

AN IRIDOID GLUCOSIDE FROM LONICERA CAERUEA*

KOICHI MACHIDA and MASAO KIKUCHI†

Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981, Japan

(Received in revised form 20 February 1995)

Key Word Index—Lonicera caerulea; Caprifoliaceae; iridoid; acetal linkage; caeruleoside C.

Abstract—A new iridoid glucoside, caeruloside C, has been isolated from the leaves of Lonicera caerulea. The structure was elucidated by chemical evidences and 1D, 2D, NMR analysis.

INTRODUCTION

In a previous paper [2], we reported on the isolation of two unusual bis-iridoid glucosides, caeruleoside A and B, consisting of secologanin attached through acetal bonds to C-4', and C-6' of the sugar part of loganin and sweroside, respectively, from the leaves of *Lonicera caerulea*. L. var. *emphyllocalyx* Nakai. Further investigation of the this plant led to the isolation of another iridoid glucoside, which we have named caeruleoside C.

RESULTS AND DISCUSSION

Caeruleoside C (1) was obtained as an amorphous powder. Its ${}^{1}H$ NMR spectrum was similar to that of secologanin isolated from the same plant [2]. The only difference being that 1 had signals due to an equilibrium mixture of α - and β -glucosyl groups instead of the signals of the aldehyde group present in secologanin. The ${}^{13}C$ NMR chemical shifts of the secologanin moiety of 1 were good agreement with those of the secologanin moiety of caeruleoside A [2]. Furthermore, the ${}^{1}H$ and ${}^{13}C$ NMR chemical shifts of an equilibrium mixture of the α - and β -glucosyl moiety of 1 were in good agreement with those of 4,6-propylidene α - and β -glucose (2) which we prepared as a model compound (see Experimental). On the basis of the above data, the structure of caeruleoside C was established as 1.

EXPERIMENTAL

The instrument used were the same as described in the previous paper [2].

Extraction and isolation. The extraction and isolation procedure was described in our previous paper [2]. Com-

1; R=H 1a;R=COCH₃

pound 1 (3 mg) was isolated from fr. 3-1 by prep. HPLC (MeOH $-H_2O$, 2:3).

Caeruleoside C (1). An amorphous powder. ¹H NMR (270 MHz, CD₃OD): secologanin moiety; δ 1.77 (1H, m, $H_{SC}-6_A$) 2.02 (1H, m, $H_{SC}-6_B$), 2.68 (1H, m, $H_{SC}-9$), 3.03 $(1H, m, H_{SC}-5), 3.15-3.32$ $(4H, m, H_{SC}-2', 3', 4' \text{ and } 5') 3.62$ (1H, m, H_{SC} -6'_A), 3.70 (3H, s, H_{SC} -12) 3.89 (1H, dd, $J = 11.7, 2.0 \text{ Hz}, H_{SC}-6'_{B}, 4.66 (1H, m, H_{SC}-7), 4.67 (1H, m, H_{SC}-7)$ d, J = 7.9 Hz, H_{SC} -1'), 5.25 (1H, br d, J = 8.6 Hz, H_{SC} - $10_{\rm A}$), 5.29 (1H, br d, J = 17.5 Hz, $H_{\rm SC}$ - $10_{\rm B}$), 5.54 (1H, d, $J = 5.9 \text{ Hz}, \text{ H}_{\text{SC}}-1$), 5.74 (1H, br dt, J = 17.5, 8.6 Hz, H_{SC}-8), 7.45 (1H, d, J = 1.0 Hz, H_{SC} -3); α - and β -glucose moieties: $\delta 3.15 = 3.40$ (5/2H, m, α -H-2, 4, β -H-2, 4 and 5), 3.55 $(3/2H, m, \alpha-H-6_A, \beta-H-6_A, \beta-H-3 \text{ and } 6_A), 3.78 (1H, m,$ α -H-3 and 5), 4.00 (1/2H, dd, J = 10.2, 5.0 Hz, α -H-6_B), 4.08 (1/2H, dd, J = 10.2, 4.6 Hz, β -H-6_B), 4.53 (1/2H, d, $J = 7.9 \text{ Hz}, \beta - \text{H} - 1), 5.08 (1/2\text{H}, d, J = 3.6 \text{ Hz}, \alpha - \text{H} - 1);$ ¹³C NMR (67.8 MHz, CD₃OD): δ 29.6 (C_{SC}-5), 35.2 (C_{SC}-6), 45.4 (C_{SC} -9), 51.8 (C_{SC} -12), 62.9 (C_{SC} -6'), 63.6 (C_{α} -5), 67.9 (C_{β} -5), 69.5 (C_{β} -6), 69.9 (C_{α} -6), 71.7 (C_{SC} -4'), 71.9 $(C_{SC}-3)$, 74.5 $(C_{\alpha}-2)$, 74.4 $(C_{\beta}-3)$ and $C_{SC}-2'$, 77.2 $(C_{\beta}-2)$, 78.0 (C_{SC} -3'), 78.5 (C_{SC} -5'), 82.1 (C_{β} -4), 82.8 (C_{α} -4), 94.7

^{*}Part 5 in the series 'Analysis of the Components of *Lonicera* Species'. For part 4 see ref. [1].

[†]Author to whom correspondence should be addressed.

