

CARDENOLIDES FROM ERYSIMUM CHEIRANTHOIDES

ZHEN-HUAN LEI, SHOJI YAHARA,* TOSHIHIRO NOHARA, TAI-BAO SHAN† and JIN-ZHE XIONG,†

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862, Japan; †Department of Traditional Chinese Medicine Heilongjiang Commercial College, 50 Tongda St, Daoli Harbin, China

(Received 9 May 1995)

Key Word Index—Erysimum cheiranthoides; Cruciferae; cardenolide; strophadogenin glucoside; , cheiranthoside; erysimoside; olitoriside; boiviose.

Abstract—Three new cardiac glycosides were isolated along with two known cardenolides from the seeds of *Erysimum cheiranthoides*. The new ones were characterized by spectral methods as 16β -hydroxystrophanthidin (strophadogenin) $3-O-\beta$ -glucopyranosyl- $(1 \rightarrow 4)-\beta$ -boiviopyranoside, strophadogenin $3-O-\alpha$ -rhamnopyranosyl- $(1 \rightarrow 4)-\beta$ -digitoxopyranoside and strophanthidin $3-O-\alpha$ -rhamnopyranosyl- $(1 \rightarrow 4)-\beta$ -digitoxopyranoside, named cheiranthosides I, II and III, respectively.

INTRODUCTION

Erysimi Herba, the whole plant of Erysimum cheiranthoides (Cruciferae), is a Chinese crude drug used for reducing a high temperature and inducing diuresis [1]. The isolation and structure elucidation of several cardiac glycosides, strophanthin- β , corchonoside A, erysimoside, helveticoside and helveticosol, were reported previously [1,2]. As a part of our continuing chemical studies on the various glycosides, we have investigated the glycosides of the seeds.

RESULTS AND DISCUSSION

The methanolic extract of the seeds of *E. cheiranthoides* was partitioned between hexane and water. Chromatographic analysis using a combination of MCI gel, silica gel and ODS provided three new glycosides, cheiranthosides I, II and III (1, 2 and 3), along with two known glycosides, olitoriside (strophanthidin 3-O-glucosyl boivioside) (4) [3] and erysimoside (strophanthidin 3-O-glucosyl digitoxoside) (5) [3], and rutin.

Cheiranthoside I (1) showed a $[M-H]^-$ ion peak at m/z 711 and fragment peaks at m/z 549 $[M-H-hexose]^-$, and 419 [m/z 549 – dideoxyhexose] $^-$ in the negative ion FAB-mass spectrum. By comparing the ¹³C NMR spectrum of 1 with that of 4, it was observed that the signals due to C-15, C-16 and C-17 of the aglycone were shifted by + 11.0, + 45.0 and + 8.1 ppm, respectively. In the $^1H^{-1}H$ COSY spectrum, the signals due to H-17 (δ 3.28, 1H, d, J = 8.0 Hz) H-16 (δ 4.96, 1H, dt, J = 2.0, 8.0 Hz) and H_2 -15 (δ 2.70, 1H, dd, J = 8.0, 14.4 Hz); (δ 2.14, 1H, m) were assigned. This evidence indicated the occurrence of a hydroxy group attached to

C-16 on strophanthidin. The configuration of the hydroxyl group at C-16 was assigned as β , based on the J value (8Hz) between H-16 and H-17 [4], and therefore the aglycone was identified to be strophadogenin [5]. Moreover, the carbon signals due to the sugar residue were superimposable on those of 4. Compound 1 was therefore determined to be strophadogenin 3-O- β -glucopyranosyl-(1 \rightarrow 4)- β -boiviopyranoside, and was named cheiranthoside I.

$$R_1$$
 OH OH OH R_2 OH R_2 OH R_2 OH R_2 OH R_2 OH R_3 OH R_4 OH R_5 OH R_5

^{*}Author to whom correspondence should be addressed.

Cheiranthoside II (2) showed a $[M-H]^-$ ion peak at m/z 695 and fragment peaks at 549 $[M-H-rha]^-$ in the negative ion FAB-mass spectrum, which corresponds to the deoxy-compound of 1. The ¹³C NMR spectrum for 2 displayed the presence of one mole each of terminal α -rhamnopyranosyl residue and C_4 -substituted β -digitoxopyranosyl residue, and the aglycone moiety signals were similar to those of 1. Therefore, cheiranthoside II (2) was characterized as strophadogenin 3-0- α -rhamnopyranosyl- $(1 \rightarrow 4)$ - β -digitoxopyranoside.

