

LIGNANS FROM THE WOOD OF ARALIA BIPINNATA

JEH-JIAN HSIAO and HUNG-CHEH CHIANG*

Institute of Chemistry, National Taiwan Normal University, Taipei 117, Taiwan, R.O.C.

(Received 29 November 1994)

Key Word Index—Aralia bipinnata; Araliaceae; (-)-9'-O-trans-feruloyl-5,5'-dimethoxylariciresinol; (+)-9'-O-trans-feruloyl-5'-methoxylariciresinol; threo-2,3-bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol; lignans.

Abstract—Two new compounds (-)-9'-O-trans-feruloyl-5,5'-dimethoxylariciresinol and (+)-9'-O-trans-feruloyl-5'-methoxylariciresinol were isolated, together with threo-2,3-bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol, eight lignans, six alkaloids, stigmast-4-en-3-one, lupeol and eight aromatic compounds, from the wood of Aralia bipinnata. The structures of these compounds were elucidated by spectral methods. The hitherto unreported ¹H and ¹³C NMR spectra of three of these compounds are also discussed.

INTRODUCTION

We have previously reported the isolation of three new phenylpropanoids from the woody part of Aralia bipinnata [1, 2]. In our continuing phytochemical investigations, we have isolated and identified twenty seven compounds, including eight lignans: (+)-syringaresinol [3], (-)-liriresinol-A [4], (+)-medioresinol [5], (+)-4ketopinoresinol [6], (+)-pinoresinol [7], (\pm) -glaberide I [8], (+)-dihyrocubebin [9] and (+)-hinokinin [10]; six alkaloids: arnottianamide (4) [11], isoarnottianamide (5) [12], decarine [13], oxynitidine [14], 6-carboxymethyldihydrochelerythrine [15] and dihydroalatamide (6) [16]; stigmast-4-en-3-one [17]; lupeol [18]; threo-2,3-bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol eight aromatic compounds: p-hydroxybenzaldehyde [19], vanillin [19], syringaldehyde [19], trans-p-coumaraldehyde [19], methyl trans-p-coumarate [19], transconiferyl aldehyde [20], trans-sinapaldehyde [19] and 5-(hydroxymethyl)furfural [21]. Two new lignan derivatives: (-)-9'-O-trans-feruloyl-5,5'-dimethoxylariciresinol and (+)-9'-O-trans-feruloyl-5'-methoxylariciresinol (2) were also obtained. Compound 3 has previously been synthesized by chemical methods, but no data have been published [22]. It was isolated and identified for the first time from a natural source. This paper describes the isolation and characterization of 1. 2 and 3.

RESULTS AND DISCUSSION

Compound 1 was isolated as an amorphous powder and the molecular formula, $C_{32}H_{36}O_{11}$, determined by EI- ([M⁺], m/z 596) and HR-mass spectrometry. In the ¹H NMR spectrum, the presence of the *trans*-feruloyl

 $1 R_1 = OMe$

3

moiety was confirmed by the appearance of δ 3.59 (3H, s), 6.22 (1H, d, J = 15.8 Hz) and 7.50 (1H, d, J = 15.8 Hz) in addition to a 3H multiplet at δ 6.92–7.06. Comparison of the remaining signals in the ¹H NMR spectrum of 1 with the reported data of 5,5'-dimethoxylariciresinol [23, 24] revealed that the signals assignable to H-9'a and H-9'b

^{*}Author to whom correspondence should be addressed.

were shifted by +0.54 and +0.59 ppm, suggesting the location of *trans*-feruloyl on the C-9' hydroxy group of 1. The structure of 1 is thus (-)-9'-O-trans-feruloyl-5.5'-dimethoxylariciresinol.

