

BIOTRANSFORMATION OF LIGNANS: METABOLISM OF (+)-EUDESMIN AND (+)-MAGNOLIN IN SPODOPTERA LITURA

MITSUO MIYAZAWA, HIROYUKI KASAHARA, and HIROMU KAMEOKA

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka-shi, Osaka 577, Japan

(Received 3 January 1995)

Key Word Index—Biotransformation; lignan; *Spodoptera litura*; Noctuidae; (+)-eudesmin; (+)-de-4'-O-methyleudesmin-4'-O- β -D-glucoside; (+)-magnolin; (+)-de-4"-O-methylmagnolin-4"-O- β -D-glucoside; de-O-methylation; glucoside conjugation.

Abstract—Biotransformation of the plant lignans, (+)-eudesmin and (+)-magnolin in *Spodoptera litura* larvae has been investigated. (+)-De-4'-O-methyleudesmin and (+)-de-4'-O-methyleudesmin-4'-O- β -D-glucoside were identified from the (+)-eudesmin-administered larvae faeces, and (+)-de-4"-O-methylmagnolin and (+)-de-4"-O-methylmagnolin-4"-O- β -D-glucoside were from (+)-magnolin-administered, respectively. The metabolic reaction of (+)-eudesmin and (+)-magnolin in *Spodoptera litura* larvae is de-O-methylation at *para*-position on veratryl and 3,4,5-trimethoxyl groups followed by glucosylation.

INTRODUCTION

A large number of natural lignans and neolignans which posses biological activities towards insects have been identified in recent decades; e.g. β-peltatin-A-methyl ether, deoxypodophllotoxin and deoxypicropodophyllin and a number of podophyllotoxin analogues inhibit insect larval growth $\lceil 1 \rceil$ as do (-)-machilusin and its analogue against Spodoptera litura larvae [2] and (+)sesamin and (+)-kobusin against silkworm larvae (Bombix mori L.) [3]. There are, however, few reports in which the metabolism of lignans in insects has been investigated. Spodoptera litura (Noctuidae) is a well-known rest insect and recently a study of larval growth inhibitory lignans against the insect was reported [2]. We have therefore investigated the metabolism of (+)-eudesmin and (+)-magnolin in larvae of this insect. Previously, we investigated biotransformation of the furofuran lignans, (+)-magnolin and (+)-yangabin in rat [4] and (+)-eudesmin and (+)-magnolin by fungus, Aspergillus niger [5], and revealed that the first metabolic reaction in both cases was specific de-O-methylation at the p-position. Our present results suggest the existence of similar oxidases for the metabolism of magnolin type lignans in mammalia, fungi and insects.

RESULTS AND DISCUSSION

(+)-Eudesmin (1) and (+)-magnolin (2) were incorporated into the artificial diet using cellulose powder as an inert carrier, and fed to fourth or fifth instar larvae, respectively. Faeces were collected for 4 days, dried, ex-

tracted by CH_2Cl_2 (100 ml × 3) and then EtOAc (100 ml × 2), and evaporated under reduced pressure. The CH_2Cl_2 extract of 1-administered larvae faeces was subjected to silica gel CC to give novel metabolites 3 and 4. Metabolites 5 and 6 were isolated from the CH_2Cl_2 extract of 2-administered larvae faeces.

Metabolic product 3 had a molecular formula $C_{21}H_{24}O_6$ as determined by a high resolution mass spectrum and NMR data. The IR spectrum contained a hydroxyl band 3418 cm⁻¹, and the specific rotation showed (+)-form. The ¹H and ¹³C NMR spectra clearly corresponded with those of (+)-de-4'-O-methylmagnolin [5].

The negative FAB-mass spectrum of 4 showed [M]⁺ at m/z 533.2029 [M - H]⁺, corresponding to the molecular formula $C_{27}H_{33}O_{11}$ (calcd 533.2023). A peak at m/z 371 [M - H - 162]⁺ was due to the loss of a hexose moiety from the [M]⁺. The ¹H NMR spectrum of 4 showed similar signals to those of 3 except for the lack of signals for 4'-phenolic hydroxyl proton and the existence of that of an anomeric proton at $\delta 4.82$ (d, J = 6 Hz) and those due to the glucosyl group. Acid hydrolysis of 4 gave glucose which was identified by TLC, and an aglycone which was identified as 3 by spectroscopic data. The ¹³C NMR signal pattern of the sugar showed that 4 contained a β -glucose. The specific optical rotation shows the (+)-form; therefore, 4 is (+)-de-4'-O-methyleudesmin-4'-O- β -D-glucoside.

