

Phytochemistry, Vol. 40, No. 4, pp. 1145–1148, 1995
Copyright © 1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0031–9422/95 \$9.50 + 0.00

NAPHTHOQUINONES OF *DROSERA SPATHULATA* FROM *IN VITRO* CULTURES

JAROMIR BUDZIANOWSKI

Department of Pharmaceutical Botany. K. Marcinkowski Academy of Medicine, Wieniawskiego 1, 61-712 Poznań, Poland

(Received 17 February 1995)

Key Word Index—*Drosera spathulata*; Droseraceae; 1,4-naphthoquinones; 2- and 3-methoxy-7-methyljuglones; 7-methyl-1, 4, 5-trihydroxynaphthalene 4-*O*-glucoside; rossoliside.

Abstract From *Drosera spathulata* obtained by *in vitro* culture the known 1,4-naphthoquinones—7-methyljuglone, artefactual 2- and 3-methoxy-7-methyljuglone, together with 7-methyl-1,4,5-trihydroxynaphthalene 4-*O*-glucoside (rossoliside) were isolated. The structure of the last-named compound, was substantiated by NMR correlation techniques. It was also shown that 7-methyljuglone can be very easily released from rossoliside.

INTRODUCTION

Drosera spathulata Labill. (Droseraceae) is a carnivorous species native to south-east Asia and Australia [1], and does not occur in Europe. However, it can be easily developed by in vitro culture on Reinert-Mohr [2, 3] or diluted MS medium [4]. Our previous investigation of this species from in vitro culture showed the presence of several flavonoids and 7-methyljuglone [5], the latter earlier found in the naturally grown plants [6]. In the present study, a search for further naphthoquinones in this species led to the isolation of 2- and 3-methoxy-7methyljuglones (3, 2) formed from 7-methyljuglone (1) by the known reaction [7] during extraction with methanol. The spectral features allowing discrimination of these isomeric compounds are described. Moreover, rossoliside (4), so far known only from D. rotundifolia [8], was also isolated, characterized by NMR correlation techniques and found to be a precursor of 1 formation in water-containing plant extracts.

RESULTS AND DISCUSSION

The methanolic extract of the fresh plants was fractionated into water distillate and chloroform and water-soluble fractions. The chloroform fractions yielded 1–3. Compound 1 was 7-methyljuglone (5-hydroxy-7-methyl-1,4-naphthoquinone) from EIMS, UV and ¹H NMR data [7]. Compounds 2 and 3 had the same formula C₁₂H₁₀O₄ (HREIMS) and very similar EIMS and ¹H NMR spectra, indicating that they were 2- and/or 3-methoxy derivatives of 1. previously described [7]. However, the authors of ref. [7] could differentiate those compounds by comparison with synthetic samples, not by spectral methods like UV, EIMS or ¹H NMR. In the present work, the position of methoxyl groups in each 2 and 3 was determined by so far unpublished ¹³C NMR

spectra, from differences in shifts of carbonyl groups observed in comparison with those of 1 (Table 1). In the case of 2, both carbonyls appeared at δ_C 184.31 and 184.27 — one can be ascribed to the C-1 position as in 1 ($\delta_{\rm C}$ 184.5), while the other, ascribable to C-4, was moved upfield (from δ_C 189.7 in 1), as a result of the electronwithdrawing effect of the methoxyl group present on the adjacent carbon atom (C-3). A similar effect occurs in the case of 3-chloroplumbagin or droserone (=3-hydroxyplumbagin) (C-4 carbonyl at δ_C 181.6 [9] and 183.9 [10], respectively) in comparison with plumbagin (C-4 at $\delta_{\rm C}$ 189.6 [11]). In turn, 3 showed unchanged shift for C-4 $(\delta_C 190.3)$, but the signal ascribable to C-1 carbonyl was shifted to δ_C 179.7 due to OMe present at C-2. The less reliable distinction may be made by ¹H NMR shifts of chelated hydroxyls [12], which are mostly concentration independent [13]. The smaller value $\delta_{\rm H}$ 11.72 for 2 compared to $\delta_{\rm H}$ 12.15 for 3 reflects the weaker hydrogenbonding caused by the inductive effect of the oxygen