Compound 2 was isolated as an amorphous powder and the molecular formula, $C_{31}H_{34}O_{10}$, determined by EI- ([M⁺], m/z 566) and HR-mass spectrometry. In the ¹H NMR spectrum, the presence of the *trans*-feruloyl moiety was also confirmed. A study of the ¹H NMR data of 2 in comparison with those of 1 revealed that 2 is a 5- or 5'-methoxylariciresinol-type lignan [25] containing a 9'-*O-trans*-feruloyl moiety. NOEs were observed between H7'/H2' and H7'/H6', and the structure of 2 was established as (+)-9'-*O-trans*-feruloyl-5'-methoxylariciresinol.

Compound 3 was isolated as an amorphous powder and the molecular formula, $C_{18}H_{22}O_6$, determined by EI-([M⁺], m/z 334) and HR-mass spectrometry. The UV and IR spectra of 3 indicated it to be an aromatic compound. Comparison of the ¹H NMR spectrum of 3 with that of 1,2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1,3-diol revealed that 3 was a 1,2-bis-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol-type [26] containing one methoxy group at δ 3.26. NOE was observed between δ 4.31/3.26. On the basis of these spectral data, the structure was assigned to 2,3-bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol and it was identified as the *threo* form [27].

As far as we know, the $^{13}\text{C NMR}$ (DMSO- d_6) and $^{1}\text{H NMR}$ (DMSO- d_6) spectra of 4 and 5 and the $^{13}\text{C NMR}$ (CDCl₃) spectrum of 6 have not been described in the literature. Attribution of carbon and proton signals has been made according to the literature [11, 12, 18] and confirmed by examination of $^{13}\text{C}^{-1}\text{H COSY}$ and HMBC spectra.

6

EXPERIMENTAL

General. Mps: uncorr.; NMR: 400 MHz, CDCl₃, TMS as int. standard; MS, 70 eV; IR, KBr; HPLC was performed on Si60 (Waters, $6 \mu m$, $7.8 \times 300 \text{ nm}$) column using EtOAc-hexane and EtOAc-CHCl₃ as solvent systems and employing a refractive index detector.

Extraction and separation. The woody part of Aralia bipinnata (3 kg) was extracted with methanol (101×3). These extracts were passed through a short column of activated charcoal. The filtrate was concd, the residue (31.5 g) was coated with silica gel (50 g) and subjected to chromatography on a silica gel (500 g) column by elution with gradients of ethyl acetate and hexane. The appropriate portions were combined to give six frs, A-F, in ascending order of polarity. Fr. A on HPLC (silica gel, EtOAc-hexane, 1:9) gave 25 mg of stigmast-4-en-3-one and 9 mg of lupeol. Fr. C on HPLC (silica gel, EtOAc-hexane, 3:7) gave 14 mg of (+)-hinokinin and 6 mg of methyl trans-p-coumarate. Fr. D on HPLC (silica gel, EtOAc-hexane, 7:13) gave 6 mg of (+)dihydrocubebin, 11 mg of syringaldehyde, 4 mg of transsinapaldehyde and 82 mg of 5-(hydroxymethyl)-furfural. Fr. E on HPLC (silica gel, EtOAc-CHCl₃, 3:2) gave 15 mg of (+)-4-ketopinoresinol, 7 mg of (+)-pinoresinol, 14 mg of (\pm)-glaberide I, 52 mg of arnottianamide (4), 5 mg of oxynitidine, 4 mg of 6-carboxymethyldihydrochelerythrine and 3 mg of threo-2,3-bis-(4-hydroxy-3methoxyphenyl)-3-methoxypropanol (3). Fr. F on HPLC (silica gel, EtOAc-CHCl₃, 4:1) gave 4.3 mg of (-)-9'-0trans-feruloyl-5,5'-dimethoxylariciresinol (1), of (+)-9'-O-trans-feruloyl-5'-methoxylariciresinol (2), 38 mg of (+)-syringaresinol, 10 mg of (-)-liriresinol-A, 4 mg of (+)-medioresinol, 42 mg of isoarnottianamide (5), 5 mg of decarine, 12 mg of dihydroalatamide (6), 87 mg of p-hydroxybenzaldehyde, 71 mg of vanillin, 42 mg of trans-p-coumaraldehyde and 17 mg of transconifervlaldehyde. The structures of these compounds were elucidated by comparison of spectral data with those of authentic samples.

