

DIBENZOCYCLOOCTADIENE LIGNANS FROM KADSURA JAPONICA

NORIYUKI OOKAWA, YUKINOBU IKEYA,* KÔ SUGAMA, HEIHACHIRO TAGUCHI and MASAO MARUNO

Tsumura Central Research Laboratories, 3586 Yoshiwara Ami-machi, Inashiki-gun, Ibaraki 300-11, Japan

(Received in revised form 21 November 1994)

Key Word Index—Kadsura japonica; Schisandraceae; fruits; lignan; dibenzocyclooctadiene; acetylbinankadsurin B; angeloylbinankadsurin B; deangeloylschisantherin F.

Abstract—Two new dibenzocyclooctadiene lignans, angeloylbinankadsurin B, acetylbinankadsurin B, and a known lignan, deangeloylschisantherin F, were isolated from the fruits of *Kadsura japonica*. Their structures were determined on the basis of chemical and spectral studies.

INTRODUCTION

Kadsura japonica Dunal is a climbing species growing in the southern part of Japan. Its dried fruits were used as an antitussive and a tonic under the name of 'Nangomishi' as a substitute for the fruits of Schisandra chinensis Baill. Two dibenzocyclooctadiene lignans (kadsurain and kadsurarin) have been isolated from the stems of this species [1] and three lignans (acetyl-, angeloyland caproyl-binankadsurin A) from the fruits [2]. The present paper describes the structural elucidation of two new dibenzocyclooctadiene lignans, angeloylbinankadsurin B (1) and acetylbinankadsurin B (2) and the first isolation of a known lignan, deangeloylschisantherin F (3) [3], from a natural source.

RESULTS AND DISCUSSION

Angeloylbinankadsurin B (1), acetylbinankadsurin B (2) and deangeloylschisantherin F (3) were obtained as needles, a white powder and prisms, respectively. The molecular formulae of 1–3 were estimated from HR-mass spectrometry to be $C_{28}H_{36}O_8$, $C_{25}H_{32}O_8$ and $C_{22}H_{28}O_7$, respectively. The UV and CD spectra (1, $[\theta]_{205} + 104\,000$, $[\theta]_{232} + 6100\text{sh}$, $[\theta]_{249} - 5700$ and $[\theta]_{272} - 6900\text{sh}$; 2, $[\theta]_{249} - 57\,400$, $[\theta]_{269} - 9200\text{sh}$, $[\theta]_{287} + 1800$; 3, $[\theta]_{205} + 139\,000$, $[\theta]_{248} - 10\,4000$ and $[\theta]_{288} + 7000$) of these compounds show that they are dibenzocyclooctadiene lignans with an S configuration of the biphenyl moiety [4].

The ¹H and ¹³C NMR 2 (Tables 1 and 2, respectively) spectra of 1 reveal that it has a phenolic hydroxyl and five methoxyl groups on the aromatic rings, and also two secondary methyls, a benzylic methine and an angeloyl group [5] on the cyclooctadiene ring. The mass spectrum, with peaks at m/z 400 [M – MeCH=C

$$R_4O$$
 OR_3
 R_4O
 OR_3
 R_1O
 OR_2O
 OR_3
 R_2O
 OR_4
 OR_5
 OR_6
 OR_6
 OR_6
 OR_6
 OR_6

1: $R_1=H$, $R_2=Angeloyl$, $R_3=R_4=Me$

1a: $R_1 = R_2 = H, R_3 = R_4 = Me$

2: R₁=H, R₂=COCH₃, R₃=R₄=Me

 $3: R_1 = R_2 = R_3 = H, R_4 = Me$

3a: $R_1 = R_3 = COCH_3$, $R_2 = H$, $R_4 = Me$

4: R₁=R₂=H, R₃+R₄=CH₂

4a: R₁=H, R₂=COCH₃, R₃+R₄=CH₂

b: $R_1 = R_2 = COCH_3$, $R_3 + R_4 = CH_2$

4c: $R_1 = R_2 = COCH_3$, $R_3 = R_4 = Me$

4d: $R_1=R_2=COCH_3$, $R_3=R_4=Me$

(Me)COOH]⁺ and 83 [MeCH=C (Me) CO]⁺ supports the presence of an angeloyl group in 1. The ¹H and ¹³C NMR spectra of 2 resemble those of 1, except for the signals of the ester moiety. By comparison of the ¹H and ¹³C NMR spectra of 2 with those of 1, it was assumed that the angeloyl group in 1 was replaced by an acetyl group in 2. The mass spectrum, with peaks at m/z 460 [M]⁺ and 400 [M — Me COOH]⁺ supported the presence of an acetyl group in 2.

