

TRITERPENOID GLYCOSIDES FROM CEPHALARIA TRANSSYLVANICA

SÜHEYLA KIRMIZIGÜL,* HÜSEYIN ANIL and MALCOLM E. ROSE†

Ege University, Faculty of Science, Organic Chemistry Department, Bornova, İzmir, Turkey; †The Open University, Chemistry Department, Walton Hall, Milton Keynes MK7 6AA, U.K.

(Received in revised form 3 January 1995)

Key Word Index—Cephalaria transsylvanica; Dipsacaceae; flowers; hederagenin; triterpene glycoside.

Abstract—On the basis of spectroscopic and chemical methods, the structures of two new triterpenoid glycosides, transsylvanoside E and F, isolated from *Cephalaria transsylvanica* have been established as 3-O-[β -D-xylopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-xylopyranosyl]-3 β ,23-dihydroxy Δ^{12} -oleanen-28-carboxylic acid and 3-O-[β -D-glucopyranosyl]-3 β ,23-dihydroxy Δ^{12} -oleanen-28-carboxylic acid, respectively. A new proglycoside was isolated from the cleavage of the ester–glycoside linkage and it's structure characterized as 3-O-[β -D-glucopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-xylopyranosyl]-3 β ,23-dihydroxy Δ^{12} -oleanen-28-carboxylic acid.

INTRODUCTION

Some isolation studies have previously been carried out on *Cephalaria* species, which have been used as a folk medicine for their hypotermic, alleviative, relaxant and anti-infective activities [1, 2]. Two free triterpenoid acids [3] and some triterpene glycosides have been isolated from *C. transsylvanica* [4, 5]. In a preceding paper [6], we also reported on the antimicrobial and antifungal activities of this plant. As a continuation of studies on this plant, we present here the isolation of two new triterpenoid glycosides, named transsylvanoside E (1) and F (2).

RESULTS AND DISCUSSION

Repeated purification by column chromatography (silica gel 60) of the *n*-butanol-soluble fractions of the methanolic extract of the flowers of *C. transsylvanica* led to the isolation of two triterpene glycosides (1, 2), identified by the Liebermann-Burchard test [7] and by the formation of a stable froth when shaken with water. Their IR spectra showed hydroxyl (3412-3395 cm⁻¹) and C=C double bond absorptions (1631 cm⁻¹). Compounds 1 and 3 showed carboxylic group absorptions (1693 and 1697 cm⁻¹) and the IR spectrum of 2 included an ester group absorption at 1728 cm⁻¹. Hydrolysis of 1 and 2 under acidic conditions afforded the same aglycone which was identified as hederagenin by comparison with an authentic sample by chemical and spectroscopic means [3, 8].

On acid hydrolysis 1 and 2 gave D-glucose, D-xylose and L-rhamnose by paper chromatography (solvent systems F and G) [9, 10]. Analysis of the silvlated sugars by GC [11] gave the ratio glucose-rhamnose-xylose as 2:1:2 for 1 and 3:1:1 for 2. The ¹³C NMR spectra (Table 1) indicated the presence of anomeric carbon signals $(\delta 101.4, 104.5, 104.7, 105.4 \text{ and } 106.5) \text{ in } 1 \text{ and } (\delta 95.6,$ 101.4, 104.9, 105.2, 106.6) in **2** [12–15]. The signal at δ 95.6 suggested that 2 had a 28-O-glycosidic linkage, which was further confirmed by the ester group absorption in the IR spectrum. The ¹³C NMR signal of C-28 for 2 appeared at ca δ 176.5, whereas the chemical shift of the corresponding carbon in hederagenin was ca δ180.1 [4]. The simultaneous presence of a 3-O-glycosidic linkage in 1 and 2 was easily seen by attendant downfield shifts at δ 82.9 and 83.3 for C-3, whereas in hederagenin this carbon signal was observed at $ca \delta 76.4$ [8]. Thus 1 is 3-O-monodesmoside and 2 is a 3,28-bisdesmoside.