(–)-9'-O-trans-Feruloyl-5,5'-dimethoxylariciresinol (1). HRMS m/z 596.2251 [M] $^+$ (calc. 596.2258, $C_{32}H_{36}O_{11}$) [α] $_D^{25}$ – 27.7° (MeOH; c = 0.007); UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 324.5 (4.02), 299 (3.88), 286.5 (3.80); 1H NMR data: Table 1; MS m/z (%): 596 [M] $^+$ (11), 402 (38), 235 (56), 194 (21), 181 (100), 167 (91).

(+)-9'-O-trans-Feruloyl-5'-methoxylariciresinol (2). HRMS m/z 566.2148 [M]⁺ (calc. 566. 2152, C₃₁H₃₄O₁₀); [α]_D²⁵ + 20.1° (MeOH; c = 0.005); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 324.5 (4.03), 299 (3.90), 286.5 (3.96); ¹H NMR data: Table 1; MS m/z (%): 566 [M]⁺ (7), 432 (8), 235 (26), 194 (57), 181 (88), 137 (100).

threo-2,3-Bis-(4-hydroxy-3-methoxyphenyl)-3-methoxypropanol (3). HRMS m/z 334.1412 [M⁺] (calc. 334.1416, $C_{18}H_{22}O_6$); [α]_D²⁴ 0° (MeOH); UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 280 (4.12); ¹H NMR (CDCl₃): δ 3.87, 4.15 (each 1H, m, H- α), 3.03 (1H, m, H- β), 4.31 (1H, d, d) = 9.3 Hz, H- γ), 6.32-6.74 (6H, d), ArH), 5.52, 5.54 (each 1H, d) d0 d1, 3.77 (3H, d0, OMe), 3.72 (3H, d0, OMe), 3.26 (3H, d0, d0, 89.5 (C-d0), 89.5 (C-d0), 89.5 (C-d0), 89.5 (C-d0), 89.5 (C-d0), 89.5 (C-d0)

Table 1. ¹ H NMR data for 1 and 2 (400 MHz, CDCl ₃ , TMS as int. standard	Table 1.	¹ H NMR d	data for 1 and 2	(400 MHz.	CDCl ₃ .	TMS as int. standard	()
---	----------	----------------------	------------------	-----------	---------------------	----------------------	----

	(-)-9'-O-trans-Feruloyl-5,5'-dimethoxylariciresinol (1)	(+)-9'-O-trans-Feruloyl-5'-methoxylariciresinol (2)
H-2	6.41, s	6.70, s
H-5		6.86, d, J = 7.8 Hz
H-6	6.41, s	6.71, d, J = 7.8 Hz
H-7	2.56, dd , $J = 13.1$, 11.2 Hz	2.58, dd, J = 13.7, 10.7 Hz
	2.92, dd, J = 13.1, 10.7 Hz	2.90, dd, J = 13.7, 4.9 Hz
H-8	2.75, m	2.77, m
H-9	3.79, dd, J = 8.8, 7.4 Hz	3.79, dd, J = 8.8, 8.6 Hz
	4.12, dd, J = 8.8, 6.2 Hz	4.12, dd, J = 8.8, 6.3 Hz
H-2', 6'	6.59, s	6.60, s
H-7'	4.82, d, J = 6.3 Hz	4.83, d, J = 6.3 Hz
H-8'	2.66, m	2.66, m
H-9'	4.33, dd, J = 11.2, 7.3 Hz	4.34, dd, J = 11.3, 7.3 Hz
	4.52, dd, J = 11.2, 7.2 Hz	4.52, dd, J = 11.3, 7.2 Hz
3,3′,5,5′-OMe	3.87, 3.88 (each 6H, s)	
3,3',5'-OMe		3.88 (9H, s)
4.4'-OH	5.40, 5.45 (each 1H, br s)	5.47, 5.51 (each 1H, br s)
H-2"	7.00, s	7.00, s
H-5"	6.92, d , $J = 7.8 \text{ Hz}$	6.93, d, J = 7.8 Hz
H-6"	7.06, d, J = 7.8 Hz	7.06, d, J = 7.8 Hz
H-7"	6.22, d, J = 15.8 Hz	6.23, d, J = 15.8 Hz
H-8"	7.50, d, J = 15.8 Hz	7.51, d, J = 15.8 Hz
3"-OMe	3.95, s	3.96, s
4"-OH	5.88, br s	5.90, br s

