

Phytochemistry, Vol. 40, No. 2, pp. 533-535, 1995 Copyright © 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0031-9422/95 \$9.50 + 0.00

EFFUSIDES I–V: 9,10-DIHYDROPHENANTHRENE GLUCOSIDES FROM JUNCUS EFFUSUS

MARINA DELLA GRECA, ANTONIO FIORENTINO, PIETRO MONACO, LUCIO PREVITERA* and ARMANDO ZARRELLI

Dipartimento di Chimica Organica e Biologica, Università Federico II, Via Mezzocannone 16, I-80134 Napoli, Italy

(Received 19 January 1995)

Key Word Index—Juncus effusus; Juncaceae; 9,10-dihydrophenanthrene glucosides; effusides.

Abstract—Five 9,10-dihydrophenanthrene glucosides, named effusides I–V, have been isolated from the methanolic extract of *Juncus effusus*. Structures have been determined on spectroscopic grounds.

INTRODUCTION

In a chemical investigation of *Juncus effusus*, connected to a study of the allelopathic interactions between freshwater macrophytes and microalgae [1], we have recently reported the isolation of some 9,10-dihydrophenanthrene derivatives [2–4]. In pursuing such a study we now describe the isolation of five glucosides named effusides I–V.

Effusides I and V were identified as the $12-O-\beta-D$ -glucopyranoside (1) and the 2,12-di- $O-\beta-D$ -glucopyranoside (5) of 1,8-dimethyl-2-hydroxy-5-hydroxymethyl-7-methoxy-9,10-dihydrophenanthrene (6), while effusides II-IV were attributed structures 7-O-(2), 2-O-(3) and $12-O-\beta-D$ -glucopyranosyl-1,8-dimethyl-2,7-dihydroxy-5-hydroxymethyl-9,10-dihydrophenanthrene (4).

The less polar effuside I (1) had a molecular formula, C₂₄H₃₀O₈, according to the presence of 24-carbon signals in the ¹³CNMR spectrum (Table 1) and a quasimolecular ion at m/z 469 in the FAB mass spectrum. The ¹H NMR spectrum (Table 2) showed two aromatic ortho coupled doublets at δ 6.76 and 7.38, an aromatic singlet at δ 7.14, two AB doublets at δ 4.68 and 4.91, a methoxyl methyl at δ 3.85, four benzylic protons as a multiplet at δ 2.62 and two methyl singlets at δ 2.17 and 2.18, beside an anomeric proton at δ 4.32 and further signals of a saccharide moiety. The signal at δ 6.76, attributed to the H-3 proton and correlated to the carbon at δ 111.9 in the H-C one-bond COSY, gave cross peaks in the H-C long-range COSY with the signals at δ 121.4 and 128.5 which were attributed to the C-1 and C-4a carbons. Accordingly, both these carbons were correlated to the H-10 benzylic protons at δ 2.62 while the C-1 gave an additional cross peak with the H-11 methyl protons at δ 2.18. The signal at δ 7.38, linked to the carbon at δ 126.4 and attributed to the H-4 proton, was correlated to the Enzymatic hydrolysis of 1 gave D-glucose, identified by GC analysis [5], and aglycone 6. The coupling of the H-1 proton of glucose agreed with a β -configuration at the anomeric carbon and the differences in chemical shift and multiplicity of the H-12 protons in 1 and 6 justified the location of the saccharide residue at the C-12 position. The nOe interactions in a NOESY experiment of the anomeric proton with the H-12 methylene confirmed the structure.

Effuside II (2) had 23 carbon signals in the 13 C NMR spectrum and a quasimolecular peak at m/z 455 in the FAB mass spectrum for the molecular formula $C_{23}H_{28}O_8$. Enzymatic hydrolysis gave aglycone 7 and D-glucose, and the coupling of the anomeric proton indicated a β configuration of the sugar. The NMR spectra of 2 were lacking in the methoxyl methyl signals and a comparison with those of 1 evidenced a significant upfield shift of the H-6 proton and a downfield shift of the C-6 carbon. These data agreed well with the presence of a hydroxyl group rather than a methoxyl one at C-7.

