

CONSTITUENTS OF TWO ACALYPHA SPECIES

K. SIEMS, J. JAKUPOVIC, *† V. CASTRO‡ and L. POVEDA‡

AnalytiCon GmbH, D-13355 Berlin, Germany; *Institute for Organic Chemistry, Technical University of Berlin, D-10623 Berlin, Germany; ‡Escuela de Quimica, Universidad de Costa Rica, San Jose, Costa Rica

(Received 4 July 1995)

Key Word Index—Acalypha macrostachya; A. diversifolia; Euphorbiaceae; diterpene; friedolabdane.

Abstract—The stem extract of Acalypha macrostachya yielded, in addition to known compounds, two new friedolabdanes and a new curcumene derivative. A. diversifolia gave a known amide. The structures were elucidated by high-field NMR spectroscopy.

INTRODUCTION

The spurge family Euphorbiaceae is known as a source of biologically active compounds [1]. Phorbolesters have been extensively investigated for their cocarcinogenic properties [2]. With about 450 species, Acalypha is the fourth largest genus of Euphorbiaceae. The species are widespread throughout the tropics except in Hawaii and a few Pacific archipelagos [3]. Extracts of some Acalypha sp. are used in Central America as folk medicine [4]. To date only a few representatives have been investigated chemically [5]. As a part of our study on constituents from the Euphorbiaceae, we examined two Acalypha species, A. macrostachya and A. diversifolia, both collected in Costa Rica.

RESULTS AND DISCUSSION

The stem extract of A. macrostachy a Jacq. yielded the diterpenes 1 and 2, the sesquiterpene 3, N-trans-feruloyltyramin, previously isolated from different sources [6] and β -stigmasterone. The structures of the isomeric diterpenes were deduced from ¹H and ¹³CNMR spectra (Tables 1 and 2). The presence of a β -substituted furan followed from the typical down field signals in the NMR spectra. A pair of doublets at δ 3.42 and 3.82 in the ¹H NMR spectrum of 1 indicated a primary hydroxyl group, which was confirmed by a triplet at δ 69.4 in the ¹³CNMR spectrum. Two tertiary and one secondary methyl group were consistent with several skeleta, particularly with that of friedolabdane. Spin decoupling experiments established the sequence H-6, H-10, H-1 to H-3, because H-6 and H-10 were allylically coupled. In accordance with the structure, the keto group has to be placed at C-7, as H-8 is shifted downfield and couples

only with the secondary methyl group. The stereochemistry was fully established by a series of NOE experiments. The most important enhancements were observed between H-20, H-17 (6%), H-12 (5%) and H-12' (5%), between H-19, H-18 (3%), H-18' (3%) and H-10 (7%), between H-10, H-8 (5%) and H-11 (5%) as also between H-18 and H-6 (7%).

In the NMR spectra of 2 the signals for the hydroxymethyl group were missing. Instead, those for an additional methyl group and a secondary alcohol were recognized. The placement of the latter at C-3 followed

Table 1. ¹H NMR data of compounds 1 and 2 (CDCl₃, 400 MHz, internal standard: residual CHCl₃, signal = 7.26 ppm)

Н	1	J	2	J
 1α	1.90 br d	13	*	
1β	1.26 ddd	13, 13, 13, 3	*	
2α	1.65 m		*	
2β	1.72-1.82 m		*	
3α	1.49 m		3.42 dd	12, 4
3β	1.72-1.82 m		_	
6	5.97 d	2	6.05 d	2
8	$2.50 \ q$	7	2.47 q	7
10	2.66 ddd	13, 5, 2	2.64 ddd	13, 5, 2
11	1.74 m		1.73 ddd	14, 14, 4
11′	1.56 m		1.57 ddd	14, 14, 4
12	2.35 ddd	14, 14, 4	2.35 ddd	14, 14, 4
12′	2.44 ddd	14, 14, 4	2.46 ddd	14, 14, 4
14	6.28 br s		6.28 br s	
15	$7.23 \ br \ s$		7.23 br s	
16	7.36 br s		7.37 br s	
17	1.05 d	7	1.06 d	7
18	3.42 d	11.5	1.28 s	
18	3.82 d	11.5	_	
19	1.08 s		1.08 s	
20	0.74 s		$0.74 \ s$	

[†]Author to whom correspondence should be addressed.

^{*}Overlapping multiplets.

K. Siems et al.

from spin decoupling experiments and the stereochemistry from the observed couplings in the ¹H NMR spectrum (J = 12 and 4 Hz). The absolute configuration of 1 was deduced from the negative Cotton-effect observed at 320 nm according to the helicity rule for α,β -unsaturated ketones [7]. An analogous effect was described with a friedolabdane isolated from *Haplopappus pulchellus* [8].

Small amounts of curcumene diol 3 were also obtained. The structure was easily deduced from the ¹HNMR spectrum (see Experimental). The stereochemistry at the chiral centres could not be established.

The leaf extract of the same sample contained no compounds of interest.

Only the amide 4 was obtained from A. diversifolia. Interestingly, this compound was previously isolated from Artemisia anomala, family Compositae [9].