131.2, 131.8 (C-1, C-1'), 109.4, 111.6, 113.8, 114.2 (C-2, C-2', C-5, C-5'), 146.2, 146.3 (C-3, C-3'), 144.3, 145.0 (C-4, C-4'), 120.6, 120.7 (C-6, C-6'), 55.9 (3'-OMe), 56.6 (γ-OMe); MS *m/z* (%): 334 [M]⁺ (4), 167 (100), 152 (41), 137 (10), 107 (20), 77 (9).

Arnottianamide (4). ¹H NMR (DMSO- d_0): δ 7.23 (d, J = 8.3 Hz, H-3), 7.80 (d, J = 8.3 Hz, H-4), 7.45 (s, H-5), 7.01 (s, H-8), 6.56 (d, J = 8.8 Hz, H-5'), 6.73 (d, J = 8.8 Hz, H-6'), 6.18 (s,—OCH₂O—), 7.96 (s,—CHO), 8.90 (br s, OH), 2.89 (s, NMe), 3.35 (s, 3'-OMe), 3.69 (s, 4'-OMe); ¹³C NMR (DMSO- d_0): δ 135.3 (C-1), 134.3 (C-2), 127.6 (C-3), 126.9 (C-4), 104.1 (C-5), 147.8 (C-6), 148.9 (C-7), 98.6 (C-8), 128.0 (C-9), 130.6 (C-10), 119.8 (C-1'), 147.6 (C-2'), 136.2 (C-3'), 152.4 (C-4'), 103.1 (C-5'), 124.7 (C-6'), 101.6(—OCH₂O—), 163.2 (—CHO), 32.7 (NMe), 60.3 (3'-OMe), 55.6 (4'-OMe).

Isoarnottianamide (5). ¹H NMR (DMSO- d_6): δ7.26 (d, J = 8.3 Hz, H-3), 7.79 (d, J = 8.3 Hz, H-4), 7.44 (s, H-5), 7.01 (s, H-8), 6.55 (s, H-3'), 6.63 (s, H-6'), 6.17 (s,-OCH₂O-), 8.00 (s, CHO), 9.06 (br s, OH), 2.91 (s, NMe), 3.74 (s, 4'-OMe), 3.64 (s, 5'-OMe); ¹³C NMR (DMSO- d_6): δ135.4 (C-1), 134.4 (C-2), 127.8 (C-3), 126.8 (C-4), 104.1 (C-5), 147.6 (C-6), 148.8 (C-7), 98.6 (C-8), 128.1 (C-9), 130.5 (C-10), 116.2 (C-1'), 149.0 (C-2'), 100.8 (C-3'), 148.4 (C-4'), 141.5 (C-5'), 114.8 (C-6'), 101.6 (-OCH₂O-), 163.4 (CHO), 32.7 (NMe), 55.3 (4'-OMe), 56.3 (5'-OMe).

