

TWO CARBAZOLE ALKALOIDS FROM LEAVES OF MURRAYA EUCHRESTIFOLIA

TIAN-SHUNG WU*, MEEI-LING WANG, PEI-LIN WU and TING-TING JONG†

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 701; † Department of Chemistry, National Chung Hsiung University, Taichung, Taiwan

(Received 26 March 1995)

Key Word Index—Murraya euchrestifolia; Rutaceae; carbazole alkaloids; murrayamines-D and -E.

Abstract—Two new carbazole alkaloids, murrayamines-D and -E, were isolated from the leaves of Murraya euchrestifolia in February 1995. Their structures were elucidated by spectral analyses.

INTRODUCTION

In continuing our examination of the acetone extract of the leaves of *Murraya euchrestifolia* collected in Taiwan during the winter, two new isomeric carbazole alkaloids, murrayamines-D (1) and -E (2), were obtained with two binary carbazole alkaloids, *bis*-7-hydroxygirinimbines-A (3) and -B (4) [1], as well as six known compounds. Herein, we report the structural elucidation of compounds 1 and 2.

RESULTS AND DISCUSSION

The acetone extract from the leaves of M. euchrestifolia was repeatedly chromatographed to afford two new carbazole alkaloids, murrayamines-D (1) and -E (2), as well as the seven carbazoles, bis-7-hydroxygirinimbines-A (3) [1] and -B (4) [1], girinimbine (5) [1], murrayamine-A (6) [2], bicyclomahanimbine (7) [3, 4], mahanimbine (8) [2], (+)-mahanine (9) [2] and one steroid, β -sitosterol (10). The latter structures were characterized by spectroscopic analyses or by direct comparison with authentic samples.

Murrayamine-D (1) was isolated as a colourless oil. High-resolution mass measurement determined the molecular formula as $C_{25}H_{25}NO_2$. UV bands at 215, 239, 266, 315 and 324 nm suggested that this compound could be a 2,7-dioxygenated carbazole derivative [2]. In the aromatic region of the ¹H NMR spectrum of 1, one set of a ABX mutually-coupled proton system at δ 6.65 (dd, J = 8.4, 2.2 Hz), 6.78 (d, J = 2.2 Hz) and 7.69 (d, J = 8.4 Hz) was assigned to H-6, H-8 and H-5, respectively, in ring A. A downfield shift singlet, together with a three-proton singlet at δ 7.54 and 2.31 were deduced for H-4 and 3-Me. The location of this methyl substituent could be further confirmed by a NOE difference

experiment. Only the signal of H-4 (δ 7.52) was enhanced when irradiation of the methyl signal (δ 2.31) was made. On the other hand, in the decoupling experiment, a broad singlet signal at δ 7.52 (H-4) was changed into a sharp singlet on irradiation of the methyl signal at δ 2.31. The remaining characteristic signals at δ 4.74 and 4.81 (each 1H, d, J = 0.7 Hz) for vinylidene protons, (H-8'), a methyl singlet at δ 1.49 for vinyl methyl (7'-Me), another methyl singlet at δ 1.43 for tertiary methyl (3'-Me), a methine double doublet at δ 3.37 for a benzylic proton (H-1') and a complicated multiplet between δ 1.5-2.2 for three methylene and one methine protons were attributed to a 10-carbon bicyclic skeleton similar to that of cyclomahanimbine (11) [5]. An extra hydroxyl group on C-7 showed a broad IR band between 3600 and 3200 cm⁻¹. Based on the above analyses, murrayamine-D (1) thus has the following structure: 7-hydroxymurrayazolidine.

Murrayamine-E (2), an isomer of 1, was obtained as optically active colourless prisms. By the comparison of the ¹H NMR spectrum of 2 with that of 1, the similarity in the 1-substituted-3-methyl-2,7-dioxygenated carbazole moiety at δ 6.78 (dd, J = 9.0, 2.4 Hz, H-6), 6.99 (d, J = 2.4 Hz, H-8), 7.75 (d, J = 9.0 Hz, H-5) and 2.31 (3H, s, 3-Me) was apparent. The major difference was that the isopropenyl side-chain in 1 was replaced by two isolated dimethyls that were geminal substituents on a quaternary carbon atom. Thus, the three methyl singlets at

^{*}Author to whom correspondence should be addressed.

Fig. 1. NOESY correlations of compound 2.

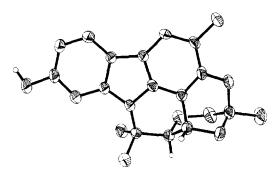


Fig. 2. Structure and solid-state conformation of compound 2.

