

BREVICORNIN, A FLAVONOL FROM EPIMEDIUM BREVICORNUM

BAO-LIN GUO, WEN-KUI LI, JING-GUANG YU and PEI-GEN XIAO

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China

(Received in revised form 8 August 1995)

Key Word Index—Epimedium brevicornum; Berberidaceae; flavonol; brevicornin.

Abstract—A new flavonol, brevicornin, with a 3"-methoxy-isopentyl group, was isolated from the aerial parts of *Epimedium brevicornum*. Its structure was determined to be 3,5,7-trihydroxy-4'-methoxy-8-(3"-methoxyisopentyl)flavone. Four known flavonoids epimedin B, epimedin C, β -anhydroicaritin and tricin were also isolated from the same plant.

INTRODUCTION

Epimedium brevicornum Maxim. is widely distributed in northern China and used as a tonic in traditional Chinese medicine. In this paper, a new flavonol, brevicornin (1), along with four known flavones (2–5) are reported from the aerial parts.

RESULTS AND DISCUSSION

Compounds 1-5 were isolated from the *n*-butanol soluble fraction of the 95% ethanol extract of the aerial parts of E. brevicornum by means of chromatography on silica gel and polyamide. Compound 1 was obtained as yellow needles, mp 198-200°. The molecular formula of 1 was established from the molecular ion at m/z 400.1525 (calc. for $C_{22}H_{24}O_7$ 400.1521) in the HR mass spectrum. Its UV spectrum showed absorption bands of a typical flavonol at 272, 320 and 372 nm, which exhibited bathochromic shifts by the addition of shift reagents (sodium methoxide, sodium acetate and AlCl₃), indicating the presence of hydroxyl groups at C-3, C-5 and C-7 and the absence of a free hydroxyl group at C-4. These were confirmed by proton signals at 12.32 (C₅-OH), $10.66(C_7-OH)$ and $9.47(C_3-OH)$. From the ¹H and ¹³C NMR spectral data, it was found that 1 was similar to anhydroicaritin [1, 2] except for a five-carbon unit linked to C-8 and a methoxyl group. In the ¹H NMR spectrum, there were two benzylic proton signals at $\delta 2.72$ (2H, m, H-1"), another multiplet at δ 1.59 assigned to the methine protons (2H, m, H-2"), and six methyl protons appearing in singlet at $\delta 1.16$ assigned to H-4", 5", which suggested no double bond between C-2" and C-3". The above assignments were confirmed by the ¹³C NMR spectrum: $\delta 38.0(C-1'')$, 16.7(C-2'') and 24.8(C-4'', 5''). The signals of methoxyl protons in the ¹H NMR spectrum,

 $\delta 3.14(3H, s)$, must be assigned to 3"-OMe, while the C-3" signal in the ¹³C NMR spectrum corresponded to $\delta 73.7$. The HR mass spectrum gave the [M]⁺ and base peak for 400.1525 (calc. 400.1521) and 368.1281 (calc. 368.1259), which suggested that a fragment of methanol was removed. The other fragments in the mass spectrum at m/z 353, 313, 300, 165 and 135 were the same as those for anhydroicaritin. Thus, 1 must be 3,5,7-trihydroxy-4'-methoxy-8-(3"-methoxyisopentyl)flavone.

The structure of the four known flavonols isolated were identified as epimedin B[2], epimedin C[3], β -anhydroicaritin (4) [4] and tricin[2].

EXPERIMENTAL

Extraction and isolation. The dried and powdered aerial parts of E. brevicornum (4.5 kg) were extracted (×3) with 95% EtOH under reflux for 2 hr. The combined extracts were concd under reduced pressure. The residue (440 g) was suspended in H₂O and extracted successively with CH₂Cl₂, EtOAc and n-BuOH. The n-BuOH fraction (120 g) was submitted to CC on polyamide (eluent: EtOH-H₂O, gradient) and sepd into five parts. Compounds 1 (25 mg), 4 (33 mg) and 5 (29 mg) from part 5, and 2 (379 mg) and 3 (420 mg) from part 2 were obtained via CC on silica gel and polyamide with CHCl₃-MeOH as eluent (gradient), and purified on Sephadex LH-20 eluted with MeOH.

Compound 1. Yellow needles (MeOH). mp 198–200°; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 272, 320, 372; + NaOMe: 283, 307, 419; + AlCl₃: 273, 352, 431; + AlCl₃/HCl: 273, 315, 352, 431; + NaAc: 273, 313, 353, 428; + NaOAc/H₃BO₃: 273, 316, 375. EI-MS m/z (rel. int.): 400 (24), 368 (100), 353 (74), 313 (84), 300 (28), 165 (8), 135 (12). ¹H NMR (300 MHz, DMSO- d_6): δ 1.16 (6H, s, H-4", 5"), 1.58 (2H, m, H-2"), 2.72 (2H, m, H-1"), 3.14 (3H, s, 3"-OMe), 3.84 (3H, s,

1 brevicornin

Table 1. ¹³CNMR spectral data for 1 and 4 (DMSO-d₆)

C	1	4
2	157.7	157.5
3	135.6	136.1
4	176.0	175.8
5	158.0	157.9
6	97.6	98.5
7	160.3	159.1
8	103.0	103.8
9	153.3	153.0
10	106.4	105.6
1'	123.3	123.3
2', 6'	129.1	129.1
3',5'	113.9	114.0
4'	161.0	160.3
1"	38.0	31.0
2"	16.7	15.7
3"	73.7	76.2
4"	24.8	26.3
5"	24.8	26.3
4′-OCH₃	55.4	55.3
3"-OCH ₃	48.7	

4 β-anhydroicaritin

4'-OMe), 6.28 (1H, s, H-6), 7.07 (2H, d, J = 9.0Hz, H-3', 5'), 8.16 (2H, d, J = 9.0Hz, H-2', 6'), 9.47 (1H, s, C₃-OH), 10.66 (1H, s, C₇-OH), 12.32 (1H, s, C₅-OH). ¹³C NMR (75 MHz) spectral data: Table 1.

Compound 4. Yellow needles (MeOH). mp 217–220°; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 271, 316, 348. EI-MS (m/z): 368, 353, 313, 300. ¹H NMR (300 MHz, DMSO- d_6): δ 1.32 (6H, s, 4", 5"-Me), 1.85 (2H, t, J = 6.6 Hz, H-2"), 2.84 (2H, t, J = 6.6 Hz, H-1"), 3.83 (3H, s, 4'-OMe), 6.13 (1H, s, H-6), 7.12 (2H, t, t = 9.0 Hz, H-3', 5'), 8.16 (2H, t, t = 9.0 Hz, t

REFERENCES

- Mizuno, M., Iinuma, M., Tanaka, T., Sakakibara, N., Fujikawa, T., Hanioka, S., Ishida, Y., Liu, X. S. and Mirata, H. (1988) Phytochemistry 27, 3645.
- 2. Li, F. and Liu, Y. L. (1988) Acta Pharm. Sini. 23, 739.
- Oshima, Y., Okamoto, M. and Hikino, H. (1987) Heterocycles 26, 935.
- Kang, S. S., Kang, Y. J. and Lee, M. W. (1991) J. Nat. Prod. 54, 542.