Metabolic product 5 had a molecular formula $C_{22}H_{26}O_7$ as determined by a high resolution mass spectrum and NMR data. The IR spectrum contained a hydroxyl band at $3387\,\mathrm{cm}^{-1}$, and the specific rotation

Scheme 1. Metabolic pathway of (+)-eudesmin (1) to (+)-de-4'-0-methyleudesmin (3) and (+)-de-4'-0-methyleudesmin-4'-0- β -D-glucoside (4) in Spodoptera litura larvae.

Scheme 2. Metabolic pathway of (+)-magnolin (2) to (+)-de-4"-O-methylmagnolin (5) and (+)-de-4"-O-methylmagnolin-4"-O-β-D-glucoside (6) in Spodoptera litura

showed the (+)-form. The 1H NMR spectrum was similar to that of (+)-de-4'-O-methylmagnolin [4, 5]; however, the ^{13}C NMR spectrum of 5 showed signals due to veratryl and syringyl groups [4]. The mass spectrometry confirmed the existence of a veratryl group (m/z) 151 [ArCH₂]⁺ and 165 [ArCO]⁺) and a syringyl group (m/z) 167 [ArCH₂]⁺ and 181 [ArCO]⁺). Therefore, 5 is (+)-de-4'-O-methylmagnolin.

The negative FAB-mass spectrum of 6 showed [M]⁺ at m/z 563.2154 [M - H]⁺, corresponding to the molecular formula $C_{28}H_{35}O_{12}$ (calcd 563.2129). A peak at m/z 401 [M - H - 162]⁺ was due to the loss of a hexose moiety from the [M]⁺. Acid hydrolysis of 6 gave glucose which was identified by TLC and an aglycone which was identified as 5 by spectroscopic data. The ¹H and ¹³C NMR spectra reconfirmed that 6 was the glucoside of de-4"-O-methylmagnolin. The signals for the anomeric proton of 6 shifted at δ 4.62 (d, J=7.5 Hz) and the anomeric carbon signal at δ 105.5 indicated α -configuration for the anomeric proton and hence the presence of a β -glucosidic linkage. The specific optical rotation shows the (+)-form; therefore, 4 is (+)-de-4"-O-methylmagnolin-4"-O- β -D-glucoside.

The possible metabolic pathways of 1 and 2 are shown in Schemes 1 and 2. Compounds 1 and 2 were completely metabolized to respective metabolites 3 and 5; furthermore, the large amounts of 3 and 5 were glucoside conjugated and excreted in the faeces. Up to now, there are no reports of the metabolism of these lignans in insect. Although the oxidation of 1 occurred at the p-methoxyl of its veratryl group, 3,4,5-trimethoxyl group of 2 was

oxidized preferentially to the veratryl group. This result is apparently different from that of the fungus A. niger, which preferentially oxidizes the veratryl group [5].

With regard to the conjugation reaction, it is known that insects possess some conjugation systems, e.g. glucuronide, sulphate and glucoside conjugation etc., as secondary metabolic processes of phenols [6]. Lignans 1 and 2 were conjugated as glucosides in S. litura larvae. This result differs from the glucuronide conjugation which takes place in rats when 2 and (+)-yangabin are administered [4].

EXPERIMENTAL

Preparation of lignans. (+)-Eudesmin (1) and (+)-magnolin (2) were isolated from flower buds of Magnolia fargesii by previously reported methods [7].

Insect and cultivation conditions. A hundred larvae of S. litura were grown at 25°, and fed a commercial artificial diet (Insecta LF, Nihon Nosan Kogyo) until larvae had become third instar. After third instar, larvae were fed artificial diet: kidney bean (wet) 100 g, brewer's dried yeast 11.5 g, L-(+)-ascorbic acid 1 g, formaldehyde soln 3 ml, agar 4.5 g, H₂O 180 ml.

Administration of 1. Fifty larvae (fourth to fifth instar) were fasted for 2 days before administration of 1 (142 mg). (+)-Eudesmin (1) was incorporated into the artificial diet (100 g) using cellulose powder as an inert carrier and fed to larvae. After the artificial diet containing 1 was exhausted (2-3 days), the larvae were fed artificial diet henceforth.

