

ISOQUINOLINE ALKALOIDS FROM ANCISTROCLADUS TECTORIUS

A. MONTAGNAC, A. HAMID A. HADI,* F. REMY and M. PAÏS†

Institut de Chimie des Substances Naturelles, C.N.R.S., 91198 Gif-sur-Yvette, France; *Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received in revised form 17 October 1994)

Key Word Index--Ancistrocladus tectorius; Ancistrocladaceae; bark; isoquinoline alkaloids.

Abstract—Two new alkaloids were extracted from the bark of Ancistrocladus tectorius, 6,8-dimethoxy-3-hydroxymethyl-1-methylisoquinoline and the naphthylisoquinoline, 4'-O-demethylancistrocladine, together with the known isoquinolines, 6,8-dimethoxy-1,3-dimethylisoquinoline and (S)-6,8-dimethoxy-1,3-dimethyl-3,4-dihydro-isoquinoline, which, however, have never been isolated from a natural source. The structures of the new alkaloids, as well as the absolute stereochemistry of 4'-O-demethylancistrocladine were established by spectroscopic means and chemical correlations.

INTRODUCTION

Various naphthylisoquinoline alkaloids, especially ancistrocladine (1) and hamatine (2), have previously been isolated from the roots, leaves and stems of *Ancistrocladus tectorius*, a southeast Asian liana [1]. We show in the present work that the bark of a sample collected in Malaysia contains a major alkaloid, which is a simple isoquinoline, namely 6,8-dimethoxy-3-hydroxymethyl-1-methylisoquinoline (3). Two other known isoquinolines, 6,8-dimethoxy-1,3-dimethylisoquinoline (4) [2] and (S)-6,8-dimethoxy-1,3-dimethyl-3,4-dihydrolisoquinoline (5) [3], which have never been described as natural products, were also isolated, together with a new naphthylisoquinoline alkaloid, 4'-O-demethylancistrocladine (6).

RESULTS AND DISCUSSION

The alkaloids were extracted using conventional methods. Recrystallization of the crude extract from methanol afforded almost pure 3 (yield 0.09%). The mother liquors were purified by CC on silica gel yielding 3 (0.04%), 4 (0.002%) and a complex mixture of alkaloids (0.03%). Chromatography of this mixture on alumina, followed by reverse-phase HPLC, afforded 5 (0.001%) and 6 (0.001%). ¹H NMR analysis of the other HPLC fractions showed the presence of several naphthylisoquinoline-type alkaloids, but attempts to purify them either on normal or reverse-phase were unsuccessful.

- 1 R₁= Me, R₂= R₃=H, 1'-S
- 2 R₁= Me, R₂ = R₃ = H, 1'- R
- 6 R₁= R₂ = R₃ = H, 1'-S
- 7 R₁= Me, R₂= Me, R₃= CHO, 1'-S

Alkaloid 3, mp 164° , revealed UV maxima typical of an isoquinoline chromophore at 238, 321 and 306 nm (log ϵ 4.60, 3.74 and 3.75). The EI mass spectrum showed a [M]⁺ ion at m/z 233 corresponding to the molecular formula $C_{13}H_{15}NO_3$. In the ¹H NMR spectrum, three methyl singlets at δ 2.95 and 3.82, 3.85 were assigned, respectively, to a methyl group and two methoxy groups.

This work has been carried out in the framework of a collaborative program between CNRS (France) and the University of Malaya (Kuala Lumpur, Malaysia).

[†]Author to whom correspondence should be addressed.

The *meta*-coupled aromatic protons appeared as two doublets ($\delta 6.50$ and 6.70, J=2 Hz) and the hydroxymethylene protons as a singlet at $\delta 3.70$. In the ¹³C NMR spectrum, the two methoxy groups resonated at $\delta 54.8$, the methyl group at $\delta 26.5$ and the methylene at $\delta 63.8$. Detailed analysis of the HMBC spectrum (Table 1) defined the assignments and the connectivity of all carbons leading to the structure depicted in 3. Further evidence for the latter structure was provided by the conversion of 3 into the known alkaloid 4 using successive mesylation (MsCl, NEt₃, CH₂Cl₂) and reduction with LiAlH₄.