604 Short Reports

 $(C_{\alpha}$ -1), 97.7 $(C_{SC}$ -1), 99.0 $(C_{\beta}$ -1), 100.0 $(C_{SC}$ -1'), 102.6 $(C_{SC}$ -7), 111.6 $(C_{SC}$ -4), 119.8 $(C_{SC}$ -10), 135.8 $(C_{SC}$ -8), 153.7 $(C_{SC}$ -3), 169.3 $(C_{SC}$ -11).

Acetylation of 1. Compound 1 (3 mg) was acetylated with Ac₂O in pyridine to give 1a (1.7 mg) as an amorphous powder, $[\alpha]_D = 42.8^\circ$ (MeOH, c 0.1). FAB MS m/z: 845 [M + H]⁺; UV λ_{max}^{MeOH} nm (log ϵ): 229 (3.77); ¹H NMR (270 MHz, CDCl₃): secologanin moiety; δ 1.72 (1H, m, H_{SC} - G_A), 2.05 (1H, m, H_{SC} - G_B), 2.69 (1H, m, H_{SC} - G_B), 2.87 $(1H, m, H_{SC}-5), 3.70 (3H, s, H_{SC}-12), 3.75 (1H, m, H_{SC}-5'),$ 4.15 (1H, m, H_{SC} -6'_A), 4.30 (1H, dd, J = 12.3, 4.8 Hz. H_{SC} -6'_B), 4.63 (1H, m, H_{SC} -7), 4.89 (1H, d, J = 8.1 Hz, H_{SC} -1'), 4.96-5.11 (3H, m, H_{SC} -2', 3' and 4'), 5.19-5.29 $(3H, m, H_{SC}-1, 10_A \text{ and } 10_B), 5.56 (1H, m, H_{SC}-8), 7.34 (1H, m, H_{SC}-8), 7.34 (1H, H_{SC}-1), 7.34$ s, H_{SC} -3); α - and β -glucose moieties; δ 3.41–3.70 (5/2H, m, α -H-4, 6_A , β -H-4, 5 and 6_A), 3.87 (1/2H, m, α -H-5), 4.12-4.22 (1H, m, α -H-6_B and β -H-6_B), 4.96-5.11 (1H, m, α -H-2 and β -H-2), 5.19–5.29 (1/2H, m, β -H-3), 5.48 (1/2H, t, J = 9.9 Hz, α -H-3), 5.73 (1/2H, d J = 8.1 Hz, β -H-1), 6.25 (1/2H, d, J = 4.0 Hz, α -H-1); acetyl group; δ 1.92, 2.00, 2.02, 2.03, 2.04, 2.10, 2.11 and 2.18 (21H, each s).

Preparation of 4,6-propylidene glucose (2). An equilibrium mixture of α - and β -glucose (27 mg) was suspended in CH₃CH₂CHO (0.05 ml), anhydrous ZnCl₂ (23 mg) added and the mixture stirred at room temp. for 3 hr. The EtOAc extract was chromatographed on a silica gel column (hexane–Me₂CO, 3:2) to give a hygroscopic

amorphous powder (19 mg), $[\alpha]_D + 63.5^\circ$ (MeOH, c 1.4). FAB MS m/z 243 $[M + Na]^+$; 1H NMR (270 MHz), CD₃OD); δ 0.94 (3H, t J = 7.6 Hz, H-3′), 1.63 (2H, m, H-2′), 3.24 (2H, m, α -H-4, β -H-2, 4 and 5), 3.40 (1/2H, dd J = 9.5, 3.6 Hz, α -H-2), 3.54 (3/2H, m, α -H-6_A, β -H-3 and 6_A), 3.77 (1/2H, t, J = 9.5 Hz, α -H-3), 3.78 (1/2H, m, α -H-5), 4.01 (1/2H, dd, J = 10.2, 5.0 Hz, α -H-6_B), 4.09 (1/2H, dd, J = 10.4, 4.5 Hz, β -H-6B), 4.51 (1H, m, H-1′), 4.53 (1/2H, d, J = 7.9 Hz, β -H-1), 5.08 (1/2H, d, J = 3.6 Hz, α -H-1); 13 C NMR (67.8 MHz, CD₃OD): δ 8.7 (C-3′), 28.5 (C-2′), 63.7 (C $_{\alpha}$ -5), 67.9 (C $_{\beta}$ -5), 69.4 (C $_{\beta}$ -6), 69.8 (C $_{\alpha}$ -6), 71.9 (C $_{\alpha}$ -3), 74.5 (C $_{\alpha}$ -2),74.8 (C $_{\beta}$ -3), 77.2 (C $_{\beta}$ -2), 82.0 (C $_{\beta}$ -4), 82.7 (C $_{\alpha}$ -4), 94.7 (C $_{\alpha}$ -1), 98.9 (C $_{\beta}$ -1), 104.6, 104.7 (C $_{\alpha}$ -1' and C $_{\beta}$ -1).

Acknowledgements—The authors are grateful to Dr S. Suzuki and Mr S. Sato of their college for measurements of the FAB mass and NMR spectra, respectively.

REFERENCES

- Matsuda, N. and Kikuchi, M. (1995) Phytochemistry 38, 803
- Machida, K., Asano, J. and Kikuchi, M. (1995) *Phytochemistry* 39, 111.