PII: S0031-9422(96)00558-4

TWO PHENYLPROPANOID GLYCOSIDES FROM SPARGANIUM STOLONIFERUM

OSAMU SHIROTA, SETSUKO SEKITA and MOTOYOSHI SATAKE*

Division of Pharmacognosy and Phytochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158, Japan

(Received in revised form 18 July 1996)

Key Word Index—Sparganium stoloniferum; Sparganiaceae; rhizome; phenylpropanoid glycosides.

Abstract—Two phenylpropanoid glycosides isolated from *Sparganium stoloniferum* were characterized as β -D-(1-O-acetyl-3,6-O-diferuloyl)fructofuranosyl- α -D-2',6'-O-diacetylglucopyranoside and β -D-(1-O-acetyl-6-O-feruloyl)fructofuranosyl α -D-2',4',6',-O-triacetylglucopyranoside. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

'Sân Léng', a Chinese folk medicine, is used as an emmenagogue, a galactagogue, and an antispasmodic agent [1, 2], and originates from the rhizome of *Sparganium stoloniferum* Buch.—Hamil., *S. simplex* Huds., *S. stenophyllum* Maxima. (Sparganiaceae); *Scirpus flaviatilis* (Torr.) A. Gray. or *S. yagara* Ohwi (Cyperaceae) [1, 2]. Recently, we reported the isolation and the structure elucidation of three novel phenylpropanoid glycosides and three known phenylpropanoid glycerides from the rhizome of *S. stoloniferum* Buch.—Hamil. [3]. Further investigation of it led us to the isolation of two more novel phenylpropanoid glycosides. In this paper, structure elucidation of new isolates (1 and 2) by a combination of spectroscopic data including 2D NMR and chemical evidence is described.

$$\begin{array}{c} \overset{\circ}{\text{CH}_2\text{OAc}} & \overset{\circ}{\text{CH}_2\text{OAc}} \\ \overset{\circ}{\text{H}_2} & \overset{\circ}{\text{H}_2} & \overset{\circ}{\text{H}_2} & \overset{\circ}{\text{O}_1} & \overset{\circ}{\text{O}_1} & \overset{\circ}{\text{H}_2} & \overset{\circ}{\text{O}_1} &$$

RESULTS AND DISCUSSION

Compound 1 was obtained as an amorphous solid with an elemental composition C₃₈H₄₄O₂₀, established by HR-mass spectrometry. In the ¹H NMR spectrum

(Table 1), it was suggested that 1 contained two feruloyl moieties and three acetyl groups. Fourteen oxymethine and methylene proton signals around $\delta_{\rm H}$ 4.0–5.2, and 12 carbon signals around δ_C 65–103 suggested the presence of a disaccharide moiety. Alkaline and acid hydrolysis of 1 gave sucrose and a mixture of glucose and fructose, which were identified by direct comparison with authentic samples on TLC. A characteristic doublet signal with a smaller coupling constant at $\delta_{\rm H}$ 6.26 (1H, d, J=3.7 Hz) appeared in the ¹H which was ascribed to the anomeric proton in the αglucopyranose unit [4, 5], also supported the presence of a sucrose moiety in 1. The position of the linkage of the feruloyl and the acetyl groups on the sucrose was assigned by ¹H-detected multiple-bond heteronuclear multiple quantum coherence spectroscopy (HMBC). That is to say, in this HMBC spectrum, the methine proton ($\delta_{\rm H}$ 6.28) of position 3 and one trans olefinic proton (δ_H 8.05) of position 7" on a feruloyl moiety gave cross-peaks with the same carbonyl carbon ($\delta_{\rm C}$ 167.0), and one set of the methylene protons ($\delta_{\rm H}$ 5.08 and 5.15) of position 6 and another trans olefinic proton $(\delta_{\rm H} 7.98)$ of position 7" with the same carbonyl carbon (δ_C 167.4). Also, the methine and methylene protons of position 2' (δ_H 5.40) and 6' (δ_H 4.66 and 5.10) on the glucose, and the methylene protons of position 1 ($\delta_{\rm H}$ 4.57 and 4.78) on the fructose showed cross-peaks with respective acetyl carbonyl carbons ($\delta_{\rm C}$ 170.9, 171.0 and 170.3). Furthermore, acetylation of 1 afforded a pentaacetate, which was identical with the tetraacetates of three phenylpropanoid glycosides that had already been isolated by us recently [3]. Based on these spectroscopic data and chemical evidence, 1 was determined to be β -D-(1-O-acetyl-3,6-O-diferuloyl)fructofuranosyl α-D-2',6'-O-diacetylglucopyranoside.

Compound 2 obtained as an amorphous solid with an

^{*} Author to whom correspondence should be addressed.