Alkaloid 6, $[\alpha]_D + 2.5^\circ$, showed the characteristic UV maxima of a naphthylisoquinoline at 230, 290, 306, 320 and 335 nm (log ε 4.65, 3.89, 3.93, 3.82, 3.76). The HREI mass spectrum exhibited a [M]⁺ ion at m/z 393.1935 (calcd 393.1940) corresponding to the molecular formula $C_{24}H_{27}NO_4$. The ¹H NMR spectrum displayed only two methoxy groups at δ 4.08 and δ 3.82, instead of three for ancistrocladine, and one aromatic methyl group at δ 2.08. Two doublets (J = 6.5 Hz) typical of the methyl groups of

the heterocyclic ring (3-Me at δ 0.96 and 1-Me at δ 1.42), were also observed. The downfield shift of the 1-methyl group revealed that it was inside the shielding zone of the nearby naphthyl ring, which therefore was most probably attached to C-5, as in ancistrocladine (1) [4]. The chemical shift and splitting pattern of the protons attached to C-1, C-3 and C-4 were very similar to those found in 1 showing the same relative trans-stereochemistry between the two methyl groups (see Table 1 and [5]). The aromatic region (Table 1) was also similar to that of 1, indicating the same substitution pattern by OH or OMe groups at C-6, C-8, C-4' and C-5', and by a Me at C-2'. Thus, 6 was an O-demethyl derivative of ancistrocladine (1) or its atropisomer hamatine (2). The extra OH showed hydrogen bonding with an oxygen, as deduced from the downfield shift of the proton at δ 9.45 and, thus, could be located only at C-4' or C-6'. The NOESY spectrum displayed a cross-peak from one of the methoxy groups $(\delta 4.08)$ to H-6', which therefore indicated a 4'-OH. Furthermore, a NOESY experiment (Table 1) showed the correlations of 1-Me/H-3 and H-3/H-4eq, which confirm-

Table 1. ¹³C (62.5 MHz) and ¹H NMR (400 MHz) data for 6,8-dimethoxy-3-hydroxymethyl-1-methylisoquinoline (3)*+ and 4'-O- demethylancistrocladine (6)†;

ρ Position	3			6			
	$\delta_{\mathfrak{C}}$	$\delta_{\rm H} \left(J \; {\rm Hz} \right)$	НМВС	$\delta_{\rm C}$	$\delta_{\rm H} (J {\rm Hz})$	НМВС	NOESY
1	157.2		1-Me	47.4	4.30 q (6.5)	1-Me	1-Me
3	152.3		CH ₂ O	42.1	3.10 m	3-Me	1-Me, 4eq, 3-Me
4	114.3	7.42 s	5, 10, CH ₂ O	35.6	ax. 1.75 dd (17.5, 11)	3-Me	4eq, 3-Me
					eq. 1.95 dd (17.5, 4.5)		4ax, 8'
5	97.4	6.70 d(2)	6,7	120.3	,	4eq, 7,1-Me	
6	161.3		6-OMe	152.4		7	
7	98.7	6.50 d (2)	5, 6, 8	96.0	6.45 s		8-OMe
8	159.2		8-OMe	156.8		7,8-OMe	
9	115.1		1-Me	115.8		7,4eq	
10	140.8			135.2		4eq, 4ax	
1'				120.3		3',2'-Me	
2'				139.7		2'-Me	
3'				113.3	6.88 s	2'-Me	2'-Me
4'				154.7			
5'				156.7		6',7',5'-OMe	
6'				103.9	6.80 d (8)	8′	5'-OMe
7′				126.7	$7.20 \ dd \ (8,8)$		
8'				118.9	6.95 d (8)	6′	
9'				136.4		7′	
10'				114.2		3',6',8'	
1-Me	26.5	2.95 s		21.6	1.42 d (6.5)		
3-Me				22.5	0.96 d (6.5)		
3-CH ₂ O	63.8	$4.70 \ br \ s$					
2'-Me				20.8	2.08 s		
6-OMe	54.8	3.90 s					
8-OMe	54.8	3.90 s		55.3	3.82 s		
5'-OMe				56.3	4.08 s		
4'-OH					9.45 br s		

^{*}In CDCl3-CD4O.

[†]Assignments based on 2D experiments.

