

LONG-CHAIN ALDEHYDES FROM THE RED ALGA, CORALLINA MEDITERRANEA

SALVATORE DE ROSA, ALFONSO DE GIULIO, CARMINE IODICE, M. JOSÉ ALCARAZ* and MIGUEL PAYA*

Istituto per la Chimica di Molecole di Interesse Biologico del C.N.R., Via Toiano, 6; 80072 Arco Felice (Napoli) Italy; *Department of Pharmacology, University of Valencia, Avda A.V. Estellés s/n, 46100 Burjassot, Valencia, Spain

(Received in revised form 9 March 1995)

Key Word Index—Corallina mediterranea; Rhodophyta; red alga; long-chain aldehydes.

Abstract—From the red alga, Corallina mediterranea, collected in the Mediterranean Sea, two unusual aldehydes were isolated, (E)-2-tridecyl-2-heptadecenal and the new (2E,4E)-2-tridecyl-2,4-heptadecadienal. The structure of the new metabolite was proposed on the basis of its spectral data.

INTRODUCTION

Marine organisms are a rich source of new metabolites with a wide variety of biological activities, and some of them display significant pharmaceutical potential. Recently, the discovery of new anti-inflammatory agents from marine species has been reported [1, 2]. Continuing our search for biologically active marine natural compounds, we have studied the red alga, Corallina mediterranea Aresch (C. elongata), collected in Jàvea (Alicante, Spain), whose extract showed anti-inflammatory activity [3] and cytotoxic activity (LD₅₀ = 125 μ g ml⁻¹) in the brine shrimp assay [4]. We wish to describe herein the isolation from this alga of two aldehydes, the new (2E,4E)-2-tridecyl-2,4-heptadecadienal (1) and the previously reported (E)-2-tridecyl-2-heptadecenal (2) [5].

RESULTS AND DISCUSSION

The dichloromethane extract of dried alga *C. mediterranea* was chromatographed on silica gel, using increasing concentrations of diethyl ether in petrol as the eluent. Along with lipids (fatty acids and triacylglycerols) was isolated a fraction giving a single spot on TLC and a 2,4-dinitrophenylhydrazine positive reaction. Preliminary analysis of the ¹H NMR spectrum showed the presence of two or more components and aldehydic signals. The mixture was resolved by preparative HPLC, leading to the isolation of two pure compounds (*E*)-2-tridecyl-2-heptadecenal (2) (0.0008% dry wt) and (2*E*,4*E*)-2-tridecyl-2,4-heptadecadienal (1) (0.001%), in order of their polarity.

The spectral data for 2 were in excellent agreement with those for (E)-2-tridecyl-2-heptadecenal, previously isolated from the red algae, Laurencia undulata and L. papillosa [5]. A combination of COSY and HETCOR

$$\begin{array}{c} H \\ CH_{3}^{-1}(CH_{2})_{11}^{-1} - CH_{2}^{-1} - CH_{2} \\ CH_{3}^{-1}(CH_{2})_{11}^{-1} - CH_{2}^{-1} - CH_{2} \\ CH_{2}^{-1}(CH_{2})_{11}^{-1} - CH_{3}^{-1} \\ CH_{3}^{-1}(CH_{2})_{11}^{-1} - CH_{3}^{-1} \\ CH_{3}^{-1}(CH_{3})_{11}^{-1} - CH_{3}^$$

experiments allowed us to assign the chemical shifts in the ¹H and ¹³C NMR spectra for both compounds.