 δ 1.38, 1.45 and 1.88, as well as a benzylic broad doublet at δ 3.28, along with three methylene and one methine overlapping multiplicities between δ 0.2–2.6 constructed a 10-carbon tricyclic structural unit attached to carbazole, as found murrayazoline (12) [5]. The complete structure and relative stereochemistry of 2 were determined by a NOESY experiment (Fig. 1), along with single crystal X-ray analysis (Fig. 2). Consequently, the structure of murrayamine-E (2) was suggested as 7-hydroxymurrayazoline.

Furthermore, treatment of 2 with excess CH_2N_2 produced a methyl ether 2a. An extra methoxyl singlet at δ 3.89 was observed in the ¹H NMR spectrum of 2a. In a NOE difference experiment, irradiation of the aryl methyl (δ 2.31) caused a 13.86% increase of the signal at δ 7.34 (H-4). Enhancements of 11.93% and 9.42% for the signals at δ 6.78 (H-8) and 6.99 (H-6), respectively, were observed when the methoxyl signal at δ 3.89 (7-OMe) was irradiated. These results strongly supported the structure 2 proposed for murrayamine-E.

EXPERIMENTAL

Mps: uncorr. UV: in MeOH. IR: in KBr, unless otherwise stated. ¹H NMR and ¹³C NMR: in CDCl₃, TMS as int. standard except where noted. MS: direct inlet system.

Plant material. Leaves of M. euchrestifolia Hayata were collected in Kuantaochi, Nantou Hsien, Taiwan, in

February 1987 and identified by Prof. C. S. Kuoh. A specimen of the plant has been deposited at the Herbarium of the National Cheng Kung University, Tainan, Taiwan.

Extraction and separation. Air-dried leaves (1.64 kg) were extracted with Me₂CO at room temp. The comb. Me₂CO extracts were concd under red. pres. to yield a dark-green syrup (1.03 kg) which was subjected to chromatography over silica gel and eluted with benzene-Me₂CO (9:1) to give 7 frs. Frs 1 and 2 were comb. and rechromatographed over a silica gel column using hexane-EtOAc (6:1) to furnish 5 (3.0 g), 6 (22 mg) and 10 (0.3 g), successively. Fr 3 was also rechromatographed on silica gel using hexane-Me₂CO (9:1) to give 2 (25 mg) and 7 (12 mg). In a similar way, 8 (0.2 g) was obtained from frs 4 and 5 using hexane-Me₂CO (9:1), whereas 1 (4 mg), 9 (10 mg), 3 (5 mg) and 4 (6 mg) and an unknown dimer C (4 mg) were afforded from fr. 6 by TLC separation using CHCl₃-Me₂CO (25:1).

Murrayamine-D (1). Oil. HRMS: calcd for C₂₃H₂₅NO₂, m/z 347.1887 [M]⁺, found 347.1874. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 215, 239, 266, 315, 324. IR $\nu_{\text{max}}^{\text{CHCI}_3}$ cm⁻¹: 3429, 1620, 1495, 1427. EIMS m/z (rel. int.): 347 ([M]⁺, 100), 264 (44). ¹H NMR (CDCl₃) δ1.43 (3H, s, 3'-Me), 1.49 (3H, s, 7'-Me), 1.5-2.2 (6H, m, H-2', -4' and -5'), 2.31 (3H, d, J = 0.7 Hz, 3-Me), 2.56 (1H, m, H-6'), 3.37 (1H, dd, J = 6.9, 3.3 Hz, H-1') 4.68 (1H, s, 7-OH), 4.74 and 4.81 (each 1H, br s, H-8'), 6.65 (1H, dd, J = 8.4, 2.2 Hz, H-6), 6.78 (1H, d, J = 2.2 Hz, H-8), 7.52 (1H, br s, H-4), 7.60 (1H, br s, NH), 7.69 (1H, d, J = 8.4 Hz, H-5).

