

BISABOLENES FROM ACHILLEA CRETICA

MAURIZIO BRUNO, MARIA L. BONDI,* MARIA P. PATERNOSTRO,† NELLY A. ARNOLD,‡ JESÚS G. DÍAZ§ and WERNER HERZ§||

Dipartimento di Chimica Organica, Universitá di Palermo, Archirafi 20 and C.N.R.-I.C.T.P.N., Archirafi 26, 90123 Palermo, Italy; *C.N.R.-I.C.T.P.N., Palermo, Italy; †Dipartimento de Chimica Orgánica, Universita di Palermo, Palermo, Italy; †Dipartimento di Botanica e Ecologia, Universitá di Camerino, 62032 Camerino, Italy; *Department of Chemistry, The Florida State University, Tallahassee, FL 32306-3006, U.S.A.

(Received 30 October 1995)

Key Word Index—Achillea cretica; Anthemideae; Compositae; bisabolenes; sesquiterpenes; lignans.

Abstract—Aerial parts of *Achillea cretica* furnished six new 4-oxobisabol-2-enes and the lignans sesartemin B and syringaresinol dimethyl ether.

INTRODUCTION

Previous chemical studies of Achillea cretica L., a species found in the Aegean region [1], dealt with identification of glycosylflavones in the leaf [2-4]. We now report isolation of seven new 4-oxobisabol-2-enes (1-5 and 7a,b) from aerial parts of plant material collected in Cyprus. The lignans 9a and 9b were also found.

RESULTS AND DISCUSSION

Compounds 2 and 3 were obtained only in the form of a binary mixture and while 5 was isolated as such, 7a was only obtained in admixture with 5. Structure assignments are based on the ¹H NMR data listed in Table 1. All compounds were α -methyl- δ -alkylated cyclohexenones, as shown by sequential decoupling, with the α -methyl group (H-15) allylically coupled to H-2 and the latter further coupled, in the case of 1-4, to two mutually coupled protons (H-leq, ax) and, in the case of compounds 5 and 7a,b, to a single proton (H-leq) that was obviously under a hydroxyl group because of its chemical shift near δ 4.5 and because of the shift in the ¹³C NMR spectrum of 5 (Table 2) of the C-1 frequency from near δ 27 to δ 64.9. The two H-1 protons (or H-leq in the case of 5 and 7a,b) were further coupled to a single proton (H-6) which was in turn coupled to the two protons of a methylene group (H-5a,b) whose chemical shifts and coupling constants indicated that they were α to a cyclohexenone carbonyl.

Side-chains of the type encountered in 1, 5 and 7a,b and the 13-nor side chain of 4 are common in naturally

occurring bisabolenes [5-19]. Thus, the nature of the side-chains in these substances was readily inferred from the 'H NMR spectra and decoupling. That compound 1 in which the 7-hydroxyl group was acetylated was the E-isomer depicted in the formula was established by NOE spectrometry, irradiation at the frequency of H-10 causing an 8.4% enhancement of the H-12a,b signal and vice versa. Bisabolenes 7a and 7b were C-10 epimers, as shown by differences in the chemical shifts of H-10 and H-12a,b, while 6, not originally found in the plant extract, was formed, together with minor contaminants, from 5 on prolonged standing, possibly under the influence of acid. Bisabolenes containing the side-chains present in 2 and 3 have not been isolated previously; their structures were evident from the mass spectra and from the 1H NMR data in Table 1.

We now deal with the stereochemistry of the new compounds at C-6, C-7 and in the case of 5a and 7a,b also with the stereochemistry at C-1. It should be noted that in all instances one of the H-5 protons, i.e. H-5eq. in the case of 1-4 at lower field than H-5ax and in the case of 5-7a,b at higher field than H-5ax, is long-range coupled, presumably through W-coupling, to H-leq in 1-4 or to the single H-1 proton in 5-7a,b. The magnitudes of $J_{5,6}$ (\approx 3 Hz), $J_{5ax,6}$ (\approx 14 Hz), $J_{1eq,6}$ (\approx 4 Hz) (3 Hz in the case of 5-7a,b) and $J_{1ax,6}$ in the case of 1-4 (11 Hz), indicated that H-5 and H-6, and H-1, and H-6 were diaxially related and led to the relative stereochemistry of the six-membered ring shown in the formulae. This might also account for the inversion of the chemical shifts of H-5eq and H-5ax when a quasiaxial hydroxyl group in introduced at C-1. The NOE data for 7b in Table 2 confirm that H-leq, H-5ax and H-6 are cis with respect to each other, i.e. the side-chain is attached to C-6 is syn with respect to

