

REVISION OF THE STRUCTURE OF A SESQUITERPENE FROM LIGULARIA SAGITTA

ZIMIN LIU,* HONGMING CHEN.† ZHONGJIAN JIA,† N. KENT DALLEY,* XIAOLAN KOU,* DU LI,* NOEL L. OWEN*;
and DAVID M. GRANT*§

*Department of Chemistry and Biochemistry. Brigham Young University, Provo, UT 84602, U.S.A.: †Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China; \$Department of Chemistry, University of Utah, Salt Lake City, UT 84112, U.S.A.

(Received in revised form 17 February 1995)

Key Word Index—Ligularia sagitta; Compositae; sesquiterpene; revised structure; 2D NMR; X-ray diffraction.

Abstract—The structure of a new sesquiterpene from the rhizomes of Ligularia sagitta was revised as benzo-furanoeremophil-1-ene by 2D NMR and X-ray diffraction.

INTRODUCTION

In a previous paper [1], we reported the isolation of a new sesquiterpene (1), mp 146-147, C₁₅H₁₆O, from the rhizomes of *Ligularia sagitta*. It was reported to be benzofuranoeremophil-2-ene. A more recent 2D NMR study and an X-ray study have shown the compound to be benzofuranoeremophil-1-ene.

RESULTS AND DISCUSSION

The earlier NMR spectroscopic data established that compound 1 was a sesquiterpene, a three ring molecule with five double bonds. Since the benzofuran contained only four double bonds, the fifth one must be in the terminal six-member ring and was designated to be between C2 and C3 by means of ¹H and ¹³C NMR spectra (Fig. 1). A more recent HETCOR spectrum shows the carbon atoms of the fifth double bond to be assigned at δ 128.1 and 125.2 ppm, and their olefinic protons resonate at $\delta 6.48$ (dd. J = 9.5 and 3.3 Hz) and 5.88 (ddd, J = 9.5, 6.5 and 2.5 Hz), and the latter shows a connectivity with H-3 β at δ 2.24 (dd, J = 17 and 6.5 Hz) in the ¹H-¹H COSY spectrum. Meanwhile, the cross-peaks between H-3 α at δ 2.57(m) and H-4 at δ 3.28 (q, J=7 Hz), and H-4 and H-15 at $\delta 1.09$ (d. J = 7 Hz), were also observed. Thus, the analysis of the above 2D NMR spectral data proved the double bond is at C1/C2 rather than C2/C3.

The crystal structure of 1 was established by an X-ray diffraction study and is shown in Fig. 1. The positional coordinates and equivalent isotropic displacement coeffi-

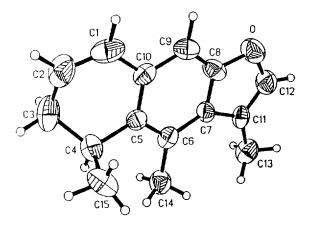


Fig. 1. A computer drawing of compound 1. The figure gives the atom labels.

cients for the non-hydrogen atoms of 1 are listed in Table 1. The study clearly establishes that the double bond is between C1 and C2 as the C1-C2 and C2-C3 bond lengths are 1.34(1) Å and 1.49(1) Å, respectively. The absolute configuration of C4 was determined as shown earlier [1, 2] and is as shown in Fig. 1.

EXPERIMENTAL

NMR spectra. All NMR spectra (Table 1) were obtained with a Varian VXR-500 spectrometer equipped with a Sun 4/360 workstation. The sample was run at 26° in a 5 mm tube at a concn of 20 mg per 0.6 ml CDCl₃ with a trace of TMS as reference. In the COSY experiment, the f_1 and f_2 spectral width was 4 kHz, and the $(t_1,$

1192 Zimin Liu et al.

 t_2) data matrix was zero-filled to 2048 by 2048 to give a final resolution of 4 Hz per point. Sin-bell and Gaussian apodization were used in the f_1 and f_2 dimensions, respectively, to improve line shapes. For the HETCOR experiment, the spectral widths were typically 4 kHz in the f_1 (¹H) dimension and 20 kHz in f_2 (¹³C). The (t_1, t_2) data matrix was zero-filled to 1024 by 2048 to give a digital resolution of 8 Hz per point in the f_1 dimension and 20 Hz in the f_2 dimension. Processing was done using Gaussian apodization.