Effuside III (3) had the same molecular formula $C_{23}H_{28}O_8$ of 2 and by enzymatic hydrolysis gave 7 and D-glucose. It showed in the ¹H NMR spectrum the H-12 protons as a sharp singlet shifted upfield at δ 4.48 and the anomeric proton shifted downfield at δ 4.82. These elements suggested that the saccharide moiety was linked to

OH-bearing C-2 carbon at δ 154.0, and to the signals at δ 137.9 and 125.0. These signals, also correlated to the benzylic signal at δ 2.62, were attributed to the C-1a and C-5a carbons, respectively, owing to the heterocorrelations of the latter with the H-12 protons at δ 4.68 and 4.91 and with the H-6 proton at δ 7.14, linked to the carbon at δ 111.0. This latter proton, together with the methyl protons at δ 2.17, gave cross peaks with the C-8 carbon at δ 119.8. The chemical shifts of the C-6 and C-8 carbons agreed with the presence of the methoxyl group at C-7 and in a NOESY spectrum the methyl of this group at δ 3.85 gave nOe interaction with the H-6 proton.

^{*}Author to whom correspondence should be addressed.

Table 1. 13C NMR chemical shifts of effusides I-V

1 121.4 120.9 122.5 123.0 123.1 2 154.0 153.7 153.9 154.0 154.3 3 111.9 111.9 111.7 111.9 112.0 4 126.4 126.2 126.3 125.9 126.5 4a 128.5 128.0 129.1 128.5 127.8 1a 137.9 138.2 137.7 138.2 138.3 5 130.9 131.1 135.7 135.8 131.6 6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 <th>С</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th>	С	1	2	3	4	5
3 111.9 111.9 111.7 111.9 112.0 4 126.4 126.2 126.3 125.9 126.5 4a 128.5 128.0 129.1 128.5 127.8 1a 137.9 138.2 137.7 138.2 138.3 5 130.9 131.1 135.7 135.8 131.6 6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6	1	121.4	120.9	122.5	123.0	123.1
4 126.4 126.2 126.3 125.9 126.5 4a 128.5 128.0 129.1 128.5 127.8 1a 137.9 138.2 137.7 138.2 138.3 5 130.9 131.1 135.7 135.8 131.6 6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5		154.0	153.7	153.9	154.0	154.3
4a 128.5 128.0 129.1 128.5 127.8 1a 137.9 138.2 137.7 138.2 138.3 5 130.9 131.1 135.7 135.8 131.6 6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 <td>3</td> <td>111.9</td> <td>111.9</td> <td>111.7</td> <td>111.9</td> <td>112.0</td>	3	111.9	111.9	111.7	111.9	112.0
1a 137.9 138.2 137.7 138.2 138.3 5 130.9 131.1 135.7 135.8 131.6 6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 55.5 Glc-1 101.6 101.1 101.6 <td>4</td> <td>126.4</td> <td>126.2</td> <td>126.3</td> <td>125.9</td> <td>126.5</td>	4	126.4	126.2	126.3	125.9	126.5
5 130.9 131.1 135.7 135.8 131.6 6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4	4a	128.5	128.0	129.1	128.5	127.8
6 111.0 115.5 115.1 114.3 111.0 7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 76.7	1a	137.9	138.2	137.7	138.2	138.3
7 155.0 156.2 153.6 153.5 155.4 8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 <td< td=""><td>5</td><td>130.9</td><td>131.1</td><td>135.7</td><td>135.8</td><td>131.6</td></td<>	5	130.9	131.1	135.7	135.8	131.6
8 119.8 120.2 120.0 120.8 121.5 8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Gle	6	111.0	115.5	115.1	114.3	111.0
8a 138.3 138.2 138.5 138.0 138.3 5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7	7	155.0	156.2	153.6	153.5	155.4
5a 125.0 127.1 125.4 126.9 127.9 9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Gle-1' 2' 73.4 73.4 73.4	8	119.8	120.2	120.0	120.8	121.5
9 25.0 24.9 25.0 25.1 25.0 10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 2' 73.4 3' 76.9 4' 70.0 5' 76.6	8a	138.3	138.2	138.5	138.0	138.3
10 25.9 26.0 26.0 25.9 25.9 11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Gle-1' 2' 73.4 73.4 73.4 3' 76.9 76.9 76.9 76.9 76.9 4' 70.0 76.9 76.9 70.0 76.9 <	5a	125.0	127.1	125.4	126.9	127.9
11 11.5 11.6 11.6 11.5 11.8 12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 2' 73.4 73.4 73.4 3' 76.9 76.9 76.9 70.0 70.0 5' 76.6 76.6 76.6 76.6 76.6	9	25.0	24.9	25.0	25.1	25.0
12 68.9 69.4 62.2 62.0 68.7 Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 2' 73.4 3' 76.9 70.0 4' 70.0 76.6 5' 76.6 76.6	10	25.9	26.0	26.0	25.9	25.9
Me 11.5 11.6 11.8 11.8 11.5 OMe 55.4 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Gle-1' 2' 73.4 3' 76.9 76.9 4' 70.0 76.6 5' 76.6 76.6	11	11.5	11.6	11.6	11.5	11.8
OMe 55.4 55.5 Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Gle-1' 2' 73.4 3' 76.9 76.9 4' 70.0 76.6 5' 76.6 76.6	12	68.9	69.4	62.2	62.0	68.7
Glc-1 101.6 101.1 101.6 101.3 101.6 2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 101.2 73.4 76.9 76.9 4' 70.0 76.6 76.6 76.6	Me	11.5	11.6	11.8	11.8	11.5
2 73.5 73.5 73.4 73.4 73.5 3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 101.2 2' 73.4 3' 76.9 4' 70.0 5' 76.6	OMe	55.4				55.5
3 76.8 76.8 77.0 77.0 76.9 4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 101.2 2' 73.4 3' 76.9 4' 70.0 5' 76.8 77.0 77.0 76.9 77.0 76.9	Glc-1	101.6	101.1	101.6	101.3	101.6
4 70.1 70.1 69.7 69.8 69.7 5 76.6 76.8 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 101.2 2' 73.4 3' 76.9 4' 70.0 5' 76.6		73.5	73.5	73.4	73.4	73.5
5 76.6 76.8 76.7 76.6 76.6 6 61.1 61.1 60.8 60.8 60.7 Glc-1' 101.2 2' 73.4 3' 76.9 4' 70.0 5' 76.6	3	76.8	76.8	77.0	77.0	76.9
6 61.1 61.1 60.8 60.8 60.7 Glc-1' 101.2 2 73.4 3' 76.9 4' 70.0 5' 76.6		70.1	70.1	69.7	69.8	69.7
Glc-1' 101.2 2' 73.4 3' 76.9 4' 70.0 5' 76.6	5	76.6	76.8	76.7	76.6	76.6
2' 73.4 3' 76.9 4' 70.0 5' 76.6	6	61.1	61.1	60.8	60.8	60.7
3' 76.9 4' 70.0 5' 76.6	Glc-1'					101.2
4' 70.0 5' 76.6	2'					73.4
5' 76.6						76.9
						70.0
6′ 61.0						76.6
	6′					61.0