1146 J. Budzianowski

Table 1. ¹ H and	13C NMR spectral	data for compounds	1-3 (in CDCl ₃)
-----------------------------	------------------	--------------------	-----------------------------

	I		2		3	
	C*	Н	C	Н	C	Н
1	184.5	-	184.31+		179.7	
2	139.3	6.92 s	110.2	$6.12 \ q \ (0.3)$	160.9†	
3	138.8	6.92 s	160.3+	•	109.5	$6.07 \ q \ (0.3)$
4	189.7		184.27+		190.3	
5	161.8		162.3‡		161.3†	
6	124.1	7.09 m	123.5	7.04 dq (1.5/0.6)	124.9	7.07 dg (1.5/0.6)
7	148.5		149.3	·	147.2	
8	120.5	7.44 m	120.4	7.45 dq (1.5/0.6)	120.9	7.50 dq (1.5/0.6)
9	131.7		131.8	•	130.8	
10	113.1		112.3		112.1	
7-Me	22.2	$2.44 \ t \ (0.4)$	22.3	2.43 t (0.6)	22.0	2.42 t (0.6)
2-OMe					56.6	3.91 d (0.3)
3-OMe			56.5	3.91 d (0.3)		
5-OH		11.87 s§		11.72 s§		12.15 s§

^{*} Data taken from ref. [11].

Decoupling experiments: 2: irradiation at $\delta_{\rm H}$ 2.43 changed signals $\delta_{\rm H}$ 7.45 and 7.04 to doublets, J=1.5 Hz each; irrad. at $\delta_{\rm H}$ 3.91 changed $\delta_{\rm H}$ 6.12 to a singlet and vice versa; 3: irradiation at $\delta_{\rm H}$ 2.42 changed singals $\delta_{\rm H}$ 7.50 and 7.07 to doublets, J=1.5 Hz each; irrad. at $\delta_{\rm H}$ 3.91 changed $\delta_{\rm H}$ 6.07 to a singlet and vice versa.

substituent at C-3 in 2. Moreover, compounds can be discriminated by EIMS, whereas ion m/z 175 in 2 is replaced by that of m/z 176 in 3. Therefore, 2 is 3-methoxy-7-methyljuglone, and 3 its 2-methoxy isomer, both previously reported as artefacts produced from 1 in the course of extensive extraction of plant material with methanol [7]. The same is true of D. spathulata, as 2 and 3 could not be detected after brief extraction with either methanol or acetone.

In the present study, the aqueous fraction freed from 1 by thorough chloroform extraction, when kept for several days at room temperature, showed again the presence of 1 (co-TLC). The precursor of 1 was a compound appearing on cellulose 2D-TLC (BAW, 15% HOAc) as a blue spot under UV₃₆₅, which, after detection with AlCl₃, gave a similar colour to that of 7-methyljuglone, i.e. pink-red in both UV and visible light. The same compound was detected by TLC in our previous investigations [5]. To avoid risk of decomposition, this compound (4) was isolated by chromatography on alumina. Compound 4 was hydrolysed rapidly by β glucosidase to give 1 (co-TLC). This suggested that 4 is the glucoside of an unstable 7-methylhydrojuglone (7methyl-1, 4, 5-trihydroxynaphthalene), which can spontaneously oxidized by oxygen in air to the corresponding quinone (1). Such an assumption was confirmed by the ¹H NMR spectrum of 4 (Table 2), which revealed a set of signals with coupling patterns as in 1, except that signals assignable to H-2 and H-3 were non-equivalent $(\delta_{\rm H} 6.71 \text{ and } 7.12)$, showing ortho-coupling (J = 8.3 Hz). There were two phenolic hydroxyls (δ_H 9.81 and 9.31) and one β -linked sugar residue, identified as glucopyranose from the ^{13}C NMR spectrum (Table 2). The resonances of directly hydrogen-bonded carbon atoms were determined from the HMQC spectrum. The position of the glucosyl at C-4 followed from the HMBC spectrum on the basis that the carbon δ_{C} 146.6 involved in glucosidic linkage due to correlation with anomeric proton of glucosyl (δ_{H} 4.84) must correspond to this position, as it also correlated with *ortho*-related protons, i.e. H-2 and H-3 only. If the glucosyl was at the alternative C-1 or C-5 position, the HMBC spectral correlations of those carbons signals with either of the *meta*-related protons H-8 or H-6, respectively (δ_{H} 7.37, 6.64) could be expected. The further HMBC correlations observed allowed assignments of the remaining NMR resonances.