738

Table 1. ¹H NMR spectra of compounds 1-7a,b (500 MHz, CDCl₃)

Н	1*	2*		3*	4	5†	6	7 a ‡	7b
leq	2.38 <i>dddd</i>		2.39 dddd		2.40 dddd	4.67 brdd	4.50 brdd	4.68 m	4.69 brdd
	(18,5,5,1)				(18,6,4,1.5)	(6,2.5,1)	(6,2.5,1		(5.5,2.5,1)
lax	2.24 dddd		2.25 m		2.24 ddd	_	_		_
	(18,11,2.5,2.5)				(18,11,2.5)				
2	6.74 ddq		6.74 ddq		6.74 ddq	6.75 dq	6.75 dq	6.73 dq	6.74 dq
	(6,2.5,1)				(6,2.5,1)	(6,1.5)	(6,1.5)	(6,1)	(6,1)
5eq	2.60 ddd		2.64 brdd		2.63 ddd	2.57 brdd	2.37 brdd	2.51 brdd	2.54 brdd
	(16,3,1.5)				(16,3,1.5)	(16,3.5,1)	(6,2.5,1)	(17,3.5,1)	17,3,1)
5ax	2.26 dd		2.27 m		2.29 dd	2.88 dd	2.57 dd	2.88 dd	2.84 dd
	(16,14)				(16,14)	(16.5, 13.5)	(16,14)	(17,3.5)	(17,14)
6	2.08 m		2.1 m		2.11 dddd	1.97 dt	1.90 dt	1.94 dt	1.95 dt
					(14,11,4,3)	(13.5,3)	(14.5,3)	(14,3)	(17,14)
8a	1.54 <i>dd</i>	2.27 m		Obsc.	2.45 brdd	2.27 dd	1.58 dd	Obsc.	1.76 ddd
	}				(14.5, 7.5, 1)	(14,7)	(14.5,11)		(14,8,6.5)
8Ь	J(9.5,6.5)	$2.23 \ m$		Obsc.	2.38 ddd	2.24 dd	1.46 brd	Obsc.	1. 49 ddd
					(14.5, 7.5, 1)	(14,7)	(14.5)		(14,8,6)
9a	ì	5.77 dt		4.26 dt	6.85 dt	5.59 dt	4.56 ddd	Obsc.	$1.88 \ m$
	2.09 m	(16,7)		(13,7)	(16,7.5)	(15.5,7)	(11,8,2)		
9b)	_		_		none	_	Obsc.	1.60 m
10	5.44 brt	5.61 dd		4.18 brdd	6.15 dt	5.73 d	5.15 brd	4.27 dd	4.10 t
	(7)	(16,5.5)		(13,2)	(16,1)	(15.5)	(8)	(6.5,6)	(5.5)
11	-	$2.23 \ m$		_	_	_		-	_
12a	1	3.49 dd		5.14 brs	2.26 s§	1.31 s§	1.73 brs	5.14 brs	4.97 brs
	4.44 brs	(11,5)							
12b	J	3.44 dd		5.12 brs	_	_	_	_	-
		(11,15)							
13§	1.66 brs	-		_	_	1.31 s	1.73 brs	1.74 brs	1.71 brs
14§	1.19 s	1.17 s		1.17 s	1.22 s	1.40 s	1.24 s	1.39 s	1.40 s
15§	1.77 brs	1.77 brs		1.77 brs	1.77 brs	1.83 brs	1.80 brs	1.82 brs	1.81 brs
Ac§	2.07 s			_	_				

^{*}From mixture of 2 and 3

the hydroxyl group on C-1. The significant NOEs between H-5 or H-6 and H-14 could theoretically accommodate either configuration at C-7, depending on the conformation of the side-chain.

Table 2. ¹³C NMR spectra of compounds 1, 4 and 5 (CDCl₃, 67.89 MHz)

С	1	4	5*
1	27.3 t	27.1 t	64.9
2	144.6 d	144.1 <i>d</i>	142.7
3	135.4 s	135.5 s	137.3
4	199.1 s	199.3 s	200.3
5	39.2 t†	38.9 t	33.3
6	44.6 t	44.8 d	44.1
7	73.1 s	73.1 s	74.3
8	39.1 t†	42.8 t	42.7
9	25.3 t	142.3 d	120.8
10	128.8 d	134.3 d	141.7
11	$130.7 \ s$	197.7 s	70.7
12	13.9 q	29.7 q	29.8
13	69.9 t	~	29.8
14	24.4 q	24.4 1	25.3
15	15.5 q	15.4 q	15.8
16	170.8 s	•	
17	20.7 q		

^{*}At 62.9 MHz; multiplicities not established.