Cheiranthoside III (3) displayed the molecular ion peak due to $[M-H]^-$, at m/z 679 as well as the fragment peak due to $[M-H-hexose]^-$ at m/z 533 in the negative ion FAB-mass spectrum. The ¹³C NMR spectrum of 3 revealed that it had the same aglycone to that of 4 and the sugar moiety was the same as 2 thus indicating that 3 was strophanthidin $3-O-\alpha$ -rhamnopyranosyl- $(1 \rightarrow 4)-\beta$ -digitoxopyranoside. The glycosides 1–5 were isolated from this plant for the first time.

Table 1. ¹³C NMR Data for cheiranthosides I (1), II (2) and III (3), olitoriside (4) and Erysimoside (5) in C₅D₅N

	1	2	3	4	5
C-1	24.7	24.6	24.7	24.7	24.8
2	25.6	25.5	25.5	25.6	25.6
3	74.8	74.9	74.9	74.7	75.2
4	36.2	36.2	36.2	36.1	36.3
5	74.0	73.9	73.9	73.6	74.0
6	36.7	36.7	36.8	36.8	36.9
7	18.5	18.4	18.4	18.5	18.6
8	42.1	42.0	41.8	41.8	41.9
9	39.5	39.5	39.5	39.5	39.6
10	55.3	55.2	55.2	55.3	55.4
11	22.4	22.3	22.6	22.6	22.7
12	39.6	39.6	39.6	39.5	39.6
13	50.2	50.2	49.7	49.7	49.9
14	83.8	83.7	84.4	84.3	84.4
15	43.0	42.9	32.1	32.0	32.2
16	72.1	72.2	27.1	27.1	27.2
17	59.1	59.0	51.0	51.0	51.1
18	16.7	16.6	15.9	15.9	16.0
19	208.5	208.5	208.5	208.5	208.6
20	174.6	174.5	175.7	175.7	175.7
21	76.7	76.6	73.7	73.7	73.7
22	120.3	120.3	117.7	117.7	117.8
23	172.3	172.3	174.4	174.5	174.5
boiv C-1	98.3	97.6	97.6	98.2	97.6
(or dig C-1)					
2	35.1	39.6	39.4	35.0	39.0
3	66.1	68.8	68.8	66.0	69.2
4	76.4	82.3	82.3	76.2	83.4
5	69.5	67.3	67.3	69.4	67.7
6	17.6	18.4	18.3	17.5	18.6
glc c-1	103.2	104.0	104.0	103.1	106.1
(or rha C-1)					
2	74.7	72.4	72.4	74.7	75.0
3	78.4	72.2	72.2	78.3	78.4
4	71.9	73.7	73.7	71.8	71.6
5	78.5	70.3	70.3	78.4	78.5
6	63.0	18.4	18.4	62.9	62.6

EXPERIMENTAL

Optical rotations were taken with a JASCO DIP-360 digital polarimeter (l=0.5). ¹H (400 MHz) and ¹³C (100 MHz) NMR: with TMS as an internal standard. FAB and EI-MS: JEOL JMS DX-303HF mass spectrometer. TLC was performed on precoated silica gel 60 F₂₄₅ (Merck) and detection was achieved by spraying 10% H₂SO₄ following by heating. CC: silica gel (270–400 mesh, Merck), Chromatorex ODS (30–50 mesh, Fuji Silysia Chemical Ltd.) and MCI gel CHP-20P (Mitsubishi Chemical Ind.).

Extraction and separation. The seeds (2.5 kg) of E. cheiranthoides were extracted with MeOH, and the extract (189 g) was partitioned between n-hexane and H₂O. The aq. layer (123 g) was subjected to CC over MCI gel CHP-20P, eluting sequentially with H₂O, 40%, 60%, 80%, and 100% MeOH, to provide five frs (fr. 1-5). Fr. 2 (40% MeOH eluate, 10 g) was subjected to CC over Sephadex LH-20 (MeOH) to give olitoriside (4) (21 mg), erysimoside (5) (8 mg) and rutin (9 mg). Fr. 3 (60% MeOH eluate, 18 g) was subjected to CC over silica gel (CHCl₃-MeOH-H₂O, 8:2:0.2) and ODS (50% MeOH) to give cheiranthosides I (1, 39 mg), II (2, 42 mg), and III (3, 91 mg).