Hence, 4 is 7-methyl-1, 4, 5-trihydroxynaphthalene 4-O- β -glucoside (=rossoliside). Rossoliside was described so far only from *D. rotundifolia* (Droseraceae) as early as in 1971 [8], but it could not be found in this species in more recent investigations [14]. From the isolation procedure described in ref. [14], one suspects that this compound even if present could be lost due to its lability in aqueous solutions. Compound 4 can be considered as a combined form of 7-methyljuglone, in a similar way as 1, 4, 5-trihydroxynaphthalene glucoside is for juglone in *Juglans regia* (Juglandaceae) [15]. The same is true of hydroplumbagin 4-O-glucoside from *Dionaea muscipula* (Droseraceae) [9].

EXPERIMENTAL

Plant material. Fully developed plants obtained by in vitro culture on Reinert-Mohr medium in a similar way

^{†‡} Interchangable assignments within the spectrum.

^{\$}Signal disappeared with D-O.

Table 2. ¹H and ¹³C NMR data for 4* (in DMSO d_6)

	C	Н
1	148.3	
2	107.3	6.71 d (8.3)
3	110.7	7.12 d (8.3)
4	146.6	
5	153.0	
6	112.6	6.64 br d (1.7)
7	135.3	
8	112.4	$7.37 dq (1.7 \sim 0.5)$
9	126.9	
10	114.3	
7-Me	21.3	2.37 br s
1-OH		9.81 br s
5-OH		9.31 s
1'	103.6	4.84 d (7.8)
2'	73.5	3.35 m
3'	76.3	3.35 m
4'	69.8	3.21 (9)
5'	77.5	3.35 m
6'	60.7	3.76 dd (1.5-12)
		3.52 dd (6-12)

Sugar OHs: 5.77 d (5.1), 5.28 d (4.6), 5.18 d (5.4), 4.75 t (6.0) (signals exchangeable with D_2O).

as described in ref. [5] at the Botanical Garden, University of Wrocław, Poland, were collected in May (283 g) and October (450 g) 1992 and July 1994 (150 g) (collections A, B and C, resp.).

Spectroscopy. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra recorded with TMS as int. standard. HMBC spectra were measured for $J_{\rm HC} = 7$ or 4 Hz. UV spectra made according to ref. [16].