On hydrolysis with 3% KOH in EtOH, 1 afforded compound 1a, named binankadsurin B, as a white powder, $C_{23}H_{30}O_7$, and a mixture of angelic and tiglic acids. On the other hand, reduction of 2 with LiAlH₄ similarly afforded 1a. These facts indicate that 1 and 2 are the compounds with angeloyl and acetyl groups attached to the hydroxyl group of 1a, respectively. The singlet at $\delta 4.67$ in the ¹H NMR spectrum of 1a, which appeared at $\delta 5.69$ in 1 and $\delta 6.62$ in 2, was assigned to a benzylic methine. This shows that the angeloyl group in 1 and the acetyl group in 2 are linked to a benzylic hydroxyl group of 1a. The ¹³C NMR spectrum of 1a is very similar to

^{*}Author to whom correspondence should be addressed.

N. Ookawa et al.

Table 1. 'H NMR spectral data of compounds 1, 1a, 2, 3, 3a, and 4 in CDCl₃(500 MHz)

ر ا	H-4, s H-11, s H-9β	<i></i> ⊌6-Н	$\begin{array}{c} \text{H-}6\alpha,dd\\ (J=\text{Hz}) \end{array}$	$\mathbf{H-6}\boldsymbol{\beta},dd$ $(J=\mathbf{Hz})$	H-7, m	H-8, m	C-7-Me, $d(J = Hz)$	C-7-Me, d C-8-Me, d OMc $(J = Hz)$ $(J = Hz)$ s	ОМе	ArOH br s	OCH ₂ O
*	6.38	5.69 br s	2.62	2.59	2.11	2.11	0.95	1.14	3.59, 3.86, 3.88	5.40	
	09'9		(13.6, 6.2)	(13.6, 2.3)			(7.2)	(6.9)	3.91		
la	6.41	4.67 s	2.64	2.61	2.10	1.94	0.95	1.20	3.65, 3.88, 3.89	5.84	
	6.43		(13.5, 6.4)	(13.5, 2.9)			(7.5)	(7.3)	3.89,3.92		
7*	6.40	5.62 br s	2.64	2.59	2.06	5.06	0.91	1.11	3, 62, 3.88, 3.90		
	6.55		(13.7, 6.4)	(13.7, 2.3)			(7.1)	(7.0)	3.90, 3.91		
3+	6.34	4.52 s	2.58	2.53	2.02	1.84	88.0	1.12	3.58, 3.80, 3.85	7.86	
	6.39		(13.6, 7.1)	(13.6, 2.2)			(7.4)	(7.3)	3.90	8.71	
3a*	6.73	4.75 s	2.69	2.64	2.04	1.83	1.01	1.17	3.60, 3.82, 3.85		
	9.60		(13.8, 7.0)	(13.8, 2.3)			(7.4)	(7.3)	3.90		
4	6.41	4.60 s	2.62	2.65	2.07	1.91	0.94	1.16	3.87, 3.88, 3.91	5.82	5.95, d (1.5)
	6.36		(13.6, 6.6)	(13.6, 3.1)			(7.5)	(7.3)			5.97, d (1.5

*Other singals: 1, angeloyl: 1.30 (3H, quinter, J = 1.6 Hz, α -Me), 1.89 (3H, dq, J = 7.2, 1.6 Hz, β -Me), 5.88(1H, qq, J = 7.2, 1.6 Hz); 2, acetyl: 1.57 (3H, s); 3a, acetyl: 1.99 and †This compound was measured in CDCl₃-DMSO-d₆ (3:1). that of binankadsurin A (4) [2], having the C-7 α methyl, C-8 α methyl and C-9 α hydroxyl groups, except for the signals given by the functional groups on the aromatic rings. By comparison of the ¹H and ¹³C NMR spectra of 1a with those of 4 (Tables 1 and 2), it was assumed that the methylenedioxy moiety at the C-12 and C-13 positions in 4 was replaced by two methoxyl groups in 1a. This was confirmed by chemical correlation of 1a with acetylbinankadsurin A (4a), as described below.