3.90 s

3.90 s

5.51 s

3.81 s

3.81 s

4.62 d (7.5)

Н	1	2	3	4	5	6
1	3.12 m	3.11 m	3.11 m	3.03 m	3.10 m	3.07 m
2	4.76 d (4)	4.77 d (5)	4.74 d (4.5)	4.66 d (4.5)	4.77 d (5)	4.74 d (5)
4ax	3.90 dd (4.9)	3.92 dd (4.9)	3.89 dd (4.9)	3.82 m ^a	3.90 dd (4.9)	3.90 m ^b
4eq	4.26 dd (7.9)	4.28 dd (7.9)	4.26 dd (7.9)	4.20 dd (7.9)	4.28 dd (7.9)	4.26 dd (7.9)
5	3.12 m	3.11 m	3.11 m	3.03 m	3.11 m	3.07 m
6	4.76 d(4)	4.75 d (5)	4.76 d (4.5)	4.70 d (4.5)	4.72 d (5)	4.71 d(5)
8ax	3.90 dd (4.9)	3.92 dd (4.9)	3.89 dd (4.9)	$3.82 m^{a}$	3.90 dd (4.9)	3.90 m ^b
8eq	4.26 dd (7.9)	4.29 dd (7.9)	4.26 dd (7.9)	4.20 dd (7.9)	4.28 dd (7.9)	4.26 dd (7.9)
2'	6.91 d (2)	6.91 d (2)	6.90 d (2)	6.88 s	6.91 d (2)	6.89 d (2)
5'	6.84 d(8)	6.84 d (8)	6.89 d (8)	6.99 d (8)	6.85 d (8)	6.83 d (8)
6'	6.89 dd (2.8)	6.89 dd (2.8)	6.82 dd (2.8)	6.79 dd (8)	6.88 dd (2.8)	6.86 dd (2.8)
2"	6.91 d (2)	6.58 s	6.91 d (2)	6.86 d (2)	6.59 s	6.55 s
5"	6.84 d(8)		6.84 d (8)	6.80 d (8)		
6"	6.89 dd (2.8)	6.58 s	6.88 dd (2.8)	6.84 dd (2.8)	6.59 s	6.55 s
OMe	,		, ,			
3'	3.88 s	3.88 s	3.90 s	3.74 s	3.88 s	3.86 s
4'	3.91 s	3.91 s			3.90 s	$3.88 \ s$

Table 1. ¹H NMR spectral data for lignans (1 and 2) and metabolic products (3–6)

3.86 s

3.84 s

4.82 d (6)

3.87 s

3.90 s

5.58 s

3.88 s

3.84 s

3.38 s

3"

5"

OH

Glu-H-

3.88 s

3.91 s

Recorded in CDCl₃, chemical shift values are reported as δ values from TMS at 270.1 MHz for 1, 2 and 4, and 500.0 MHz for 3, 5 and 6.

Coupling constant in Hz. a, bValues are overlapped with other signals.

Isolation of metabolites 3 and 4 from faeces. Faeces were collected for 4 days, dried (15.8 g), extracted by CH_2Cl_2 (100 ml × 3) and then EtOAc (100 ml × 2), and evapd under red. pres. The CH_2Cl_2 extract (250 mg) of 1-administered larvae faeces was subjected to silica gel CC to give novel metabolites 3 (5 mg) and 4 (166 mg).

Administration of 2. Fifty larvae (fourth to fifth instar) were fasted for 2 days before administration of 2 (348 mg). (+)-Magnolin (2) was incorporated into the

Table 2. ¹³C NMR spectral data for lignans 1-6 (δ , TMS, in CDCl₃)

			CDC13	,			
C	1	2	3	4	5	6	
1	54.0	54.1	54.1	54.3	54.1	54.0	
2	85.6	85.7	85.9	85.7	85.7	85.8	
4	71.6	71.7	71.7	71.8	71.7	71.6	
5	54.0	54.4	54.1	54.0	54.4	54.5	
6	85.6	86.0	85.8	85.6	86.1	85.6	
8	71.6	71.9	71.7	71.5	71.9	72.0	
1'	133.4	133.5	132.9	136.5	133.5	133.3	
2'	109.1	109.2	108.6	111.1	109.3	109.3	
3′	149.1	149.0	146.7	149.5	149.2	149.2	
4'	148.5	148.7	145.2	145.6	148.7	148.7	
5′	110.9	111.1	114.3	117.2	111.1	111.1	
6'	118.1	118.2	118.9	118.6	118.2	118.2	
1"	133.4	136.8	133.5	133.4	132.2	134.5	
2"	109.1	102.8	109.2	109.3	102.8	103.0	
3"	149.1	153.4	149.2	149.2	147.2	152.9	
4"	148.5	137.5	148.6	148.6	134.3	138.4	
5"	110.9	153.4	109.3	110.0	147.2	152.9	
6"	118.1	102.8	118.2	118.2	102.8	103.0	
Glu							
1		_	-	101.8		105.5	
2		_	_	73.2	_	74.1	
3				76.0		76.3	
4	_			69.4		69.8	
5			_	75.9	_	76.0	
6	_	_	_	61.4	-	61.9	
OMe							
3'	55.8	55.9	55.9	56.1	55.9	55.9	
4'	55.8	55.9	_		56.0	55.9	
3"	55.8	56.2	55.9	56.0	56.4	56.4	
4"	55.8	60.9	55.9	56.0	_	_	
5"	_	56.2	_		56.4	56.4	