On alkaline hydrolysis, 2 afforded 3. Compound 3 gave a peak for the deprotonated molecule, at m/z 911.1 $[M-H]^-$ and fragment ion peaks at m/z 749.5 $[M-H-Glc]^-$, 603.5 $[M-H-Glc-Rham]^-$ and 471 $[M-H-Glc-Rham-Xyl]^-$ in the negative ion FAB-mass spectrum. In the IR spectrum, besides the hydroxyl (3393 cm⁻¹) and C=C double bond absorptions (1632 cm⁻¹), the carbonyl group absorption was seen at 1697 cm⁻¹. ¹³C NMR signals also confirmed the above inferences. In the ¹H NMR spectrum of 3, the anomeric proton signals at δ 5.00 (1H, δ r s), 5.03 (1H, δ r J=7.2 Hz) and 5.52 (1H, δ r J=7.6 Hz) led to the assignment of the anomeric configuration of two monosaccharide units as β and one as α . These were supported by their carbon signals (Table 1). Compound 3 was identified as

^{*}Author to whom correspondence should be addressed.

 R_1 R_2

3-O-[β -D-glucopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-xylopyranosyl]-3 β , 23-dihydroxy Δ ¹²-oleanen-28-carboxylic acid.

The negative ion FAB-mass spectrum of 1 showed a quasimolecular ion peak at m/z 1205.2 [M - H]⁻ in addition to peaks at m/z 1073.6 [M - H - Xyl]⁻, 910.9 [M - H - Xyl - Glc]⁻, 749.3 [M - H - Xyl - 2Glc]⁻, 603 (M - H - Xyl - 2Glc - Rham]⁻ and 471 [M - H - 2Xyl - 2Glc - Rham]⁻ which indicated the sequence of the sugar chain. The anomeric configurations of four monosaccharide units as β and one as α were deduced from the anomeric proton signals at δ 4.90 (1H, δ 1 s), 5.10 (1H, δ 3 d, δ 4 min signals at δ 5.47 (1H, δ 5 d, δ 6 min signals at δ 6.47 (1H, δ 6 d, δ 7 min signals at δ 7 min signals at δ 8.50 (1H, δ 7 d, δ 8 min signals at δ 9 (1H, δ 9 min signals at δ 9 min signals at δ 9 (1H, δ 9 min signals at δ 9 min signals at δ 9 (1H, δ 9 min signals at δ 9 min signa

its ¹H NMR spectrum. Hence **1** is 3-O-[β -D-xylopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-xylopyranosyl]-3 β , 28-dihydroxy Δ ¹²-oleanen-28-carboxylic acid.

The M_r was determined by the negative ion FAB-mass spectrum of glycoside **2** which gave a peak at m/z 1235.5 [M - H]⁻. The fragment ion peaks were seen at m/z 1073.4 [M - H - Glc]⁻, 911.1 [M - H - 2Glc]⁻, 749.3 [M - H - 3Glc]⁻, 603.5 [M - H - 3Glc - Rham]⁻ and 471 [M - H - 3Glc - Rham - Xyl]⁻ for **2**. They corresponded to the loss of sugars. The interglycosidic linkages of the 28-O-sugar chain were established by ¹³C NMR spectroscopy (Table 1). The presence of downfield methylene signals at δ 80.7 due to C-4 of the inner

Table 1. ¹³C NMR spectral data of aglycone and sugar moieties of compounds 1-3 (pyridine-d₅, TMS as int. standard)

	C	1	2	3
Aglycone mo	oiety			
	3	83.3	82.9	82.6
	12	122.5	120.0	122.2
	13	144.5	144.1	144.4
	23	67.3	69.3	65.9
	28	180.2	176.5	180.0
3-O-Sugar m	oieties			
Xyl	1	106.5	106.6	106.4
	2	78.2	75.1	74.6
	3	76.5	75.8	75.5
	4	69.6	78.4	78.2
	5	63.9	66.4	63.6
Glc	1	104.7	104.9	104.5
$(\rightarrow {}^2Xyl)$	2	74.3	72.3	72.0
or	3	77.5	74.1	78.1
(→ ³ Rham)	4	80.2	70.8	71.0
	5	75.3	75.1	75.2
	6	61.2	62.5	62.2
Glc*	1	104.5		
(→ ⁴ Glc)	2	74.8		
	3	77.0		
	4	80.7		
	5	75.9		
	6	61.4		
Rham	1	101.4	101.4	101.1
(→ 4Glc*)	2	71.7	71.4	71.3
or	3	81.3	81.1	80.9
(→ ⁴ Xyl)	4	72.9	72.9	72.6
	5	69.5	69.7	69.4
	6	18.4	18.4	18.1
Xyi*				
(→ ³ Rham)	1	105.4		
	2	74.0		
	3	76.6		
	4	70.7		
	5	66.5		
28-O-Sugar r	noieties			
Glc*	1		95.6	
	2		73.8	
	3		78.4	
	4		78.6	
	5		78.5	
	6		63.9	
Glc**				
(→ ⁴ Glc*)	1		105.2	
. ,	2		75.3	
	3		77.9	
	4		71.6	
	5		76.6	
	6		61.9	
	-		U	