Extraction and isolation. The whole fresh plants (separately from A and B collections) were plunged into hot MeOH followed by maceration at room temp., further repeated $\times 2$ (2 months). The combined extracts were concd at 40°, collecting the residual water separately, as a yellow distillate containing 1 [5]. The dry extracts were each partitioned between H₂O and CHCl₃. The CHCl₃ frs corresponding to both materials were identical by TLC and thus combined and chromatographed by silica gel CC with toluene to give frs containing 1 and 2 + 3. Subsequent prep. TLC (toluene-HCOOH, 99:1) gave 1 (R_c 0.37) (after 1 development) and 2 and 3 (3 developments) $(R_f, 0.28, 0.36)$. Compound 2 was purified from the unidentified non-phenolic compound (R_f 0.38) by TLC in toluene–EtOAc (4:1) (R_{\perp} 0.50). The material of collection C was divided into three equal portions, two being immersed in MeOH (C1, C2) and the third in Me₂CO (C3). After 2 days, extracts of C1 and C3 were concd and partitioned as above. The CHCl₃ frs showed no 2 or 3 (co-TLC). The H₂O frs, after 5 days at room temp.. showed the presence of I (co-TLC). They were extd with n-BuOH (× 3), concd and kept dry. The extraction of C1 C3 was continued (× 2) (3 months) and extracts processed separately to obtain CHCl₃ and n-BuOH frs. The CHCl₃ fr. of C2 contained 2 and 3 (co-TLC). Combined n-BuOH frs were subjected to CC on neutral alumina (POCh) in 50% EtOH to afford crude 4 (60 mg). The final clean-up of 1-4 was by CC on Sephadex LH-20 (Pharmacia) in MeOH. Yields: 1 (4 mg), 2 (4 mg), 3 (6 mg), 4 (50 mg).

7-Methyljuglone (1). EIMS m/z (rel. int. %): 188 (100) [M]⁺, 173 (5), 160 (11), 134 (15), 132 (19), 131 (15). ¹H and ¹³C NMR: Table 1.

5-Hydroxy-3-methoxy-7-methyl-1, 4-naphthoquinone (2). Orange red crystals. TLC: dark-yellow spot under UV_{365} . EIMS m/z (rel. int. %): 218 [M]⁺ (100), 203 $[M - Me]^+$ (26), 190 $[M - CO]^+$ (17), 189 $[M - HCO]^+$ (45), $188 [M - 2Me]^+$ (19), $187 [M - OMe]^+$ (19), 175 $[M - Ac]^+$ (6), 161 $[M - 2HCO]^+$ (4), 160 (8), 147 (14), 132 (9), 119 (25), 103 (4), 91 (5), 77 (8), 65 (5). HREIMS m/z found: $218.05767 [M]^+ (C_{12}H_{10}O_4 \text{ req. } 218.05784),$ 203.03389 [M - Me] $(C_{11}H_7O_4$ req. 203.03438), 189.05349 [M - HCO] $(C_{11}H_9O_3)$ req. 189.05511), $175.03845 \,[M - MeCO] \,(C_{10}H_7O_3 \,req. \,189.05511). \,UV$ λ_{max}^{MeOH} nm: 214. 246, 288, 413; +NaOMe 288, 512; - NaOAc 288, 456sh, 519; + H₃BO₃/NaOAc 246sh, 289. 415; $+ AlCl_3 244sh$, 298, 492; $+ AlCl_3 + HCl$ as with AlCl ..

5-Hydroxy-2-methoxy-7-methyl-1, 4-naphthoquinone (3). Orange crystals. TLC: brown spot under UV₃₆₅. EIMS (m/z) (rel. int. %): 218 [M]⁺ (100), 203 [M – Me]⁺ (18), 190 $[M - CO]^+$ (17), 189 $[M - HCO]^+$ (45), 188 [M-2Me] (31), 187 [M-OMe]⁺ (19), 176 $[M - CH_2CO]^+$ (9). 161 $[M - 2HCO]^+$ (14), 147 (20), 132 (16), 119 (30), 103 (8), 91 (8), 77 (15), 65 (5). HREIMS m z found: 218.05787 [M]⁺ ($C_{12}H_{10}O_4$ req. 218.05784), $203.03408 \text{ [M - Me]}^{+} \text{ (C}_{11}\text{H}_{7}\text{O}_{4} \text{ req. } 203.03438),$ $[M-HCO]^{-1}$ ($C_{11}H_9O_3$ req. 189.05511), $176.04342 \text{ [M - CH}_2\text{CO]}^+ (C_{10}\text{H}_8\text{O}_3 \text{ req. } 176.04729).$ UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 214, 246, 288, 422; +NaOMe 288, 519; + NaOAc 246sh, 288, 427, 520; +H₃BO₃/NaOAc 246sh, 289, 424: + AlCl₃, 248, 297, 494; + AlCl₃ + HCl as with AlCl₃.