Crystal structure determination. A crystal of dimensions $0.10 \times 0.12 \times 0.46$ mm was mounted on a 4-circle diffractometer (Siemens R3m/V), which utilized graphite crystal monochromated Mo K_{α} ($\lambda = 0.71073 \, \text{Å}$) radiation. The lattice parameters and orientation matrix were

Table 1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients ($\mathring{A}^2 \times 10^3$) for the non-hydrogen atoms of compound 1

	X	y	Z	$U(eq)^*$
0	526(10)	832(5)	231(2)	57(2)
C(1)	1851(16)	-3683(8)	841(4)	61(3)
C(2)	871(19)	-4733(8)	1115(4)	66(4)
C(3)	-1525(17)	-4723(7)	1462(5)	69(4)
C(4)	-1874(14)	-3429(7)	1830(4)	46(3)
C(5)	- 1323(13)	-2274(7)	1378(3)	37(2)
C(6)	-2544(15)	- 1100(6)	1439(4)	41(3)
C(7)	- 1847(13)	-86(7)	1021(3)	39(3)
C(8)	129(14)	-276(8)	591(4)	46(3)
C(9)	1352(14)	-1401(7)	528(4)	45(3)
C(10)	592(13)	-2431(7)	920(4)	42(3)
C(11)	-2619(14)	1237(6)	918(4)	39(3)
C(12)	-1182(16)	1712(7)	457(4)	53(3)
C(13)	-4679(14)	1962(6)	1240(4)	56(3)
C(14)	- 4551(14)	-910(7)	1945(4)	50(3)
C(15)	-299(16)	-3327(7)	2443(4)	61(3)

^{*}Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

determined using 26 carefully centred reflections $(9^{\circ} \le 2\theta \le 25^{\circ})$. The compound crystallizes in the orthorombic space group $P2_12_12_1$, with a = 5.468(3), $b = 10.366(6), c = 20.313(16) \text{ Å}, V = 1151.3(10) \text{ Å}^3, Z = 4$ and with a calculated density of 1.225 kg m⁻³. The intensity data were collected at 20° using a variable speed $(3.00-58.60^{\circ} \,\mathrm{min}^{-1})\ 2\theta-\theta$ scanning procedures to a 2θ limit of 45°. The 2θ scan width for each reflection was from 1.20° before to 1.20° after the K_{α} separation. A total of 1243 reflections (1224 independent) were collected. Neither extinction nor absorption corrections were applied to the data. The absorption coefficient was 0.075 mm⁻¹. The crystal structure was solved using direct methods and refined using a full-matrix least-squares procedure. The positions of H atoms were calculated and a riding model was used in refinement process. A weighting scheme of the form $w^{-1} = \sigma^2(F) + 0.0011F^2$ was applied to the data set. The resulting R values were R = 7.15% and $R_w = 6.60\%$ with a goodness of fit of 1.14 for 700 observed reflections $[F > 2.5\sigma(F)]$. Atomic scattering factors were taken from ref. [3]. All programs used in the solution, refinement and display of this structure are included in a program package [4]. Supplementary materials including H positions, bond lengths and angles, and anisotropic thermal parameter are deposited at the Cambridge Crystallographic Data Centre.

REFERENCES

- 1. Chen, H., Jia, Z. and Yang, L. (1992) *Phytochemistry* **31**, 2146.
- 2. Bohlmann, F. and Zdero, C. (1978) *Phytochemistry* 17, 1135.
- 3. Ibers, J. A. and Hamilton, W. C. (1974) *International Tables for X-Ray Crystallography*, Vol. 4, p. 89. Kynoch Press, Birmingham, U.K.
- Sheldrick, G. M. (1990) SHELXTL-PLUS[™], Siemens Analytical X-ray Instrument, Inc., Madison, WI.

Table 2. ¹H and ¹³C spectral data for compound 1 (500 MHz, CDCl₃, δppm)

No.	¹³ C	¹H	COSY
1	128.1	6.48 (dd, J = 9.5, 3.3 Hz)	5.88 (H-2)
2	125.2	5.88 (ddd, J = 9.5, 6.5, 2.5 Hz)	6.48 (H-1), 2.24 (H-3β)
3 31.1	31.1	$2.24 (dd, J = 17, 6.5 \text{ Hz}, \text{H}-3\beta)$	5.88 (H-2), 2.57 (H-3α)
		$2.57 \ (m, H-3\alpha)$	2.24 (H-3 β), 3.28 (H-4)
4	27.5	3.28 (q. J = 7 Hz)	2.57 (H-3α), 1.09 (H-15)
5	127.8	· ·	,
6	133.2		
7	130.0		
8	154.4		
9	107.4	6.98(s)	
10	126.6		
11	116.5		
12	141.6	7.27 (q, J = 1 Hz)	
13	11.3	2.38 (d, J = 1 Hz)	
14	14.0	2.56 (s)	
15	19.5	1.09 (d, J = 7 Hz)	3.28 (H-4)