On acetylation, 4a afforded a compound 4b, C₂₆H₃₀O₉. The ¹H NMR spectrum of **4b** showed a new acetyl signal at δ 1.98 and no phenolic hydroxyl signal, indicating that the C-1 hydroxyl group in 4 was acetylated. In a previous paper [6], we reported on the selective cleavage of the methylenedioxy moiety with Pb (OAc)₄ in dry benzene. Treatment of 4b with this reagent followed by hydrolysis with 80% HOAc afforded a diphenol (4c), C₂₅H₃₀O₉, whose ¹H NMR spectrum showed no methylenedioxyl signal. Methylation of 4c with Me₂SO₄ and K₂CO₃ gave compound 4d, $C_{27}H_{34}O_9$ [¹H NMR (CDCl₃): δ 3.57 (3H, s), 3.87 (6H, s), 3.90 (3H, s), 3.93 (3H, s) $(5 \times OMe)$]. On hydrolysis, 4d afforded 1a. This indicates that the methylenedioxy moiety at the C-12 and C-13 positions in 4 is replaced by two methoxyl groups in 1a.

On the basis of the above results, the structures of angeloylbinankadsurin B and acetylbinankadsurin B were thus determined as (7R, 8R, 9R, S-biar)-9-angeloyloxy-6,7,8,9-tetrahydro-2,3,12,13,14-pentamethoxy-7,8-dimethyl-1-dibenzo [a, c] cyclooctenol (1), and (7R,8R,9R,S-biar)-9-acetoxy-6,7,8,9-tetrahydro-2,3,12,13,14-pentamethoxy-7, 8-dimethyl-1-dibenzo [a, c] cyclooctenol (2), respectively. In addition, the J value between the C-8 proton and the C-9 proton $(J_{8,9}=0 \text{ Hz}, \phi_{8,9}=90^\circ)$ in 1 and 2 supports that the conformations of the cyclooctadiene ring of 1 and 2 are in a twist-boat-chair form.

The ¹H and ¹³C NMR spectra of deangeloylschisantherin F (3) showed two phenolic hydroxyl signals and a benzylic methine signal attached to the carbon carrying a hydroxyl group. On methylation with MeI and K₂CO₃, 3 afforded a monomethyl ether, which was identified as 1a possessing the C-1 phenolic hydroxyl group. This indicates that 3 corresponds to norbinankadsurin B. The position of the other phenolic hydroxyl group was determined by ¹³C NMR spectral analysis of 1a, 3 and the acetate (3a) of 3. In the ¹³C NMR spectral analysis of dibenzocyclooctadiene lignans, it was reported that replacement of the methoxyl group at the C-3 or C-12 positions by a hydroxyl group and an acetoxyl group produces downfield shifts of ca 3 and ca 10 ppm, respectively, for the C-4 or C-11 carbon signal [7]. The C-11 signals of 3 and 3a show downfield shifts of 2.9-3.4 and 9.8-10.3 ppm, respectively, compared with that of 1a. This indicates the presence of a C-12 hydroxyl group in 3.

On the basis of the above data 3 was identified as (7R, 8R, 9R, S-biar)-6,7,8,9-tetrahydro-2,3,13,14-tetramethoxy-7,8-dimethyl-1,9,12-dibenzo [a, c] cyclooctenetriol. Compound 3 has already been reported as the hydrolysis

Table 2. ¹³C NMR spectral data of compounds 1, 1a, 2, 3, 3a and 4 in CDCl₃ (125 MHz)