Recorded at 67.5 MHz for 1, 2 and 4, and 125.7 MHz for 3, 5 and 6.

artificial diet (100 g) using cellulose powder as an inert carrier and fed to larvae.

Isolation of metabolites 5 and 6 from faeces. Faeces were collected for 4 days, dried (17.6 g), extracted by CH_2Cl_2 (100 ml × 3) and then EtOAc (100 ml × 2), and evapd under red. pres. The CH_2Cl_2 extract (515 mg) and 2-administered larvae faeces was subjected to silica gel CC to give novel metabolites 5 (10 mg) and 6 (230 mg).

Determination of sugars in compounds 4 and 6. A soln of each glycoside (2 mg) in 8% HCl-dioxane (1:1) (1 ml) was refluxed for 3 hr. Sugars were analysed by TLC on silica gel with EtOAc-H₂O-MeOH-HOAc (13:3:3:4).

(+)-De-4'-O-methyleudesmin (3). Oil. HRMS m/z: 372.1602 ([M]⁺, calcd for C₂₁H₂₄O₆: 372.1573). MS m/z (rel. int.): 372 ([M]⁺, 100), 341 (15), 294 (50), 205 (20), 177 (40), 165 (50), 151 (68), 137 (28). [α]_D + 40.6° (CHCl₃; c 0.75). NMR: see Tables 1 and 2.

(+)-De-4'-O-methyleudesmin-4'-O-β-D-glucoside (4). Amorphous powder. FAB-MS m/z (rel. int.): 533.2029 [M – H]⁺ (28) (calcd for $C_{27}H_{33}O_{11}$: 533.2023), 371 [M – H – 162]⁺ (100). [α]_D + 0.94° (CHCl₃; c 4.35). NMR: see Tables 1 and 2.

(+)-De-4"-O-methylmagnolin (5). Oil. HRMS m/z: 402.1663 ([M]⁺, calcd for $C_{22}H_{26}O_{7}$: 402.1648). EIMS m/z (rel. int.): 402 ([M]⁺, 100), 371 (8), 235 (8), 210 (15), 193 (20), 181 (35), 177 (36), 167 (25), 165 (40), 151 (37). [α]_D + 7.59° (CHCl₃; c 3.0). NMR: see Tables 1 and 2.

(+)-De-4"-O-methylmagnolin-4"-O-β-D-glucoside (6). Amorphous powder. FAB-MS m/z (rel. int.): 563.2154 [M - H]⁺ (10) (calcd for C₂₈H₃₅O₁₂: 563.2129), 401 [M - H - 162]⁺ (52). [α]_D + 7.69° (CHCl₃; c 4.15). NMR: see Tables 1 and 2.

REFERENCES

- Russel, G. B., Singh, P. and Fenmore, P. G. (1976) Aust. J. Biol. Sci. 29, 99.
- 2. Gonzalez-Coloma, A., Escoubuas, P., Mizutani, J. and Lajide, L. (1994) *Phytochemistry* 35, 607.
- Kamikado, T., Chan, C.-F., Murakoshi, S., Sakurai, A. and Tamura, S. (1975) Agr. Biol. Chem. 39, 833.
- 4. Miyazawa, M., Kasahara, H. and Kameoka, H. (1993) *Phytochemistry* 32, 1421.
- 5. Miyazawa, M., Kasahara, H. and Kameoka, H. (1993) *Phytochemistry* 34, 1501.
- Matsumura, F. (1985) Toxicology for Insecticides, 218 pp. Plenum Press, NY and London.
- 7. Miyazawa, M., Kasahara, H. and Kameoka, H. (1992) *Phytochemistry* 31, 3666.