Table 3. NOE difference spectra of compounds 4 and 7b

Compound	Irr.	Obs. (% enhancement)
4	H-6	H-5eq (1.2), H-8,b (1.2), H-14 (1.0)
	H-14	H-5eq (2.9), H-8a,b (3.5), H-6 (2.2)
7b	H-1	H-2 (14.5), H-6 (8.4), H-14 (6.3)
	H-6	H-leq (13.1), H-5ax (14.0), H-14 (7.6)

In all 7-hydroxybisabolenes isolated to date [5-21] the ¹H NMR frequency (in CDCl₃) of the methyl group attached to C-7 is reported to lie between δ 1.07 and δ 1.20. This is true of 1-4 as well as 6, the rearrangement product of 5. It is also true of hydroxydelobanone from Lindera triloba to which relative configuration 8 has been assigned [5]. Conversely, the frequency of the C-7 methyl group in 5 and 7a,b is δ 1.40, which indicates deshielding by the hydroxyl group on C-1. On this basis we suggest the relative stereochemistries shown in formula 5 and 7a,b. The formation of 6 from 5 might involve epimerization at C-1 or C-7 in addition to the allylic rearrangement of the hydroxyl group originally on C-11. The congeners 1-4 possess the same C-7 stereochemistry as 5 and 7a,b is not only suggested by their co-occurrence but is also indicated by the NOEs exhibited by 4 (Table 3).

Terpenoids are relative common in the large genus

[†]At 250 MHz

[‡]From mixture with 5.

[§]Intensity three protons.

^{††}Intensity two protons.

[†]Assignments may be interchanged.

AcO
$$AcO$$
 AcO AcO

Achillea but bisabolenes have so far been reported only from A. odorata [14].

EXPERIMENTAL

Plant material. Achillea cretica L. was collected at Kato Pyrgos (Cyprus) on volcanic soil in May 1991. A voucher specimen #91/216 is on deposit in the Instituto di Botanica Farmaceutica dell'Università di Camerino, Italy.

Extraction and isolation. Above-ground parts (370 g) were extracted with Me_2CO (3 × 51) for 1 week. The crude gum (27 g) was adsorbed on 50 g of silica gel (Merck No. 7734 deactivated with 15% H_2O) and chromatographed over 400 g of the same adsorbent, 500-ml frs were collected as follows: frs 1–5 (petrol), 6–9 (petrol–EtOAc, 9:1), 10–14 (petrol–EtOAc, 4:1), 15–22 (petrol–EtOAc, 7:3), 23–28 (petrol–EtOAc, 3:2), 29–36 (petrol–EtOAc, 1:1), 37–44 (petrol–EtOAc, 2:3), 45–50 (petrol–EtOAc, 3:7), 51–57 (petrol–EtOAc, 1:4), 58–59 (EtOAc), 60 (EtOAc–MeOH, 19:1). Frs 9–14 were rechromatographed over a silica gel column and then by radial chromatography (CHCl₃–MeOH, 49:1) to give 48 mg of **9a**. Frs 15–22 were rechromatographed over a silica gel column and

then by radial chromatography (CHCl₃-MeOH 97:3) to give 10 mg of a mixture of bisabolones. Frs 23-28 were also rechromatographed over silica gel (petrol–EtOAc, 4:1, 7:3 and 3:2) and then by radial chromatography (CHCl₃-MeOH, 24:1) to give, in order of polarity, sesartemin (9b, 18 mg), 1 (27 mg), mixts of 5 and 7a (27 and 4 mg), complex mixtures of bisabolones (2 × 3 mg), 4 (11 mg), 7b (14 mg), and 5 (12 mg). Frs 37-50 of the original chromatogram were resubjected to CC (petrol–EtOAc, 1:4 and 1:9) and then to radial chromatography to give 6 mg of impure 7b and 8 mg of the mixture of 2 and 3. Frs 51-57 were purified by radial chromatography to give an additional 9 mg of 5.

7-Acetoxy-12-hydroxy-4-oxobisabol-2,10E-diene (1). Gum; MS PCI (isobutane) m/z (rel. int.) 295 [M + H]⁺ (63.1), 251 (16.4), 235 (100); ¹H NMR Table 1; ¹³C NMR Table 2.