Cheiranthoside I (1). White amorphous powder, $[\alpha]_D^{27} + 4.1^\circ$ (c = 0.94, MeOH). Positive ion FAB-MS (m/z): 735.3242 [Calcd for $C_{35}H_{52}O_{15}Na$: 735.3204, $[M + Na]^+$. Negative ion FAB-MS (m/z): 711 $[M - H]^{-}$, 549 $[M - H - glc]^{-}$, 419 [m/z 549 - boi]. ¹H NMR (pyridine d_5): $\delta 1.10$ (3H, s, H₃-18), 1.60 (3H, d, J = 6.6 Hz, boi H_3 -6), 1.90 (1H, br d, J = 16.2 Hz, H_a -7), 2.43 (1H, m, H_b-7), 2.07, 2.43 (each 1H, m, boi H-2), 2.30 (1H, m, H-8), 2.14 (1H, m, H-15), 2.70 (1H, dd, J = 8.0),14.3 Hz, H-15), 3.28 (1H, d, J = 8.0 Hz), 3.85 (1H, m, glc H-5), 3.98 (1H, t, J = 8.4 Hz, glc H-2), 4.02 (1H, t, J = 3.0 Hz, boi H-4), 4.17 (1H, br t, J = 8.4 Hz, glc H-4), 4.18 (1H, br t, J = 8.4 Hz, glc H-3), 4.34 (1H, dd, J = 5.9)11.7 Hz, glc H-6), 4.36 (1H, m, H-3), 4.48 (1H, dq, J = 1.8, 6.6 Hz, boi H-5), 4.54 (1H, dd, J = 2.6, 11.7 Hz, glc H-6), 4.75 (1H, ddd, J = 3.0, 3.3, 3.3 Hz, boi H-3), 4.90 (1H, d, J = 7.7 Hz, glc H-1), 4.96 (1H, br dt, J = 2.0, 8.0 Hz, H-16), 5.38 (1H, dd, J = 1.8, 9.9 Hz, boi H-1), 5.55, 5.69 (each 1H, dd, J = 1.8, 18.1 Hz, H₂-21), 6.23 (1H, t, J = 1.8 Hz, H-23, 10.38 (1H, s, H-19).

Cheiranthoside II (2). White amorphous powder, $[\alpha]_{c}^{27} + 6.9^{\circ}$ (c = 1.11, MeOH). Positive FAB-MS (m/z): 719.3254 [Calcd for $C_{35}H_{52}O_{14}Na$: 719.3255, $[M + Na]^{+}$. Negative ion FAB-MS (m/z): 695 $[M - H]^{-}$, 549 $[M - H - rha]^{-}$. ¹H NMR (pyridine d_{5}): $\delta 1.10$ (3H, s, H_{3} -18), 1.35 (3H, d, J = 6.2 Hz, dig H_{3} -6), 1.56 (3H, d, J = 6.2 Hz, rha H_{3} -6), 1.91 (1H, brd, J = 10.2 Hz, H_{a} -7), 2.54 (1H, m, H_{b} -7), 1.94, 2.31 (each 1H, d, J = 13.5, dig H-2), 2.19, (1H, m, H-15), 2.70 (1H, dd, J = 8.6, 14.4 Hz, H-15), 3.30 (1H, d, J = 8.1 Hz, H-17), 3.63 (1H, dd, J = 2.9, 9.5 Hz, dig H-4), 4.34 (1H, m, H-3), 4.98 (1H, dt, J = 2.2, 8.3 Hz, H-16), 5.42 (1H, dd, J = 2.2, 9.5 Hz, dig H-1), 5.49 (1H, d, J = 1.8 Hz, rha H-1), 5.57, 5.72 (each 1H, dd, J = 1.8, 18.3 Hz, H_{2} -21), 6.26 (1H, t, J = 1.8 Hz, H-23), 10.43 (1H, s, H-19).