C	1*	1a	2	3†	3a‡	4
1	146.9	147.2	146.5	147.7	141.3	147.1
2	134.0	134.2	133.8	134.3	139.2	133.9
3	150.6	151.4	150.5	151.0 ^a	151.8	151.3
4	107.3 ^a	107.6 ^a	107.3 ^a	106.6	113.3	107.5
5	133.1	133.7	133.5	133.4	134.4	133.9
6	38.6	38.8	38.7	386	38.9	38.8
7	34.9	35.1	35.2	35.0	35.1	34.9
8	41.9	43.2	41.8	42.9	43.1	43.1
9	82.7	83.9	82.7	82.8	82.5	83.7
10	137.3	140.1	137.0	140.5	141.1	138.9
11	107.1 ^a	107.1 ^a	107.0 ^a	110.5	117.4	102.8
12	153.0	153.0	153.1	149.0	143,7ª	148.9
13	141.1	140.9	141.2	139.1	143.3°	135.7
14	151.6	151.8	151.7	151.4a	151.4	141.3
15	120.2	119.1	119.9	120.2 ^b	125.0 ^b	118.3
16	117.4	115.5	117.5	119.4 ^b	122.5 ^b	115.3
17	19.9	19.9	19.8	20.0	20.1	19.7
18	14.8	15.3	14.8	15.0	15.2	15.4
C-1, 14	 , 60.5	, 60.9	, 60.9	, 60.5°	,60.5°	
OMe C-2, 1	13 60.8, 60.8	61.1, 60.9	60.9, 60.9	60.2, 60.2°	60.6°, 60.6°	61.1, —
C-3, 12	55.9 ^b , 56.0 ^b	55.8 ^b , 56.0 ^b	55.9 ^b , 56.0 ^b	56.0, —	_	55.8, —
OCH ₂ O	_					101.2
CO-CH ₃			170.3, 20.4		170.5, 20.5 168.9, 20.7	 ^

^{*} Other signals:1, 15.7 (β -Me), 20.4 (α -Me), 127.3 (α -olefin), 139.4 (β -olefin), 166.8 (C=O) (angeloyl).

product of schisantherin F by Liu and Ma [3], but this is the first report of this compound from a natural source.

EXPERIMENTAL

General. See ref. [2].

Extraction and isolation. Dried fruits (1.28 kg) of K. japonica (provided by the Herbal Garden of Tokyo Metropolitan Government) were pulverized and extracted with petrol $(31 \times 4, 7 \text{ hr each})$ under reflux. The petrol extracts were concd to give a brown mass (471 g). This afforded 15 frs on silica gel CC (2.5 kg) with nhexane-benzene-Me₂CO. The frs eluted with benzene-Me₂CO (9:1) and (22:13) were combined and concd. This residue (12.28 g) was purified by prep. TLC: (i) benezene-Et₂O (1:1), R_f 0.48; (ii) n-hexane-Me₂CO (3:2), R_f 0.45, to give 1 (576 mg, yield 0.045%). The frs eluted with benzene-Me₂CO (21:14) and (41:19) were combined and concd. The residue (2.33 g) was purified by prep. TLC: (i) n-hexane-Me₂CO(3:2), R_f 0.42; (ii) benzene-EtOH (19:1), R_f 0.34, to give 2 (289 mg, yield 0.023%). The frs eluted with benzene-Me₂CO(1:1) were concd (2.6 g) and purified by prep. TLC: n-hexane- Me_2CO (3:2), R_f 0.30 to give 3 (535 mg, yield 0.042%). Angeloylbinankadsurin B (1). Plates from n-

Angeloylbinankadsurin B (1). Plates from n-hexane-Et₂O, mp 146.5-148° $[\alpha]_D^{25}$ + 33.6° (CHCl₃;

c 1.07). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹:3432 (OH), 1710 (C=O), 1644 (C=C), 1586 (aromatic ring). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm(log ε): 215 (4.61), 252 sh (4.00), 278 (3.47). EIMS m/z (rel. int.): 500 [M]⁺ (26), 400 [M - Me CH = C Me COOH]⁺ (97), 369 (100), 357 (9.8), 83 [Me CH = C Me CO]⁺ (6.4), 55 (12.6). HRMS m/z:500. 2409 (calc. for $C_{28}H_{36}O_{8}$:500. 2410). CD (MeOH; c 0.00983) [ϕ]²⁸ (nm):104 000(205), +6100sh(232), -57 700(249), -6900sh(272), +4600 (287)