glucose in 2 revealed that this glucose was attached to another glucose at position C-4. The anomeric configurations of the sugars were fully defined by the NMR spectra. In the ¹H NMR spectrum, the anomeric proton signals at 6.25 (1H, d, J = 8.0 Hz), 5.89 (1H, br s), 5.54 (1H, d, J = 7.6 Hz), 5.07 (1H, d, J = 7.9), 5.02 (1H, d, J = 7.9 Hz) led to the assignments of the configurations of four monosaccharide units as β and one as α . On the basis of the above evidence, the structure of 2 was elucidated as 3-O- $[\beta$ -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-xylopyranosyl]-28-O- $[\beta$ -D-glucopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl]-3 β ,23-dihydroxy Δ ¹²-oleanen-28-carboxylic acid.

EXPERIMENTAL

FAB-MS: negative ion mode, polyethylene glycol as matrix, VG 20-250 quadrupole mass spectrometer; EIMS: (70 eV ion beam energy, 200° ion source; ¹H (200 MHz) and ¹³C (50 MHz) NMR: pyridine-d₅, TMS as int. standard; IR: KBr; GC: column: 0.52 μm × $0.32 \text{ mm} \times 25 \text{ m}$, HP-1; N₂, temp. $130-280^{\circ}$, $2^{\circ} \text{ min}^{-1}$; CC: silica gel 60 (Merck 7743); prep. TLC silica gel 60 (Merck 7747); TLC: precoated silica gel 60 F₂₅₄ plates (Merck 5554). Spots were visualized by spraying with 10 % H₂SO₄ followed by heating. PC: Schleicher and Schüll 2043 b chromatography paper was used in descending mode. For chromatographic studies the following solvent systems were used: A, CHCl₃-MeOH- H_2O (13:5:2); B, CHCl₃-MeOH- H_2O (13:7:2); C, $CHCl_3-MeOH-H_2O$ (13:7:2 + 10 % MeOH); D, CHCl₃-MeOH (15:1); E, CHCl₃-EtOH (97:3); F, EtOAc-pyridine-H₂O (2:1:2); G, n-BuOH-EtOH- H_2O (2:1:1 and 4:1:5). For A-C solvent systems the lower phases were used.

Plant material. Cephalaria transsylvanica was collected in Bornova-İzmir (Turkey) in July and identified by the Herbarium Center of the Faculty of Science, University of Ege. A voucher specimen (No. 4517) is deposited in the same centre.

Isolation and purification. Dried and ground flowers of C. transsylvanica were extracted (\times 3, 24 hr for all extractions) with 80% MeOH. After the removal of solvent under vacuum at \sim 40° a waxy residue remained. This was washed with hexane, Me₂CO and CHCl₃ successively to remove non-glycosidic substances. The BuOH-soluble fractions of this residue were saturated with H₂O. The BuOH layer was evapd under red. pres. at \sim 40°. A portion of this mixture (5 g) was repurified by repetitive CC over silica gel eluted with solvent systems A–C. Thus, 1 (94 mg) and 2 (45 mg) were obtained as amorphous powders.

3-O-[β-D-Xylopyranosyl (1 → 3)-α-L-rhamnopyranosyl (1 → 4)-β-D-glucopyranosyl (1 → 4)-β-D-glucopyranosyl (1 → 2)-β-D-xylopyranosyl]-3β,23-dihydroxy $Δ^{12}$ -ole anen-28 carboxylic acid (1). [α]_D²⁹ — 4.95° (MeOH; c 2.72). IR $ν_{max}$ cm⁻¹: 3412 (OH), 1693 (CO₂H), 1631 (C=C); FAB-mass (negative mode) m/z: 1205.2 [M − H]⁻, 1073.6 [M − H − Xyl]⁻, 910.9 [M − H − Xyl − Glc]⁻, 749.3 [M − H − Xyl − 2Glc]⁻, 603 [M − H − Xyl − 2Glc −