Mixture of 7,12-dihydroxy-4-oxobisabol-2,9E-dien-13-oic acid and 7,9,10-trihydroxy-4-oxobisabol-2,11-dien-13-oic acid (2 and 3). Gum; MS PCI (isobutane) m/z (rel. int.) 501 (dimer of M^1 -3 Hz, 71.5), 299 $[M^1+H]^+$ (7.7), 283 $[M^2+H]^+$, (6.1), 281 (10.1), 265 (36.6), 251 (100), 233 (94), 121 (45.3), ¹H NMR Table 1.

13-Nor-4,11-dioxo-7-hydroxybisabol-2,9E-diene (4). Gum; MS PCI m/z (rel. int.) 237 [M + H]⁺ (64.9), 219

740 M. Bruno et al.

(15.7), 117 (100); ¹H NMR Table 1; ¹³C NMR Table 2.

4-Oxo-1,7,11-trihydroxybisabol-2,9E-diene (5). Gum; MS PCI m/z (rel. int) 269 [M + H]⁺ (9.8), 251 (29.4), 233 (100), 215 (18.6), 125 (61)' ¹H NMR (250 MHz) in Table 1; ¹³C NMR in Table 2. On keeping for some months this substance had rearranged to a mixt. whose major component was 6. ¹H NMR Table 1.

The mixture of **5** and **7a** was a gum; MS PCI m/z (rel. int.) 269 $[M + H]^+$ (13), 251 (40.2), 233 (100), 125 (80.1); ¹H NMR of **7a** in Table 1.

4-*Oxo*-1,7,10-*trihydroxybisabol*-2,11-*diene* (**7b**). Gum; MS PCI *m/z* (rel. int) 537, dimer of [M + H]⁺ (40.2), 269 [M + H]⁺ (32), 125 (100); ¹H NMR Table 1.

REFERENCES

- 1. Flora Europaea (1976), Vol. 4, p. 165.
- 2. Valant, K. (1978) Naturw. 65, 437.
- Valant, K., Besson, E. and Chopin, J. (1978) Phytochemistry 17, 2136.
- Valant, K., Besson, E. and Chopin, J. (1980) Phytochemistry 19, 156.
- 5. Takeda, K., Sakurani, K. and Ishii, H. (1971) Tetrahedron 27, 6049.
- 6. Bohlmann, F., Jakupovic, J., Ahmed, M. and Schuster, A. (1983) *Phytochemistry* **22**, 1623.
- Bohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J., King, R. M. and Robinson, H. (1994) *Phytochemistry* 23, 1989.

- Compadre, C. M., Pezzuto, J. N., Kinghorn, A. D. and Kamath, S. K. (1985) Science 227, 417.
- Mladenova, K., Tsankova, E. and Stoianova-Ivanova, B. (1987) Planta Med. 53, 118.
- Mladenova, K., Tsankova, E. and Dinh, V. H. (1989) Planta Med. 54, 553.
- Matos, M. E. O., de Sousa, M. P., Matos, F. J. A. and Craveiro, A. A. (1988) J. Nat. Prod. 51, 780.
- Zdero, C., Bohlmann, F., Solomon, J. C., King, R. M. and Robinson, H. (1989) *Phytochemistry* 28, 531.
- Jaensch, M., Jakupovic, J., King, R. M. and Robinson, H. (1989) Phytochemistry 28, 3497.
- Barrero, A. F., Alvarez-Manzaneda, R. E. J. and Alvarez-Manzaneda, R. (1990) *Phytochemistry* 29, 3213.
- Norte, M., Fernandez, J. J. and Padilla, A. (1992) *Phytochemistry* 31, 326.
- Hashidoko, Y., Tahara, S. and Mizutani, J. (1992) *Phytochemistry* 31, 2148.
- 17. Hashidoko, Y., Tahara, S. and Mizutani, J. (1993) *Phytochemistry* **32**, 387.
- Pritschow, P., Jakupovic, J., Bohlmann, F., Bittner, M. and Niemeyer, H. M. (1991) *Phytochemistry* 30, 893.
- 19. Weyerstahl, P., Schneider, S., Marschall, H. and Rustaiyan, A. (1993) *Liebig's Ann.* 111.
- O'Donnell, G. W. and Sutherland, M. D. (1989)
 Aust. J. Chem. 42, 2021.
- Carman, R. M. and Duffield, A. E. (1989) Aust. J. Chem. 42, 2035.