[‡]In CDCl3.

ed the relative stereochemistry at C-1/C-3 as described previously [5, 6]. Finally, a cross-peak was observed between H-4eq, cis to H-3, and H-8' which revealed that 6 possessed the same trans spatial relationship between H-8' and the 3-methyl as in ancistrocladine (1).

The relative stereochemistry of alkaloid **6** was confirmed and its 1'-S and 3-S configuration was established, by correlation with ancistrocladine. Treatment of **6** with CH_2N_2 gave only partial methylation of the chelated OH-4'. Therefore, the NH was protected by a formyl group and subsequent methylation with Mel (DMF, NaH) yielded the known (-)-N-formyl-O-methylancistrocladine (**7**). The S configuration at C-1' was further supported by the CD spectrum, which displayed a negative Cotton effect at 225 nm [7]. Thus, both alkaloids **5** and **6** have the same 3-S configuration, as found previously for the 5-1' coupled naphthylisoquinoline alkaloids of A. tectorius and other Asian species of Ancistrocladus [8].

EXPERIMENTAL

General. Mp: uncorr. Optical rotation and IR were measured in CHCl₃, UV and CD spectra in MeOH. EIMS 70 eV. ¹H NMR were recorded at 400 MHz, ¹³C NMR at 62.5 MHz; chemical shifts are given in ppm with TMS as int. standard. 2D NMR expts were carried out with standard pulse sequences. Semi-prep. HPLC: C-18 (25 × 100 mm).

Plant material. Bark of A. tectorius (Lour.) Merr was collected in Mersing Johor on 30 April, 1991. Identification was made by F. R. Voucher specimens (KL 4019) are deposited at the Muséum National d'Histoire Naturelle in Paris and at the Herbarium of Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia.

Extraction and isolation of alkaloids. Dried ground bark (2 kg) was extracted exhaustively with MeOH at room temp. The concd extract was diluted with CH₂Cl₂ and re-extracted with 5% HCl. The aq. layer was basified to ca pH 11 with NH₄OH and re-extracted with CH₂Cl₂ until a negative Mayer's test was obtained. The CH₂Cl₂ extracts were pooled, washed with H₂O, dried (Na₂SO₄) and evapd, yielding a crude alkaloid fr. (4.6 g). This crude product (3.7 g) was recrystallized from MeOH yielding alkaloid 3 (1.39 g). The mother liquors were chromatographed on silica gel with mixts of heptane-Me₂CO and then CH₂Cl₂-MeOH as eluant, yielding alkaloid 4, (30 mg) (heptane-Me₂CO, 7:3) which recrystallized from Et_2O , mp 71 – 73° [lit. [2], mp 65–67°], alkaloid 3 (0.65 g) (heptane-Me₂CO, 3:2) and a mixt. (0.48 g) (CH₂Cl₂-MeOH, 9:1). This mixt. was chromatographed on alumina. Alkaloid 5 (21 mg) was eluted first with Et₂O and converted into its HBr salt, mp 197° (Me₂CO). [α]_D -138° (MeOH; c 0.7) [lit. [3] mp 202° ; $[\alpha]_{D} - 141^{\circ}$]. The following frs (Et₂O, Et₂O-MeOH, 49:1, and CH₂Cl₂-MeOH, 99:1) contained complex mixts of naphthylisoquinoline alkaloids (1H NMR). The fr. eluted with CH₂Cl₂-MeOH (99:1) on purification by semiprep. reverse-phase HPLC using MeOH-1% NH₄Cl adjusted to pH 5.6 with HOAc (9:13), yielded 6 (14 mg).

Identification of 4 and 5 was further carried out by comparison of their spectral data with lit. values [2].

6,8-Dimethoxy-3-hydroxymethyl-1-methylisoquinoline (3). Crystals, mp 164° (MeOH–CH₂Cl₂). UV λ_{max} nm (log ε) 238 (4.60), 321 (3.74), 306 nm (3.75). EIMS m/z (rel. int.): 233 [M]⁺ (60), 232 [M – 1]⁺ (100). ¹H and ¹³C NMR: Table 1. Analyt: found C 66.66, H 6.59, N 6.01, O 20.34; C₁₃H₁₅NO₃ requires C 66.93, H 6.48, N 6.01, O 20.58.