Rham]⁻, 471 [M – H – 2Xyl – 2Glc – Rham]⁻; ¹H NMR (200 MHz, pyridine- d_5): δ5.47 (1H, d, J = 7.0 Hz, H-1 of terminal β -Xyl), 5.30 (1H, d, J = 7.8 Hz, H-1 of β -Glc), 5.20 (1H, d, J = 7.7 Hz, H-1 of β -Glc), 5.10 (1H, d, J = 7.2 Hz, H-1 of β -Xyl), 4.90 (1H, br s, H-1 of α -Rham), 5.45 (1H, br s, H-12), 3.27 (1H, m, H-3 α), 1.50 (3H, d, J = 5.6 Hz, Me of Rham), 1.24 (3H, s, Me), 1.14 (3H, s, Me), 1.02 (3H, s, Me), 1.01 (3H, s, Me), 0.94 (6H, s, 2 × Me); ¹³C NMR-APT (50 MHz, pyridine- d_5): Table 1.

3-O- $\lceil \beta$ -D-Glucopyranosyl $(1 \rightarrow 3)$ - α -L -rhamnopyranosyl $(1 \rightarrow 4)$ - β -D-xylopyranosyl]-28-O- $\lceil \beta$ -D-glucopyranosyl $(1 \rightarrow 4)$ - β -D-glucopyranosyl]- 3β ,23-dihydroxy Δ^{12} -oleanen-28-carboxylic acid (2). Amorphous powder, $[\alpha]_D^{29}$ -3.69° (MeOH; c 1.21). IR ν_{max} cm⁻¹: 3395 (OH), 1728 (CO₂R), 1631 (C=C). FAB-mass (negative mode) m/z: 1235.5 $[M - H]^-$, 1073.4 $[M - H - Glc]^-$, 911.1 $[M - H - 2Glc]^-$, 749.3 $[M - H - 3Glc]^-$, 603.5 $[M - H - 3Glc - Rham]^{-}$, 471 $[M - H - 3Glc - Rham]^{-}$ Rham – Xyl]⁻. ¹H NMR (200 MHz, pyridine- d_5): $\delta 6.25$ $(1H, d, J = 8.0 \text{ Hz}, \text{H-1 of ester } \beta\text{-Glc}), 5.89 (1H, br s, H-1)$ of α -Rham), 5.54 (1H, d, J = 7.6 Hz, H-1 of β -Xyl), 5.07 $(1H, d, J = 7.9 \text{ Hz}, H-1 \text{ of terminal ester } \beta\text{-Glc}), 5.02 (1H, d)$ d, J = 7.8 Hz, H-1 of β -Glc), 5.37 (1H, br s, H-12), 3.20 $(1H, m, H-3\alpha)$, 1.54 (3H, d, J = 5.8 Hz, Me of Rham), 1.19 (3H, s, Me), 1.15 (3H, s, Me), 1.12 (3H, s, Me), 0.98 (3H, s, Me), 0.86 (6H, s, $2 \times Me$); ${}^{13}C$ NMR-APT (50 MHz, pyridine- d_5): Table 1.

Alkaline hydrolysis of compounds 1 and 2. Compounds 1 (30 mg) and 2 (20 mg) were dissolved separately in MeOH (5 ml). The solns were left overnight at room temp. after adding dry methanolic NaOMe up to pH 12-13. The reaction mixtures were neutralized with 2 M HCl and then concd to dryness in vacuo. The residues were extracted with n-BuOH to give 28 and 15 mg of hydrolysed compounds, respectively. Comparison of these new compounds with the original ones (solvent system A) gave a new glycoside (18 mg) (3), which was derived from 2. Compound 1 remained unchanged after alkaline hydrolysis.