Cheiranthoside III (3). White amorphous powder, $[\alpha]_D^{27} + 7.1^{\circ} (c = 1.07, \text{MeOH})$. Positive FAB-MS (m/z): 703.3312 [Calcd for $C_{35}H_{52}O_{13}Na$: 703.3305, $[M + Na]^+$. Negative FAB-MS (m/z): 679 $[M - H]^-$, 533 $[M - H - \text{rha}]^-$. ¹H NMR (pyridine d_5): $\delta 1.00$ (3H, s, H_3 -18), 1.36 (3H, d, J = 6.2 Hz, dig H_3 -6), 1.65 (3H, d, J = 5.8 Hz, rha H_3 -6), 1.92, 1.97 (each 1H, d, J = 7.0 Hz, H-7), 2.45, 2.53 (each 1H, d, J = 11.7 Hz, dig H_2 -2), 2.78 (1H, br d, J = 8.8 Hz, H-17), 4.34 (1H, m, H-3), 5.03, 5.29 (each 1H, dd, J = 1.5, 17.9 Hz, H_2 -21), 5.40 (1H, dd, J = 1.8, 9.5 Hz, dig H-1), 5.49 (1H, br s, rha H-1), 6.26 (1H, br s, H-23), 10.40 (1H, s, H-19).

Olitoriside (4). White amorphous powder, $[\alpha]_0^{29} + 9.8^{\circ}$ (c = 0.71, MeOH). Negative ion FAB-MS (m/z): 695 [M - H]⁻, 533, 403, 385. ¹H NMR (pyridine d_5): δ 0.99 (3H, s, H₃-18), 1.61 (3H, d, J = 6.2 Hz, boi H₃-6), 2.78 (1H, m, H-17), 3.87 (1H, m, glc H-5), 3.98 (1H, t, J = 7.7 Hz, glc H-2), 4.02 (1H, t like, J = 3.0 Hz, boi H-4), 4.17 (2H, m, glc H-3, 4), 4.33 (1H, dd, J = 5.9, 11.7 Hz, glc H-6), 4.37 (1H, m, H-3), 4.50 (1H, m, boi H-5), 4.52 (1H, dd, J = 2.6, 11.7 Hz, glc H-6), 4.75 (1H, ddd, J = 2.9, 3.0, 3.3 Hz boi H-3), 4.90 (1H, d, J = 7.7 Hz, glc H-1), 5.39 (1H, dd, J = 1.8, 9.9 Hz, boi H-1), 5.03, 5.26

(each 1H, dd, J = 1.8, 18.3 Hz, H₂-21), 6.13 (1H, t, J = 1.8 Hz, H-23), 10.39 (1H, s, H-19).

Erysimoside (5). White amorphous powder, $[\alpha]_0^{27} + 7.8^{\circ}$ (c = 0.50, MeOH). Negative ion FAB-MS (m/z): 695 [M - H]⁻, 533, 403, 365. ¹H-NMR (pyridine d_5): δ 1.00 (3H, s, H₃-18), 1.63 (3H, d, J = 6.2 Hz, dig H₃-6), 2.78 (1H, m, H-17), 4.71 (1H, br s, dig H-3), 4.99 (1H, d, J = 7.7 Hz, glc H-1), 5.03, 5.29 (each 1H, d, J = 18.0 Hz, H₂-21), 5.39 (1H, br d, J = 9.0 Hz, dig H-1), 6.12 (1H, t, J = 1.8 Hz, H-23), 10.40 (1H, s, H-19).

REFERENCES

- Jiangsu New Medical College (ed.), "Chinese Drug Dictionary", Shanghai Science and Technology, 1977, pp 1774–1775.
- Makarevich, I. F. and Kolesnikov, D. G. (1965) Khim. Prirodn. Soedin. 5, 363.
- Mahato, S. B., Sahu, N. P. and Roy, S. K. (1989) J. Chem. Soc. Perkin Trans 1 2065.
- Cheung, H. T. A. and Nelson, C. J. (1989) J. Chem. Soc. Perkin Trans 1 1563.
- Berthold, R., Wehrli, W. and Reichstein, T. (1965)
 Helvetica chim. Acta 48, 1659.