an aromatic hydroxyl group and the nOe interaction between the anomeric proton and the aromatic singlet at δ 7.18 indicated the C-7 position.

Also effuside IV (4) had the same molecular formula and afforded by hydrolysis 7 and D-glucose. The H-3 proton was shifted downfield at δ 6.97 and gave nOe interaction with the anomeric proton according to the presence of the saccharide moiety at C-2.

Effuside V (5), the most polar compound, had a molecular formula C₃₀H₄₀O₁₃, on the basis of the FAB-MS and ¹³C NMR data, and gave by hydrolysis 6 and D-glucose. It showed in the ¹H NMR spectrum the H-12

protons as two AB doublets at δ 4.70 and 4.88, the H-3 doublet at δ 7.00 and the H-6 singlet at δ 7.16. The comparison of these chemical shifts with those of the other effusides suggested that D-glucose was at C-2 and C-12 while the methoxyl group was at C-7. Accordingly in the NOESY experiment the anomeric proton at δ 4.29 was correlated to the H-12 protons, the anomeric proton at δ 4.84 gave interaction with the H-3 proton and the methyl at δ 3.82 was correlated to the H-6 proton.

EXPERIMENTAL

NMR spectra were recorded at 400 MHz for 1H and 100 MHz for ^{13}C on a Bruker AC 400 spectrometer in DMSO- d_6 (aglycones in acetone- d_6). One bond and long-range H-C COSY experiments were performed with the XHCORR microprogramme using delays corresponding to $J_{C,H}160$ Hz and 8 Hz, respectively. EI mass spectra were obtained with a Kratos MS 50 apparatus and FAB mass spectra with a VG ZAB 2SE apparatus. DCCC was run with a mixture CHCl₃-MeOH- H_2O (13:7:4 for 1-4, 26:14:5 for 5) using the more polar upper layer as the mobile phase. Reverse-phase HPLC was performed using LiChrosorb RP8 column (MeOH- H_2O , 1:1) for 1-4 and LiChrosorb NH₂ (CH₃CN- H_2O , 4:1) for 5.

Isolation of effusides. Juncus effusus, collected in the summer near Naples was air dried and extracted with Et₂O and then with MeOH. The MeOH extract (350 g) after removal of the solvent was distributed between EtoAc and H₂O.

The organic layer was chromatographed on silica gel and the fractions eluted with CHCl₃-MeOH (9:1) were rechromatographed on Sephadex LH-20 eluting with MeOH-H₂O (3:1). DCCC chromatography and HPLC chromatography of fractions 130-143 gave pure 1 (10 mg), 2 (8 mg), 3 (11 mg) and 4 (6 mg). The aq. layer was chromatographed on Amberlite and the MeOH fraction was distributed between *n*-BuOH and H₂O. DCCC and HPLC processes on the aq. layer gave pure 5 (11 mg).