Acetylbinankadsurin B (2). White powder. $[\alpha]_D^{28}$ + 7.70° (CHCl₃; c 1.30). IRν_{max}^{KBr} cm⁻¹:3420 (OH), 1735 (C=O), 1604, 1595, 1580 (aromatic ring). UV λ_{max}^{EIOH} nm (log ε):211 (4.59), 254sh (3.95), 277 (3.48). EIMS m/z (rel. int.):460 [M]⁺ (35), 401 (23), 400 [M-Me COOH]⁺ (89), 370 (27), 369 (100), 357 (14). HRMS m/z:460.2099 (calc. for C₂₅H₃₂O₈:460.2097). CD (MeOH; c 0.00947) [ϕ]³⁰ (nm): – 57 400(249), – 9200sh (269), + 1800 (287).

Deangeloylschisantherin F (3). Prisms from Me₂CO, mp 195–196°. [α]_D²⁴ – 12.5° (dioxane; c 0.88). IRν_{max} cm⁻¹:3500, 3472 (OH), 1605, 1585, 1575 (aromatic ring). UV $\lambda_{max}^{\text{EtOH}}$ nm(logε): 217 (4.58), 251sh (4.03), 278 (3.45). EIMS m/z (rel. int):404 [M] + (83), 387 (24), 386 (100), 355 (45), 348 (28), 273 (16). HRMS m/z:404. 1831 (calc. for C₂₂H₂₈O₇: 404. 1835). CD (MeOH; c 0.0121) [ϕ]²⁹ (nm): + 139 000 (205), - 30 000sh (230), - 104 000(248), - 11 900sh (272), + 7000 (288).

[†]This compound was measured in DMSO-d₆-CDCl₃ (1:3).

[†] This compound was measured at 80 MHz.

a-b Assignments within any vertical column may be interchanged.

1190 N. Ookawa et al.

Hydrolysis of 1. A soln of 1 (34.8 mg) in 3% KOH-EtOH (2 ml) was kept at 75-80° for 6 hr, then diluted with H₂O (15 m) and extracted with Et₂O. The Et₂O extract was washed with H₂O, dried over Na₂SO₄ and concd. The residue was purified by prep. TLC [benzene-Et₂O, 1:1] to give 1a (20.4 mg) as a white powder. $[\alpha]_D^{27}$ – 32.8° (CHCl₃; c 2.04). IR v_{max}^{KBr} cm⁻¹: 3540, 3500 (OH), 1608, 1595, 1580 (aromatic ring). UV $\lambda_{\text{max}}^{\text{EtOH}}$ $nm(log \varepsilon)$: 213 (4.58), 250sh (4.06), 281sh (3.44). EIMS m/z(rel. int.):418 [M]⁺ (91), 400 (100), 369 (84), 362 (32), 347 (14), 224 (15). HRMS m/z:418.1995 (calc. for C₂₃H₃₀O₇:418.1992). The aq. soln was acidified with NHCl and extracted with Et₂O. The Et₂O extract was washed with H₂O, dried over Na₂SO₄ and evapd. Sublimation (70°, 15 mmHg) of the residue gave needles. The presence of angelic and tiglic acids in this sublimate in a ratio 1:99 was verified by GC [column, SP1200 (10%) + H₃PO₄ (1%) on Chromosorb WAW (80-100 mesh) (3 mm i.d. \times 2 m); column temp., 130°; inj. temp., 150°; N₂ 29.4 ml min⁻¹]; angelic acid, R_t , 6.4 min; tiglic acid, R_t , 8.3 min.