7-Methyi-1. 4. 5-trihydroxy-naphthalene 4-O-β-glucopyranoside (rossoliside) (4). Beige amorphous powder. 2D-TLC on cellulose, pre-coated (Merck) in BAW and 15% HOAc, R_f 0.69, 0.52, resp., LSI-MS (+ ive) m/z (%): 357 [M + Na] $^-$ (51), 353 [M + H] $^+$ (16), 352 [M] $^+$ (11), 190 [M - glc] $^-$ (100). UV λ_{max}^{MeOH} nm: 226, 294sh, 307, 326, 345; +NaOMe 327sh, 343, 354; no shifts with NaOAc, H₃BO₃ +NaOAc, AlCl₃ and AlCl₃ +HCl.

Enzymic hydrolysis. Soln of 4 (1 mg) and β -glucosidase (Sigma) (0.5 mg) in 1 ml H₂O covered with 0.5 ml toluene was kept at room temp. It became yellow in 3 min and the pigment (1, co-TLC) migrated into the toluene layer. Hydrolysis in pure H₂O: as above, but without enzyme. H₂O layer became increasingly brownish after 1 week [several products besides 4 by TLC on polyamide 6D (Riedel de Haehn) in H₂O-n-BuOH-Me₂CO (16:3:3)], while toluene layer was clear, but contained 1 (co-TLC) after further 3 weeks.

^{*}Assignments aided with HMQC and HMBC.

1148 J. Budzianowski

Acknowledgements—The author is grateful to Prof. K. Kukułczanka (Botanic Garden, University of Wrocław, Poland) for supply of plant material. This work was supported by grant KBN No. 6 6251 92 03.

REFERENCES

- 1. Juniper, D. E., Robins, R. J. and Joel, D. M. (1989) The Carnivorous Plants, Academic Press, London.
- Kukułczanka, K. (1991) Botan. Gardens, Microprop. News (Kew) 1, 37.
- 3. Kukułczanka, K. and Czastka, B. (1991) Prace Ogr. Botan. PAN 1, 55.
- Bobak, M., Blehova, A., Samaj, J., Ovecka, M. and Kristin, J. (1993) J. Plant Physiol. 142, 215.
- Budzianowski, J., Skrzypczak, L. and Kukułczanka, K. (1993) Acta Hortic. 330, 277.
- 6. Zenk, M. H., Fürhringer, M. and Steglich, W. (1969) *Phytochemistry* 8, 2199.

- 7. Tezuka, M., Kuoryanagi, M., Yoshihira, K. and Natori, S. (1972) Chem. Pharm. Bull. 20, 202.
- 8. Sampara-Rumantir, N. (1971) Pharm. Weekbl. 106, 653
- Kreher, B., Neshmelyi, A. and Wagner, H. (1990) *Phytochemistry* 29, 605.
- Schölly, T. and Kapetanidis, I. (1989) *Pharm. Acta Helv.* 64, 66.
- 11. Sankaram, A. V. B., Reddy, V. V. N. and Marthan-damurthi, M. (1986) *Phytochemistry* 25, 2867.
- de Oliveira, A. B., Ralsan, D. S., de Oliveira, G. G. and Maia, J. G. S. (1993) Phytochemistry 34, 1409.
- Lillie, T. J. and Musgrave, O. C. (1977) J. Chem. Soc., Perkin 1, 355.
- 14. Schölly, T. and Kapetanidis, I. (1989) Planta Med. 55, 611
- Binder, R. G., Benson, M. E. and Flath, R. A. (1989) *Phytochemistry* 28, 2799.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids, Springer, New York.