Enzymatic hydrolysis of glucosides. Pure effuside (3 mg) in H_2O (0.5 ml) was treated with β -glucosidase (1 mg, Sigma) at 37° for 12 hr. The reaction mixture was extracted with EtOAc:the organic layer gave aglycone 6 (7) while HPLC chromatography (CH₃CN-H₂O, 4:1) of the

Effusides I–V 535

Table 2. ¹H NMR chemical shifts of effusides I-V

Н	1	2	3	4	5
3	6.76 d	6.68 d	6.71 d	6.97 d	7.00 d
	(8.4)	(8.3)	(8.3)	(8.8)	(8.7)
4	7.38 d	7.31 d	7.33 d	7.37 d	7.43 d
	(8.4)	(8.3)	(8.3)	(8.8)	(8.7)
6	7.14 s	6.88 s	7.18 s	6.94 s	7.16 s
					2.54 m
9	2.62 m	2.62 m	2.62 m	2.62 m	2.63 m
					2.54 m
10	2.62 m	2.62 m	2.62 m	2.62 m	2.63 m
11	2.18 s	2.14 s	2.19 s	2.21 s	2.23 s
	4.68 d	4.45 d			4.70 d
	(11.0)	(10.7)	4.48 s	4.47 s	(11.0)
12	4.91 d	4.80 d			4.88 d
	(11.0)	(10.7)			(11.0)
Me	2.17 s	2.12 s	2.13 s	2.11 s	2.15 s
OMe	3.85 s				3.82 s
Glc-1	4.32 d	4.30 d	4.82 d	4.79 d	4.29 d
	(7.7)	(7.8)	(7.3)	(7.3)	(7.6)
2	3.12*	3.11*	3.26*	3.28*	3.05*
3	3.19*	3.20*	3.25*	3.25*	3.19*
4	3.18*	3.18*	3.10*	3.12*	3.15*
5	3.20*	3.20*	3.16*	3.15*	3.28*
	3.52 dd	3.51 dd	3.46 dd	3.44 dd	
	(5.7 11.3)	(5.6 11.2)	(5.5 11.2)	(5.6 11.1)	3.45*
6	3.63 dd	3.71 dd	3.69 dd	3.71 dd	3.69*
	(1.6 11.3)	(1.7 11.2)	(1.5 11.2)	(1.5 11.1)	5.07
Glc-1'					4.84 d
					(7.1)
2'					3.28*
3′					3.26*
4′					3.08*
5′					3.18*
					3.45*
6′					3.69*

^{*}Overlapping signals.

aq. layer gave D-glucose. The D-configuration was determined by treatment with L-cysteine methylester hydrochloride and TMS-imidazole [5].

Aglycone 6. ¹H NMR δ 6.75 (d, 1H, J = 8.8 Hz, H-3), 7.43 (d, 1H, J = 8.8 Hz, H-4), 7.07 (s, 1H, H-6), 2.64 (s, 4H, H-9 and H-10), 2.21 (s, 3H, H-11), 4.69 (s, 2H, H-12), 3.83 (s, 3H, OMe), 2.16 (s, 3H, Me). Aglycone 7: ¹H NMR δ 6.75 (d, 1H, J = 8.7 Hz, H-3), 7.39 (d, 1H, J = 8.7 Hz, H-4), 6.87 (s, 1H, H-6), 2.62 (s, 4H, H-9 and H-10), 2.18 (s, 3H, H-11), 4.52 (s, 2H, H-12), 2.15 (s, 3H, Me).

Acknowledgements—This work was supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica and by CNR (Progetto Chimica Fine II).

REFERENCES

- Della Greca, M., Monaco, P., Pinto, G., Pollio, A. and Previtera, L. (1995) Allelopathy J. 2, 37.
- Della Greca, M., Fiorentino, A., Mangoni, L., Molinaro, A., Monaco, P. and Previtera, L. (1992) Tetrahedron Letters 33, 5257.
- Della Greca, M., Fiorentino, A., Mangoni, L., Molinaro, A., Monaco, P. and Previtera, L. (1993) Tetrahedron 49, 3425.
- Della Greca, M., Fiorentino, A., Molinaro, A., Monaco, P. and Previtera, L. (1995) Nat. Prod. Letters 6, 111.
- Hara, S., Okabe, H. and Mihashi, K. (1987) Chem. Pharm. Bull. 35, 501-506.