Acetylation of 4a. A soln of 4a (100.1 mg) in a mixt. of dry pyridine (2.5 ml), Ac₂O (2 ml) and dimethylaminopyridine (50 mg) was kept at 55-60° for 10 min, then diluted with Et₂O. The Et₂O soln was washed with NHCl, then H₂O, dried over Na₂SO₄ and concd. The residue was purified by prep. TLC (benzene-Et₂O 1:1) to 4b (124 mg) as prisms (from n-hexane-Et₂O), mp 130–132°. $[\alpha]_D^{24}$ + 22.1° (CHCl₃; c1.22). IR v_{max}^{KBr} cm⁻¹:1782, 1775, 1735 (C=O), 1615, 1601, 1575 (aromatic ring). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm(log ε): 219 (4.63), 254sh (4.03), 278sh (3.50). ¹H NMR (CDCl₃, 60 MHz): δ 0.93 (3H, d, J = 7 Hz, Me-7), 1.03 (3H, d, J-7 Hz, Me-8), 1.62 (3H, s, AcO-9), 2.00 (2H, m, H-7 and H-8), 2.02 (3H, s, OAc-1), 2.33 (2H, d, J = 4 Hz, H-6), 3.85 (6H, s, OMe), 3.90 (3H, s),5.67 (1H, br s, H-9 β), 5.95 (2H, s, OCH₂O), 6.45 (1H, s, H-11), 6.72 (1H, s, H-4). (found:C, 63.91; H, 6.27. C₂₆H₃₀O₉ requires: C, 64.18; H, 6.22%).

Treatment of 4b with Pb (OAc)4 in dry benzene, to give 4c. A soln of 4b (124.0 mg) and Pb (OAc)₄ (442.9 mg) in dry benzene (8 ml) was stirred at 50-55° for 7 hr, then diluted with Et₂O. The mixt. was washed with H₂O, dried over Na₂SO₄ and concd. The residue was purified by prep. TLC (n-hexane-Me₂CO, 3:2) to give a pale brown oil and unchanged 4b (39.0 mg). A soln of the pale brown oil in 80% HOAC (3 ml) was stirred at room temp. for 15 hr. The mixt. was concd and purified by prep. TLC (n-hexane-EtOAc, 3:4) to give 4c (37 mg) as an amorphous powder. $[\alpha]_D^{30} - 8.8^{\circ}$ (CHCl₃; c 1.59). $IRv_{max}^{CHCl_3}$ cm⁻¹:3510, 3350 (OH), 1765, 1735 (C=O), 1601,1585 (aromatic ring). EIMS m/z (rel. int.):474 [M]⁺ (12), 414 (9.7), 373 (23), 372 (100), 341 (16), 43 (16). HRMS m/z: 474.1891 (calc. for $C_{25}H_{30}O_9$: 474.1890). ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta 0.96 \text{ (3H, } d, J = 7.3 \text{ Hz, Me-7}), 1.06$ (3H, d, J = 7.3 Hz, Me-8), 1.59(3H, s, AcO-9), 1.98 (3H, s, AcOOAc-1), 2.00 (1H, m, H-8), 2.08 (1H, m, H-7), 2.72(2H, d, J = 4.7 Hz, H-6), 3.29, 3.85, 3.92 (each 3H, s, $3 \times \text{OMe}$), 5.66 (1H, s, H-9 β), 6.60 (1H, s, H-11), 6.72 (1H, s, H-4).

Methylation of 4c. A soln of 4c (33.9 mg) in dry $Me_2CO(3 \text{ ml})$ containing MeI (0.3 ml) and K_2CO_3

(300 mg) was stirred at room temp. for 4 hr, then diluted with Et₂O. The mixt. was washed with H₂O, concd and purified by prep. TLC (benzene–Et₂O, 1:1) to give **4d** (23 mg) as an amorphous powder. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹:1765, 1735, 1725 (C=O), 1595, 1577 (aromatic ring). EIMS m/z (rel. int.):502 [M]⁺ (34), 460 (12), 400 (100), 369 (83). ¹H NMR (CDCl₃, 500 MHz): δ 0.97 (3H, d, J = 7.3 Hz, Me-7), 1.08 (3H, d, J = 7.2 Hz, Me-8), 2.00 (1H, m, H-8), 2.07(1H, m, H-7), 2.65 (1H, dd, J = 13.8, 2.3 Hz, H-6 β), 2.71 (1H, dd, J = 13.8, 7.0 Hz, H-6 α), 3.56, 3.85, 3.86, 3.87 (each 3H, s, 4 × OMe), 5.73 (1H, d, J = 0.8 Hz, H-9 β), 6.50 (1H, s, H-11), 6.72 (1H, s, H-4).