Dihydroalatamide (6). ¹³C NMR (CDCl₃): δ131.5 (C-1), 127.4 (C-2), 129.2 (C-3), 132.0 (C-4), 129.2 (C-5), 127.4 (C-6), 168.1 (C = O), 135.3 (C-1'), 130.4 (C-2', C-6), 114.8 (C-3', C-5'), 159.0 (C-4'), 35.4 (C-7'), 41.9 (C-8'), 55.9 (OMe).

REFERENCES

- 1. Hsiao, J.-J., Liu, H.-T. and Chiang, H.-C. (1994) Chinese Pharmaceutical J. 46, 199.
- 2. Hsiao, J.-J. and Chiang, H.-C. (1994) *Phytochemistry* (in press).
- Ratnayake, S., Fang, X.-P., Anderson, J. E. and McLaughlin, J. L. (1992) J. Nat. Prod. 55, 1462.
- 4. Briggs, L. H., Cambie, R. C. and Cough, R. A. F. (1968) J. Chem. Soc. (C) 3024.
- Deyama, T., Ikawa, T. and Nishibe, S. (1985) Chem. Pharm. Bull. 33, 3651.
- 6. Cooper, R., Gottlieb, H. E., Lavie, D. and Levy, E. C. (1979) *Tetrahedron* 35, 861.
- Deyama, T., Ikawa, T., Kitagawa, S. and Nishibe, S. (1987) Chem. Pharm. Bull. 35, 1785.
- 8. Chiji, H., Arakawa. Y., Ueda. S., Kuroda, M. and Izawa, M. (1986) *Phytochemistry* 25, 281.
- 9. Koul, S. K., Taneja, S. C., Pushpangadan, P. and Dhar, K. L. (1988) *Phytochemistry* 27, 1479.
- Lopes, L. M. X., Yoshida, M. and Gottlieb, O. R. (1983) Phytochemistry 22, 1516.
- Ng, K. M., Gray, A. I. and Waterman, P. G. (1987)
 J. Nat. Prod. 50, 1160.
- 12. Ishii, H., Ishikawa, T., Lu, S. T. and Chen, I. S. (1976) *Yakugaku Zasshi* **96**, 1458.
- Boulware, R. T. and Stermitz, F. R. (1981) J. Nat. Prod. 44, 200.
- Ishii, H., Ohida, H. and Haginiwa, J. (1972) Yakugaku Zasshi 92, 118.

- Ng, K. M., Gray, A. I. and Waterman, P. G. (1987) *Phytochemistry* 26, 3251.
- Chatterjee, A., Chakrabarty, M. and Kundu, A. B. (1975) Aust. J. Chem. 28, 457.
- Chen, C. C., Yu, H. J., Ou, J. C. and Pan, T. M. (1994)
 J. Chin. Chem. Soc. 41, 195.
- 18. Bhattacharyya, J. and Barros, C. B. (1986) Phytochemistry 25, 274.
- Gunhild, A. E. and Roland, S. (1968) Acta Chem. Scand. 22, 1187.
- Connors, W. J., Chen, C. L. and Pew, J. C. (1970)
 J. Org. Chem. 35, 1920.
- 21. Hearn, T. W. (1976) Aust. J. Chem. 29, 107.

- 22. Adler, E., Brunow, G. and Lundquist, K. (1987) Holzforchung 41, 199.
- Kinjo, J., Higuchi, H., Fukui, K. and Nohara, T. (1991) Chem. Pharm. Bull. 39, 2952.
- 24. Achenbach, H., Stocker, M., and Constenla, M. A. (1988) *Phytochemistry* 27, 1835.
- Duh, C.-Y., Phoebe, C. H., Pezzuto, J. M., Kinghorn,
 A. D. and Farnsworth, N. R. (1986) J. Nat. Prod. 49,
 706.
- 26. Miki, K., Takehara, T., Sasaya, T. and Sakakibara, A. (1980) *Phytochemistry* 19, 449.
- Ferrand, G. and Huet, J. (1975) Bull. Soc. Chim. Fr. 1709.