2

Compound 1 had the molecular formula $C_{30}H_{56}O$, from high-resolution mass measurement of the parent ion. The IR bands at 2730, 1680 and 1640 cm⁻¹ were characteristic of an α,β -unsaturated aldehyde, while the UV absorption at 280 nm strongly suggested a double-bond extending conjugation. This conjugation was further supported by the ¹H NMR spectrum which showed an aldehyde proton at δ 9.38 and three vinyl protons at δ 6.77 (H-3, d, J = 11.2 Hz), 6.50 (H-4, dd, J = 11.2 and 14.9 Hz) and 6.23 (H-5, dt, J = 14.9 and 7.5 Hz). The vinyl protons are part of a 1,1,4-trisubstituted 1,3-butadiene. From COSY the doublet at δ 6.77 is coupled with the proton at δ 6.23, which in turn is coupled with a methylene at δ 2.25 (m), which is coupled with another methylene

Short Reports

at $\delta 1.48$ (m). The presence in the ¹³C NMR spectrum of four doublets at δ 194.9 (C-1), 149.5 (C-3), 125.8 (C-4) and 128.9 (C-5) and a singlet at δ 144.9 (C-2) confirms the presence of an aldehyde group conjugated with a 1,4disubstituted 1,3-butadiene. Moreover, the ¹H NMR spectrum showed a multiplet at $\delta 2.20$ (2H), a strong signal at δ 1.26 (40H) and two overlapped triplets at δ 0.88 and 0.86 (3H each, J = 6.8 Hz). Since the molecular formula of 1 requires three degrees of unsaturation, 1 must therefore have a branched-chain carbon skeleton. The number of methylenes in the two chains of the 1,1,4trisubstituted 1,3-butadiene system was established by means of mass spectroscopy. The EI mass spectrum of 1 showed two highly diagnostic peaks at m/z 249.2222 (C₁₇H₂₉O) caused by loss of the chain near the branched carbon (cleavage of C-2, C-1' bond), and m/z 263.2372 (C₁₈H₃₁O) produced by allylic cleavage of the side-chain (cleavage of C-1', C-2' bond). The stereochemistry of the double bond conjugated with the aldehydic group was established as E by NOESY from the presence of NOEs between H-3 (δ 6.77), Hs-1' (δ 2.20) and H-4 (δ 6.50) and the aldehydic proton (δ 9.38). The ¹³C chemical shift of the allylic methylene group (δ 24.1, C-1') near the branched carbon atom afforded additional proof for the proposed stereochemistry. The large value of the coupling constant between H-4 and H-5 indicates a trans-stereochemistry of the double bond; the ¹³C chemical shift of the second allylic methylene group (δ 33.4, C-6), suggests an E-configuration for this second double bond.

Long-chain aldehydes, such as (8Z)-heptadecenal, (8Z,11Z)-heptadecadienal and (8Z,11Z,14Z)-heptadecatrienal, identified in green algae [6], having the characteristic odour of the essential oils from marine green algae, are peculiar to the Ulvacea. The finding of these unusual aldehydes, from a different genus of Rhodophyta, could be a peculiarity of this class of seaweeds.

EXPERIMENTAL

¹H and ¹³C NMR were recorded at 500 and 125 MHz, respectively, in CDCl₃ with TMS as int. standard. 2D NMR were obtained using Bruker microprograms. Silica gel chromatography was performed using precoated Merck F₂₅₄ plates and Merck Kieselgel 60 powder. Prep. HPLC purifications were carried out on a Spherisorb S5W column (25 cm × 4.6 mm i.d.) using a RI detector.

Extraction and isolation of compounds. The alga was collected at Jàvea (Alicante, Spain) and air-dried. A voucher specimen is deposited in the herbarium of the Plant Biology Department, Faculty of Biology, Valencia. Dried alga (5.2 kg) was extracted with CH₂Cl₂ in a Soxhlet apparatus. The extract was evapd in vacuo to obtain a brown oil (13.6 g), which was applied to a column of silica gel. The column was eluted with a solvent gradient system from petrol (40–70) to Et₂O. Frs exhibiting

a similar TLC profile (R_f 0.5 in petrol-Et₂O, 49:1) were combined to obtain a mixt. of 1 and 2, which gave a 2,4-dinitrophenylhydrazine positive reaction. The mixture was resolved by prep. HPLC (n-hexane-EtOAc, 19.9:0.1).