EXPERIMENTAL

The air-dried material (collected in Sarapiqui, Costa Rica, December 1989; voucher specimen deposited at National Herbarium of Costa Rica) was extracted at room temp with petrol–Et₂O–MeOH (1:1:1). The defatted extract was separated by CC (silica gel) using petrol, methyl-t-butyl ether (MTB) and MeOH with increasing polarity. The fractions were checked by ¹H NMR prior to further purification by TLC or HPLC. The stem extract of *A. macrostachya* (1580 g, Herbar No. 4665) yielded 30 mg β -stigmasterone, 60 mg 1 (HPLC: MeOH–H₂O 4:1, RP 8, 250×8 mm, R_t = 5 min), 5 mg 2 (TLC: petrol–MTB 3:2, R_f 0.4), 5 mg 3 (TLC: petrol–MTB 3:2, R_f 0.5) and 50 mg *N-trans*-feruloyl-tyramine. The aerial parts of *A. diversifolia* (870 g, Herbar No. 4652) contained 5 mg 4. Known compounds were identified by comparison of ¹H NMR spectra with those of authentic samples.

18-Hydroxy-7-oxo-15,16-epoxyfriedolabda-5,13(16), 14-trien (1). IR $v_{\text{max}}^{\text{CCI}_4}$ cm⁻¹: 3500, 1680, 880; MS m/z (rel. int.): 316.204 [M]⁺ (40) (calc. for $C_{20}H_{28}O_3$), 221 [M – side chain]⁺ (59), 203 [221 – H_2O]⁺ (100), 191 (32), 189 (36), 161 (58), 135 (66), 95 (57), 81 (71); CD $\Delta \varepsilon_{320} - 1.8$ (MeOH; c 0.15).

 3α -Hydroxy-7-oxo-15,16-epoxyfriedolabda-5,13(16),14trien (2). IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm $^{-1}$. 3480, 1680, 880; MS m/z (rel. int.):

Table 2. ¹³C NMR data of compounds 1 and 2 (CDCl₃, 100 MHz, internal standard: solvent peak = 77.0 ppm)

С	1	2	
1	33.9 t	37.0 t	
2	20.6 t	29.7 t	
3	36.7 t	75.7 t	
4	42.4 s	42.9 s	
5	165.7 s	167.3 s	
6	121.9 d	122.4 d	
7	202.4 s	202.7 s	
8	48.0 d	47.7 d	
9	41.4 s	40.6 s	
10	41.9 d	40.7 d	
11	18.8 t	18.9 t	
12	25.9 t	23.9 t	
13	124.7 s	124.6 s	
14	110.8 d	110.7 d	
15	142.9 d	142.9 d	
16	138.5 d	138.4 d	
17	7.7 q	8.1 q	
18	69.4 t	23.9 q	
19	25.2 q	21.8 q	
20	16.5 q	16.8 q	

Assigned with aid of two-dimensional hetero correlated experiment.

316.204 [M] $^+$ (40) (calc. for $C_{20}H_{28}O_3$), 221 [M - side chain] $^+$ (59), 203 [221 - H $_2O$] $^+$ (100), 119 (50).

7,8-Dihydroxy-α-curcumene (3). MS m/z (rel. int.): 234 [M]⁺ (5.5), 216 [M - H₂O]⁺ (2), 119 (100); ¹H NMR (CDCl₃ solvent peak 7.26 ppm): 7.12 (4H, m, H-1, H-2, H-4 and H-5), 5.29 (1H, tqq, J=9, 1.5, 1.5, H-10), 4.10 (1H, dd, J=6, 9, H-9); 3.54 (1H, dd, J=6, 6, H-8), 2.91 (1H, dq, J=6, 7, H-7), 2.32 (3H, s, H-15), 1.77 (3H, d, J=1.5, H-12),1.63 (3H, d, J=1.5, H-13), 1.35 (3H, d, J=7, H-14).

REFERENCES

- 1. Evans, F. J. and Taylor, S. E. (1983) Fortschritte der Chemie org. Naturstoffe 44, 1.
- 2. Hecker, E. and Schmidt, R. (1974) Fortschritte der Chemic org. Naturstoffe 31, 377.
- 3. Webster, G. L. (1994) Ann. Missouri Bot. Garden 81, 33.
- 4. Morton, J. J. (1981) Medicinal plants of Middle America Charles C. Thomas Publisher, Springfield.
- Talapatra, B., Gosnani, S. and Talapatra, S. K. (1981) Ind. J. Chem. (B) 20, 974.
- Tanaka, B., Nakamura, T., Ichino, K. and Ito, K. (1989) Phytochemistry 28, 2516.
- 7. Snatzke, G. (1965) Tetrahedron 21, 421.
- 8. Zdero, C., Bohlmann, F. and Niemeyer, H. M. (1991) Phytochemistry 30, 3669.
- 9. Jakupovic, J., Chen, Z.-L. and Bohlmann, F. (1987) *Phytochemistry* **26**, 2777.