

NMR CHARACTERIZATION OF GUANINE DNA SITE ALKYLATED BY KAPURIMYCIN A3, AN ANTITUMOUR ANTIBIOTIC FROM STREPTOMYCES SP.

K. L. CHAN, H. SUGIYAMA,* I. SAITO* and M. HARA†

School of Pharmaceutical Sciences, University of Science Malaysia, 11800 Penang, Malaysia; *Division of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoyo University, Kyoto 606, Japan; †Tokyo Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., Machida, Tokyo 194, Japan

(Received in revised form 15 May 1995)

Key Word Index -Streptomyces sp.; kapurimycin A3; guanine DNA alkylation site; NMR.

Abstract—The kapurimycin A3-guanine adduct was formed by alkylation of the antitumour antibiotic with $d(CGCG)_2$. The site of alkylation of the guanine was confirmed by comparative NMR studies with N-7-methylguanine in DMSO- d_6 .

INTRODUCTION

Current interest in molecules that can covalently alkylate DNA has led to numerous studies [1-4] of kapurimycin A3 (kap. A3, 1), an antitumour antibiotic isolated from the Streptomyces sp. DO-115. Preliminary results from the use of synthetic self-complementary oligonucleotides have demonstrated that 1 alkylates both guanine₂ (G₂, 64%) and $G_4(7\%)$ of $d(CGCG)_2$ [3], and only G_4 of d(A₁T₂C₃G₄A₅T₆)₂, to produce their respective unstable adducts which then undergo thermal depurination to their corresponding oligomers containing an abasic site and kap. A3-guanine adducts (2). Evidence for the position of alkylation at the guanine by 1 has not been fully established. Hitherto, we have demonstrated indirectly by methylation and acid hydrolysis of the antibiotic-base adduct that 1 alkylates the N-7 position of guanine [3]. We now present NMR data to confirm the specific site of guanine alkylated by the antibiotic.

RESULTS AND DISCUSSION

Previous ¹H NMR studies of **2** in methanol- d_4 (Table 1) showed that all of the resonances attributable to the protons from **1** were present as well as an additional singlet δ 7.97 due to H-8 of guanine [2]. However, the other protons of guanine were not detected. Similarly, in the ¹³C NMR studies of **2** in methanol- d_4 , the carbon atoms of guanine were not fully assigned [2]. When **2** was dissolved in DMSO- d_6 for NMR determinations or in dimethylacetamide for methylation experiments, rapid decarboxylation of the β , γ -unsaturated δ -keto carboxylic acid moiety occurred. The HPLC-isolated decarboxylated derivative **3** showed a strong singlet at δ 2.74, indicating the presence of a methyl group at C-5 and the

disappearance of the H-13 doublets at $\delta 3.84$ and 4.24 present in 2. The two singlets appearing at $\delta 5.87$ and 8.43, and not previously detected when 2 was dissolved in methanol- d_4 , were assigned as OH-14 and OH-12, respectively. Furthermore, 3 showed three additional singlets at $\delta 10.21$, 6.07 and 7.99 corresponded very closely to NH-1 ($\delta 10.68$), NH₂-2 ($\delta 6.05$) and H-8 ($\delta 7.81$) of N-7-methylguanine in DMSO- d_6 , respectively, thus confirming that the alkylation of guanine by 1 occurred at the N-7 position.

EXPERIMENTAL

Microorganism. The Streptomyces sp. was isolated from a soil sample at Kanazawa City, Ishikawa Prefecture, Japan. The culture specimen was deposited in the Fermentation Research Institute, Agency of Industrial Science and Technology, Japan, as of Streptomyces sp. DO-115 (accession No. FERM BP-2408).

Kap. A3 (1). The antibiotic was produced in a fermentation medium containing the Streptomyces sp., supplemented

1374 K. L. Chan et al.

Table 1.	The ¹ H NMR (400 MHz) data for the antibiotic-guanine adducts and N-7-methyl-
	guanine

Н	Kap. A3-guanine adduct (2) (methanol- d_4) [2] δ	Decarboxykap. A3–guanine adduct (3) (DMSO- d_6) δ	N -7-Methyl guanine (DMSO- d_6) δ
CH ₃ -14	1.68 (s)	1.68 (s)	nil
CH ₃ -18	$1.82 (d) (J = 6.4 \mathrm{Hz})$	1.82 (d) (J = 6.7 Hz)	nil
CH ₃ COO-8	2.16 (s)	2.17 (s)	nil
9	2.26 (m)	2.32 (m)	nil
9	2.37 (m)	2.68 (m)	nil
CH ₃ -5	nil	2.74 (s)	nil
10	2.95 (m)	2.94 (m)	nil
10	2.95 (m)	2.96 (m)	nil
13	3.84 (d) (J = 16.1 Hz)	nil	nil
13	4.24 (d) (J = 16.3 Hz)	nil	nil
OH-14	not detected	5.87 (s)	nil
18	5.92 (m)	5.91 (m)	nil
17	5.92 (m)	5.93 (m)	nil
8	6.16 (dd) (J = 7.5, 3.4 Hz)	$6.13 (dd) (J = 7.4, 3.6 \mathrm{Hz})$	nil
3	6.30 (s)	6.29 (s)	nil
16	6.43 (s)	6.58 (s)	nil
7	7.34 (s)	7.31 (s)	nil
6	7.52 (s)	7.56 (s)	nil
OH-12	not detected	8.43 (s)	nil
CH ₃ -7 (G)	nil	nil	3.81 (s)
NH-1 (G)	nil	10.21 (s)	10.68 (br s)
NH ₂ -2 (G)	nil	6.07 (br s)	6.05 (s)
8 (G)	7.97(s)	7.99(s)	7.81(s)

with high porous polymer resin to adsorb the antibiotic, which was recovered as previously reported [1].

 $d(CGCG)_2$. The synthesis of the self-complementary deoxytetranucleotide was conducted on an Applied Biosystem 381A DNA Synthesizer using the phosphoramidite method with a 1 μ mol column. Its isolation followed the method as previously described [3].

Kap. A3-guanine adduct (2) and its decarboxylated derivative (3). Compound 1 was incubated with $d(CGCG)_2$ at 0° for 5 hr following the method described previously [3]. The HPLC isolated kap. A3-oligonucleotide adduct underwent depurination at 55° to form 2. In DMSO- d_6 or dimethylacetamide, 2 was rapidly decarboxylated to 3. HPLC isolation of 2 (15.7 min) and 3 (20.4 min) was on a Cosmosil 5 C_{18} column (4.6 × 150 mm). Elution was

with 0.05 M NH₄ formate, 0-50% MeCN linear gradient (20 min), flow rate 1.5 ml min⁻¹. Detection was at 254 nm. The ¹H NMR signals of 2 and 3 are listed in Table 1.

REFERENCES

- Hara, M., Mokudai, T., Kobayashi, E., Gomi, K. and Nakano, H. (1990) J. Antibiot. 43, 1513.
- Hara, M., Yoshida, M. and Nakono, H. (1990) Biochemistry 30, 3597.
- 3. Chan, K. L., Sugiyama, H., Hara, M. and Saito, I. (1991) Tetrahedron Letters 32, 7719.
- 4. Sugiyama, H., Chan, K. L., Hosoda, M. and Saito, I. (1991) Nucleic Acids Symp. Ser. 25, 75.