3-O-[β-D-Glucopyranosyl (1 \rightarrow 3)-α-L-rhamnapyranosyl (1 \rightarrow 4)-β-D-xylopyranosyl]-3β, 23-dihydroxy Δ^{12} -oleanen-28-carboxylic acid (3). [α]₅²⁹ – 9.40° (MeOH; c 0.9). IR v_{max} cm⁻¹: 3393 (OH), 1697 (CO₂H), 1632 (C=C). FAB-mass (negative mode) m/z: 911.1 [M \rightarrow H]⁻, 749.5 [M \rightarrow H \rightarrow Glc \rightarrow Rham \rightarrow Xyl]⁻. ¹H NMR (200 MHz, pyridine- d_5): δ 5.52 (1H, d, d = 7.6 Hz, H-1 of β -Glc), 5.03 (1H, d, d = 7.2 Hz, H-1 of β -Xyl), 5.00 (1H, d) d = 7.5 Hz, H-1 of d0 (1H, d) d0 = 7.2 Hz, H-12), 3.27 (1H, d), 1.53 (3H, d), d0 = 5.6 Hz, Me of Rham), 1.23 (3H, d), Me), 1.12 (3H, d), Me), 1.00 (3H, d), Me), 0.99 (3H, d), Me), 0.90 (6H, d). Table 1.

Acid hydrolysis of glycosides. Solns of 1-3 (15 mg each) in 80% MeOH-C₆H₆ (1:1) (5 ml) were each refluxed for 6 hr at 95° after adding 2 M HCl (5 ml). The organic layer was evapd in vacuo. H₂O was added to the reaction

mixture and the aglycone was extracted with CHCl₃. The CHCl₃ extract was evapd *in vacuo* and purified on a silica gel column (solvent system D) giving 6, 7 and 5 mg respectively. Mp 328° [3], $[\alpha]_D^{15} + 77^\circ$ (MeOH; c 0.7) [3]. IR ν_{max} cm⁻¹: 3422 (OH), 1693 (CO₂H), 1630 (C=C). EIMS m/z: 472 [M]⁺, 471 [M - H]⁺ (100), 426 [M - HCO₂H]⁺, 408 [M - HCO₂H - H₂O]⁺, 395 [M - HCO₂H - CH₂OH]⁺, 248, 233, 203, 189, 175.

The H₂O layers were combined and neutralized with a satd soln of Na₂CO₃ and concd to dryness for each glycoside. The residues were compared with standard sugars on TLC (solvent system C) and descending PC (solvent system F and G), which showed D-glucose, D-xylose and L-rhamnose in 1-3. The H₂O layers were silylated with trimethyl chlorosilane and hexamethyl-disilazane in pyridine under CaCl₂ tube for 1 hr at 60°. Analysis of the silylated sugars by GC gave the ratio glucose-rhamnose-xylose as 2:1:2 for 1, 3:1:1 for 2 and 1:1:1 for 3.

Acknowledgement—We would like to thank TÜBİTAK for measuring the NMR spectra.

REFERENCES

- Zviadadze, L. D., Dekanosidze, G. E., Dzhikiya, O. D., Kemertelidze, E. P. and Shasthkov, A. S. (1981) Bioorg. Khim. 7, 736.
- 2. Zviadadze, L. D., Dekanosidze, G. E., and Kutateladze, T. (1983) Khim Prir. Soedin. 1, 46.
- 3. Tagiev, S. A. and İsmailov, A. I. (1977) Khim. Prir. Soedin. 6, 822.
- Kirmizigül, S. and Anil, H. (1994) Phytochemistry 35, 1075.
- Kirmizigül, S. and Anil, H. (1994) Phytochemistry 36, 1555.
- Kirmizigül, S., Anil, H., Uçar, F. and Akdemir, K. (1995) Phytother. Res. (in press).
- Abisch, E. and Reichstein, E. (1960) Helv. Chim. Acta 43, 1844.
- 8. Tori, K., Seo, S., Shimaoka, A. and Tomita, Y. (1974) Tetrahedron Letters 4227.
- 9. Colombo, P., Corbetta, D., Pirotta, A., Ruffini, G. and Sartori, A. (1965) J. Chromatogr. 3, 345.
- Choy, J. M. and Dutton, G. G. A. (1993) Can. J. Chem. 51, 198.
- 11. Wulff, G. (1965) J. Chromatogr. 18, 2856.
- Breitmaier, E. and Bauer, G. (1977) ¹³C NMR Spektroskopie-Eine Arbeitsanleitung mit Übungen. Georg, Thieme, Stuttgart.
- Gorin, P. A. J. and Mazurek, M. (1975) Can. J. Chem. 53, 1212.
- 14. Wang, H., Mayer, R. and Rucker, G. (1993) *Phytochemistry* 34, 1389.
- 15. Tian, J., Wu, F., Qui, M. and Nie, R. (1993) *Phytochemistry* 32, 1539.