Hydrolysis of 4c. A soln of 4c (15 mg) in 3% KOH-EtOH (2 ml) was kept at 65° for 1 hr, then diluted with Et₂O. The Et₂O extract was washed with H₂O, dried over Na₂SO₄ and evapd. The residue was purified by prep. TLC (benzene-Et₂O, 1:1) to give an amorphous powder (10.7 mg). $[\alpha]_D^{24}$ - 35.9° (CHCl₃; c 1.07). HRMS m/z:418.1999 (calc. for $C_{23}H_{30}O_7$:418.1991). This compound was identified as 1a ($[\alpha]_D$, IR, EIMS and ¹H NMR).

Reduction of 2 with LiAlH₄. LiAlH₄ (20 mg) was added to a soln of 2 (24.1 mg) in dry THF (2 ml). The mixt. was stirred at room temp. for 1 hr, then wet Et₂O was added. The reaction mixt. was then filtered and evapd. The residue was purified by prep. TLC (benzene–Et₂O, 1:1) to give an amorphous powder (17.3 mg). $[\alpha]_D^{26}$ – 30.1° (CHCl₃; c0.87,). HRMS m/z:418.1989 (calc. for C₂₃H₃₀O₇:418.1991). This compound was identified as 1a ($[\alpha]_D$, IR, EIMS and ¹H NMR).

Acetylation of 3. A soln of 3 (46.5 mg) in a mixt. of dry pyridine (2 ml) and Ac_2O (1 ml) was kept at room temp. overnight. The reaction mixt. was treated as described above for the acetylation of **4a** to give **3a** (36.4 mg) as prisms (from *n*-hexane–Et₂O), mp 155–156°. [α]_D²⁴ + 5.0° (CHCl₃; c 1.0). IR v_{max}^{KBr} cm⁻¹:3498 (OH), 1775, 1735 (C=O), 1608, 1575 (aromatic ring). UV λ_{max}^{EIOH} nm(logε): 211 (4.59), 251 (3.96), 283sh (3.42). EIMS m/z (rel. int.):488 [M]⁺ (36), 470 (29), 446 (35), 428 (77), 397 (43), 386 (100). HRMS m/z:488.2047 (calc. for $C_{22}H_{32}O_9$:488.2046).

Methylation of 3. A soln of 3 (80.4 mg) in dry Me₂CO (3 ml) containing MeI (0.3 ml) and K₂CO₃ (300 mg) was stirred at room temp. for hr, then diluted with Et₂O. The mixt. was treated as described above for the methylation of 4c, to give unchanged 3 (40.1 mg) and an amorphous powder (15.8 mg). $[\alpha]_D^{27} - 35.2^{\circ}$ (CHCl₃; c0.79). This compound was identified as 1a $[\alpha]_D$, IR, EIMS and ¹H NMR).

Acknowledgements—The authors wish to express their gratitude to Mr K. Kano and Miss N. Kanda, Tsumura Central Research Laboratories, Tsumura & Co., for measurements of elemental analysis, CD and MS. Thanks are also due to Mr K. Tanaka, Herbal Garden of Tokyo Metropolitan Government, for supplying plant materials.

REFERENCES

- Chen, Y.-P., Liu, R., Hsu, H.-Y., Yamamura, S., Shizuri, Y. and Hirata, Y. (1977) Bull. Chem. Soc. Jpn. 50, 1824.
- Ookawa, N. Ikeya, Y., Taguchi, H. and Yosioka, I. (1981) Chem. Pharm. Bull. 29, 123.
- 3. Liu, J.-S. and Ma, Y.-T. (1988) Acta Chim. Sinica 46, 460.
- 4. Ikeya, Y., Taguchi, H. Yosioka, I. and Kobayashi, H. (1979) Chem. Pharm. Bull. 27, 1383.
- Liu, C.-S., Fang, S.-D., Huang, M.-F., Kao, Y.-L. and Hsu, J.-S. (1978) Scientia Sinica 21, 483.
- Ikeya, Y., Taguchi, H. and Yosioka, I. (1981) Chem. Pharm. Bull. 29, 2893.
- Ikeya, Y., Taguchi, H., Sasaki, H., Nakajima, K. and Yosioka, I. (1980) Chem. Pharm. Bull. 28, 2414.