6,8-Dimethoxy-1,3-dimethylisoquinoline (4) from 3. To a stirred soln of 3 (0.1 g, 0.43 mM) in anhydrous CH_2Cl_2 (2 ml) was added at -20° NEt₃ (0.90 ml, 0.65 mM) and MsCl (0.045 ml, 0.50 mM). The mixt. was stirred for 20 min at -20° and then diluted with CH_2Cl_2 , washed with H_2O and evapd yielding the crude mesylate [0.11 g. ¹H NMR: δ 3.10, s (MeS)]. To a stirred soln of this product in THF (5 ml) was added LiAlH₄ (0.5 g) at 0°. The temp. was raised to 20° and the mixt. stirred for 30 min. The mixt. was then diluted with Et_2O and filtered after addition of a satd NH_4SO_4 soln. The filtrate was washed with H_2O and then with brine. The solvent was evapd and the residue purified by CC on silica gel (heptane– Me_2CO , 4:1) yielding 4 (50 mg) which recrystallized from Et_2O , mp 85–90°.

4'-O-Demethylancistrocladine (6). Gum. $[\alpha]_D + 2.5^\circ$ (c 1). UV λ_{max} nm (log ε) 230 (4.65), 290 (3.89), 306 (3.93), 320 (3.82), 335 (3.76). EIMS m/z (rel. int.) 393 $[M]^+$ (7), 392 $[M-1]^+$ (7), 378 $[M-15]^+$ (100), 188 (10). CD λ_{ext} ($\Delta\varepsilon$) 225 nm (-25), 240 nm (+7). 1H and ^{13}C NMR: Table 1.

(-)-N-Formyl-O-methylancistrocladine (7) from 6. To a stirred soln of 6 (10 mg, 0.025 mM) in DMF (1 ml) chilled to 0° was added N-diethyldiisopropylamine (15 μ l, 0.085 mM) and 4-nitrophenylformate (5 mg, 0.030 mM). After 30 min at 0°, the mixt. was diluted with CH₂Cl₂, washed with a satd NaHCO₃ soln (×4) and then with a citric acid soln, and evapd, yielding N-formyl-4'-Odemethylancistrocladine, which was not purified. To a stirred soln of this crude formamide in DMF (0.8 ml) was added NaH (50 mg) and MeI (0.5 ml). After 1 h, MeI (0.3 ml) was added again and the mixt, stirred for one more hr. Ice and CH₂Cl₂ were then added, the organic layer washed with H₂O and evapd, giving crude 7, which was submitted to CC on a small silica gel column. Elution with CH_2Cl_2 -MeOH (99:1) yielded 7 (5 mg). [α]_D - 78° (c; 0.4) [lit. [9] $[\alpha]_D - 91.8^\circ$ (CHCl₃; c 3.24)]. Spectral data identical in all aspects to lit. [9] and to those of 7 prepd from a sample of ancistrocladine (1) in the same manner as from 6.

Acknowledgements—We thank Prof. A. Cavé for a sample of ancistrocladine. We are indebted to C. Fontaine and J. F. Gallard (ICSN) for the measurements of 2D NMR.

REFERENCES

- Bringmann, G. (1986) in *The Alkaloids* Vol. 29 (Brossi, A, ed.), p. 141. Academic Press, New York.
- Rizzacaza, M. A., Sargent, M. V., Skelton, B. W. and White, A. H. (1990) Aust. J. Chem. 43, 79.

- Bringmann, G., Jansen, J. R. and Rink, H.-P. (1986)
 Ang. Chem. Int. Ed. Engl. 25, 913.
- 4. Foucher, J. P., Pousset, J. L. and Cavé, A. (1975) Phytochemistry 14, 2699.
- 5. Bringmann, G., Rübenaker, M., Jansen, J. R. and Scheutzow, D. (1990) *Tetrahedron Letters* 31, 639.
- 6. Bringmann, G., Rübenaker, M., Gender, T. and Ake'
- Assi, L. (1991) Phytochemistry 30, 3845.
- 7. Bringmann, G., Zagst, Reuscher, H. and Aké Assi, L. (1992) *Phytochemistry* 31, 4011.
- 8. Bringmann, G. and Kinzinger, L. (1992) Phytochemistry 31, 3297.
- 9. Govindachari, T. R. and Partharsaraty, P. C. (1971) Tetrahedron 27, 1013.