Murrayamine-E (2). Prisms (MeOH), mp 275-276° (dec). $[\alpha]_D + 39.68^\circ$ (c, 0.133, CHCl₃). HRMS: calcd for C23H25NO2, m/z 347.1887 [M]+, found 347.1889. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε) 219 (3.60), 245 (3.87), 273 (3.51), 316 (3.37), 335 (sh, 3.10). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3358, 1623, 1608, 1571. EIMS m/z (rel. int.): 347 ([M]⁺, 100), 332 (53), 265 (43). ¹H NMR (CDCl₃) δ 0.20 (1H, m, H-5'_{ax}), 1.28 (3H, s, H-8'), 1.30 (1H, dd, J = 13.8, 6.6 Hz, H-5'_{eq}), 1.45 (3H, s, 3'-Me), $1.50 (1H, m, H-4'_{ax}), 1.62 (1H, m, H-4'_{eq}). 1.88 (3H, s, H-9'),$ 1.90 (1H, $br\ d$, $J = 13.0\ Hz$, $H-2'_{ax}$), 1.96 (1H, m, $H-6'_{ax}$), 2.31 (3H, s, 3-Me), 2.37 (1H, m, $H-2'_{eq}$), 3.28 (1H, br d, $J = 1.8 \text{ Hz}, \text{ H-1'}_{eq}$, 4.70 (1H, s, 7-OH), 6.78 (1H, dd, J = 9.0, 2.4 Hz, H-6, 6.99 (1H, d, J = 2.4 Hz, H-8), 7.38(1H, s, H-4), 7.75 (1H, d, $J = 9.0 \,\text{Hz}$, H-5). ¹³C NMR $(CDCl_3) \delta 14.0 (q, 3-Me), 20.3 (t, C-5'), 21.1 (q, C-8'), 26.7$ (d, C-6'), 27.8 (q, 3'-Me), 28.4 (q, C-9'), 34.5 (t, C-2'), 35.1 (t, C-4'), 46.9 (d, C-1'), 58.9 (s, C-7'), 74.5 (s, C-3'), 99.3 (d, C-8), 106.0 (s, C-1), 106.9 (d, C-6), 112.8 (s, C-4a), 116.0 (s, C-4b), 116.8 (d, C-4), 118.4 (s, C-3 and d, C-5), 140.7 (s, C-8a and C-9a), 152.3 (s, C-2), 152.9 (s, C-7). Crystal data: M = 347.4, monoclinic, space group $P2_1/c$ a = 10.899 (6), b = 11.285 (3), c = 15.525 (7) Å, $\beta = 107.74$ (4)°, $U = 1818.8 (14) \text{ Å}^3$, Z = 4, $D_c = 1.269 \text{ mg m}^{-3}$, $\mu(M_0 K_x)$ radiation, $\lambda = 0.71073 \text{ Å}$), crystal dimensions: $0.3 \times 0.4 \times$ 0.45 mm. Intensity data $(+h, +k, +l, 2\theta_{max} = 50.0^{\circ})$ were recorded on a Siemens R 3m/V diffractometer. The crystal structure was solved by a direct method. Fullmatrix least-squares refinement of atomic parameters (anisotropic C, O; isotropic H) converged at R = 0.0631 $(R_w = 0.0744)$ over 1829 reflections with l > 4.00 (l).

O-Methylmurrayamine-E (2a). Treatment of 2 (10 mg) with excess CH_2N_2 in the usual way afforded colourless needless of 2a, mp 224–225° (Me₂CO). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 218, 241, 267, 312, 323. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1615, 1460. EIMS m/z (rel. int.): 293 ([M]⁺, 21), 278 (100), 263 (13). ¹H NMR (CDCl₃) δ 0.21 (1H, m, H-5'_{ax}), 1.28 (3H, s, H-8'), 1.30 (1H, dd, J = 9.1, 5.5 Hz, H-5'_{eq}), 1.45 (3H, s, 3'-Me), 1.53 (1H, m, H-4'_{ax}), 1.62 (1H, m, H-4'_{eq}), 1.88 (3H, s, H-9'), 1.87 (1H, br d, J = 13.2 Hz, H-2'_{ax}), 1.97 (1H, ddd, J = 11.2, 5.5, 2.3 Hz, H-6'_{ax}), 2.31 (3H, s, 3-Me), 2.39 (1H, ddd, J = 13.2, 5.5, 3.2 Hz, H-2'_{eq}), 3.28 (1H, br d, J = 2.2 Hz, H-1'_{eq}), 3.89 (3H, s, 7-OMe), 6.78 (1H, dd, J = 8.4, 2.4 Hz, H-6), 6.99 (1H, d, J = 2.4 Hz, H-8), 7.37 (1H, s, H-4), 7.75 (1H, d, J = 8.4 Hz, H-5).

Acknowledgement—The authors thank the National Science Council, R. O. C. (NSC 77-0208-M126-04) for its support of this research.

REFERENCES

- 1. Wu, T. S., Wang, M. L., Lai, J. S., Ito, C. and Furukawa, H. (1991) *Phytochemistry* 30, 1052.
- 2. Wu, T. S. (1991) Phytochemistry 30, 1048.
- Kureel, S. P., Kapil, R. S. and Popli, S. P. (1969) Tetrahedron Lett. 3857.
- Kureel, S. P., Kapil, R. S. and Popli, S. P. (1970) Chem. Ind., 958.
- Furukawa, H., Wu, T. S., Ohta, T. and Kuoh, C. S. (1985) Chem. Pharm. Bull. 33, 4132.