(2E,4E)-2-Tridecyl-2,4-heptadecadienal 55 mg. UV λ_{max} (MeOH) nm (log ε): 280 (4.33). IR ν_{max} (CHCl₃) cm⁻¹: 2730, 1680, 1640. EIMS m/z (rel. int.): 432.4328 [M]⁺ (C₃₀H₅₆O, requires 432.4331) (9), 431 (4), 403 (5.5), 264 (59), 263.2372 (C₁₈H₃₁O, requires 263.2375) (100), 249.2222 (C₁₇H₂₉O, requires 249.2218) (11), 211 (65). ¹H NMR: $\delta 0.86$ (3H, t, J = 6.8 Hz, H-17 or H-13'), 0.88 (3H, t, J = 6.8 Hz, H-17 or H-13'), 1.26 (40H), 1.48(2H, m, H-7), 2.20 (2H, m, H-1'), 2.25 (2H, m, H-6), 6.23 (1H, dt, J = 14.9 and 7.5 Hz, H-5), 6.50 (1H, dd, J = 14.9)and 11.2 Hz, H-4), 6.77 (1H, d, J = 11.2 Hz, H-3), 9.38 (1H, s, H-1). ¹³C NMR: δ 194.9 (s, C-1), 149.5 (d, C-3), 144.9 (s, C-2), 128.9 (d, C-5), 125.8 (d, C-4), 33.4 (t, C-6), 31.9 (t, C-15 and C-11'), 29.7 (t), 29.5 (t), 29.4 (t), 29.3 (t), 28.9 (t), 28.8 (t), 28.7 (t), 24.1 (t, C-1'), 22.7 (t, C-16 and C-12'), 14.1 (q, C-17 and C-13').

(E)-2-Tridecyl-2-heptadecenal (2). Yield 40 mg. UV λ_{max} (MeOH) nm (log ε): 231 (4.02). IR v_{max} (CHCl₃) cm⁻¹: 2730, 1680, 1640; EIMS m/z (rel. int.): 434 [M]⁺ (23), 433 (12), 405 (7), 265 (30), 251 (33), 237 (55), 223 (15), 95 (100). ¹H NMR: δ 0.88 (6H, t, J = 6.8 Hz), 1.26 (44H), 1.48 (2H, m), 2.21 (2H, m), 2.34 (2H, m), 6.43 (1H, t, J = 7.4 Hz), 9.36 (1H, t), t C NMR: t 195.3 (t), C-1), 155.2 (t), (t), 29.5 (t), 29.4 (t), 29.3 (t), 28.9 (t), 28.8 (t), 28.7 (t, C-4), 24.1 (t), C-1'), 22.7 (t, C-16 and C-12'), 14.1 (t, C-17 and C-13').

Acknowledgements—This research was supported by the Progetto Strategico 'Tecnologie Chimiche Innovative' C.N.R., Rome, Italy and by grant PM92-0145 from DGICYT, Spanish Ministerio de Educacion y Ciencia. We thank Dr Boisset, Department of Plant Biology, University of Valencia, and Dr N. Zavodnik, 'R. Boskovic' Institute of Rovinj (HR) for identification of the alga.

REFERENCES

- Potts, B. C. M., Faulkner, D. J. and Jacobs, R. S. (1992) J. Nat. Prod. 55, 1701.
- Ferrandiz, M. L., Sanz, M. J., Bustos, G., Paya, M., Alcaraz, M. J. and De Rosa, S. (1994) Eur. J. Pharmacol. 253, 75.
- 3. Paya, M., Ferrandiz, M. L., Sanz, M. J., Bustos, G., Blasco, R., Rios, J. L. and Alcaraz, M. J. (1993) *Phytother. Res.* 7, 159.
- Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen,
 L. B., Nichols, D. E. and McLaughlin, J. L. (1982)
 Planta Med. 45, 31.
- Suzuki, M., Kurosawa, E. and Kurata, K. (1987) Bull. Chem. Soc. Jpn 60, 3793.