g) were extracted with MeOH and the residue (41 g) partitioned between H_2O -EtOH-cyclohexane-

EtOAc (5:2:5:2). The upper phase, containing mainly chlorophylls, was discarded and the residue of the lower phase was partitioned between H_2O and n-BuOH. The n-BuOH extract (12 g) was subjected to CCD with the biphase system H_2O -EtOH-EtOAc-cyclohexane (10:4:13:1). The middle fraction was further purified by CCD with the system H_2O -EtOH-CH₂Cl₂ (4:6:5). The less mobile fraction ($K_r = 0.67$) was chromatographically pure and amounted to 0.45 g (0.09% of the starting material).

Longispinogenin 3,16-di-O-β-D-glucopyranoside (1). Mp 157–159° from aq. EtOH. [α] $_{0}^{20}$ + 4.6 (MeOH; c 0.4). FAB-MS (negative ion mode) m/z: 781 [M - H] $_{-}$, C₄₂H₇₀O₁₃; (positive ion mode) m/z 805 [M + Na] $_{-}$, 783 [M + H] $_{-}$, 765 [M + H - H₂O] $_{-}$. ¹H NMR (CD₃OD): δ0.90, 0.95, 0.97, 1.02, 1.06, 1.10, 1.29 (s, 7 Me), 3.7 (m, 2H₂-6, Gl), 3.87 and 3.89 (dd, J = 5.1 and 12.0 Hz, H-3 and H-16), 4.35 and 4.37 (2d, J_{gem} = 11.0 Hz, H₂-28), 5.29 (t, J = 4 Hz, H-12).

Hydrolysis of compound 1 to give longispinogenin (2). The soln of 1 (60 mg) in 4 M HCl (4 ml) and dioxane (4 ml) was kept in a boiling water bath for 1 hr. The soln was diluted with water and extracted with CH_2Cl_2 . The residue of the organic phase was purified by CCD with $H_2O-Me_2CO-EtOH$ -cyclohexane 2:2:3:5) and was identified as longispinogenin (2). ¹H NMR (CDCl₃): δ 0.77, 0.89 (×2), 0.91, 0.97 (×2), 1.20 (s, 7 Me), 3.15 (d, J_{gem} = 11.0 Hz, H_a -28), 3.19 (dd, J = 4.4 and 11.4 Hz, H-3), 4.10 (d, H_b -28), 4.28 (dd, J = 4.8 and 12.0 Hz, H-16), 5.17 (t, J = 4 Hz, H-12). The aq. soln was percolated through a column of a slightly alkaline anion-exchanger and in the residue glucose was identified by TLC and through its β-pentaacetate.

Nonaacetate of compound 1 (3). Compound 1 was acetylated with a 1:1 mixture of pyridine and Ac₂O. After 2 days the reagents were evapd in vacuo and the residue purified by CCD with $H_2O-Me_2CO-EtOH-EtOAc-cyclohexane$ (10:8:9:1:20). Mp 121-123° from n-hexane, $[\alpha]_D^{20} + 16.2$ (CHCl₃; c0.5). ¹H NMR (CDCl₃): δ 0.71, 0.83 (×4), 0.95, 1.15 (s, 7 Me), 1.96-2.03 (s, 9 Ac), 3.61 (m, 2H-5, G1), 3.66 (H-3 and H-16, overlapped), 3.9-4.2 (m, 2H₂-6, G1), 4.48 and 4.49 (2 d, J=7.5 Hz, 2H-1, G1), 5.13 and 5.16 (2 d, $J_{gem}=11.0$ Hz, H_2 -28), 5.19 (t, J=4 Hz, H-12).

Acknowledgements—The authors are grateful to Dr F. A. Mellon (Institute of Food Research, Norwich, U.K.) for the FAB-mass spectra and to Mr A. Rosini for technical assistance. One of us (P.R.) gratefully acknowledges the Consiglio Nazionale delle Ricerche for a fellowship.

REFERENCES

 Chifundera, K., Nicoletti, M., Federici, E., Multari, G., Galeffi, C. and Palazzino, G. (1994) Fitoterapia (in press). Short Reports 253

- Tori, K., Yoshimura, Y., Seo, S., Sakurawi, K., Tomita, Y. and Ishii, H. (1976) Tetrahedron Letters 46, 4163.
- Djerassi, C., Geller, L. E. and Temin, A. J. (1954)
 J. Am. Chem. Soc. 76, 4089.
- 4. Khong, P. W. and Lewis, K. G. (1975) Aust. J. Chem. 28, 165.
- Spencer, G. F., Payne-Wahl, K. and Wolf, R. B. (1983)
 Nat. Prod. 46, 551.
- Kubota, T. and Tonami, F. (1967) Tetrahedron 23, 3353.
- 7. Wilkomirski, B. (1985) Phytochemistry 24, 3066.
- 8. Mahato, S. B. and Pal, B. C. (1987) J. Chem. Soc., Perkin Trans I 629.