696 O. Shirota et al.

Table 1. ¹H NMR chemical shifts (ppm number of protons, multiplicity and J/Hz) for compounds 1 and 2*

Assignment	1	2
Fructose		
1-Ha	4.57 1H d 11.6	4.15 2H br s
1-Hb	4.78 1H d 11.6	
3-H	6.28 1H d 8.4	4.16 1H br s
4-H	5.21 1H br m 7.7	4.06 1H t 7.9
5-H	4.88 1H m	3.99 1H br m
6-Ha	5.08 1H dd 7.6, 12.0	4.45 1H br d, 12.0
6-Hb	5.15 1H dd 2.7, 12.0	4.46 1H br d, 12.0
1-OAc	2.02 3H s	2.08° 3H s
Glucose		
1'-H	6.26 1H d 3.7	5.60 1H d 3.6
2'- H	5.40 1H dd 3.7, 10.0	4.81 1H dd 3.6, 10.0
3'-H	4.70 1H br t 10.0	4.08 1H t 9.6
4'-H	4.04 1H br t 9.5	4.87 1H t 9.6
5'-H	4.90 1H br d 8.1	4.21 1H br m
6'-Ha	4.66 1H dd 6.6 11.6	4.15 2H br s
6'-Hb	5.10 1H br d 11.6	
2'-OAc	2.08 3H s	2.09° 3H s
4'-OAc		2.11° 3H s
6'-OAc	2.12 3H s	2.14° 3H s
3-Feruloyl		
2"-H	7.39 1H br s	
5"-H	7.15 1H d 8.3	
6"-H	7.30 1H dd 1.9, 8.3	
7"-H	8.05 1H d 16.0	
8"-H	6.70 1H d 16.0	
3"-OMe	3.80° 3H s	
4"-OH	7.85 ^b 1H <i>br s</i>	
6-Feruloyl		
2‴-H	7.29 1H br s	7.08 1H d 1.9
5‴-H	7.17 1H d 8.0	6.93 1H d 8.3
6‴-H	7.24 1H br d 8.0	7.09 1H dd 1.9, 8.3
7‴-H	7.98 1H d 16.0	7.68 1H d 16.0
8‴-H	6.79 1H d 16.0	6.35 1H d 16.0
3‴-OMe	3.83° 3H s	3.93 3H s
4‴-OH	8.21 ^b 1H br s	

^{*}Measurements were performed in C_5D_5N for 1 and CDCl₃ for 2 at 400 MHz 300 K.

elemental composition, C₃₀H₃₈O₁₈, was also a phenylpropanoid glycoside. The 'H NMR spectrum suggested that 2 had one feruloyl moiety and four acetyl groups linked to a sugar. Acid and alkaline hydrolysis followed by TLC indicated that 2 contained a sucrose moiety like 1. The HMBC spectrum of 2 revealed longrange couplings between the oxygenated methylene protons at positions 6 on the fructose, as well as the trans olefinic protons at positions 8" on the feruloyl group, and their respective carbonyl carbons (¹H ¹³C 1 H: 4.45 and 4.46/167.9/6.35 ppm), so the feruloyl group was located at C-6. Analogously, long range correlations between methine and methylene protons at 1, 2', 4' and 6' on the sucrose, and acetyl carbonyl carbon (¹H ¹³C: 4.15/170.8 ppm for C-1 acetyl group; 4.81/171.0 ppm for C-2' acetyl group; 4.87/171.1 ppm for C-4' acetyl group; 4.15/171.3 ppm for C-6' acetyl group) indicated that the four acetyl groups are located at C-1, C-2', C-4' and C-6'. Furthermore, significant downfield shift of the methine protons of position 3 ($\delta_{\rm H}$ 4.16–5.47), 4 ($\delta_{\rm H}$ 4.06–5.41) and 3' ($\delta_{\rm H}$ 4.08–5.45) in the tetraacetate of 2 clearly certified that the positions of nonesterified hydroxyl groups on 2 were attached at C-3, C-4 and C-3'. These data confirmed that 2 is β -D-(1-O-acetyl-6-O-feruloyl)fructofuranosyl α -D-2',4',6'-o-triacetylglucopyranoside.

Complete assignments of the ¹H and ¹³C NMR signals of compounds 1 and 2, elucidated by homo and hetero 2D NMR, are shown in Tables 1 and 2.

Up to now, analogous esters of the phenyl-propanoid acids, such as ferulic, sinapic or coumaric acid, with sucrose have been reported from Liliaceae [6-12], Polygonaceae [13], Brassicaceae [5], Polygalaceae [14-16] and Celastraceae [17]. To our knowledge, our research is the first case of the isolation of such phenylpropanoid glycosides from the Sparganiaceae.

EXPERIMENTAL

General. Mps uncorr. The $[\alpha]_D$ values are given in 10^{-1} ° cm² g⁻¹. FAB-MS spectra were obtained on a JEOL AX-505H spectrometer. Medium-pressure liquid chromatography (MPLC) was performed with CIG column system (22 mm i.d. × 300 mm or 22 mm i.d. × 100 mm, Kusano Scientific Co., Tokyo) packed with 10 or 5 μ m silica gel. TLC was conducted on precoated Kieselgel 60 F254 (Art. 5715; Merck) and the spots were detected by heating after spraying with 10% H₂SO₄ or with orcinol reagent (orcinol, FeCl₃ and H₂SO₄). 1D, 2D ¹H and ¹³C NMR spectra were recorded on Varian spectrometers (Gemini 300 and Unity plus 400) at 298 K. The NMR coupling constants (*J*) are given in Hz.

Plant materials. Rhizomes of S. stoloniferum Buch.—Hamil. (3.7 kg) were purchased at Tianjin, China, in 1992. The botanical identification was made by Mr Zhang Tie-jin (Tianjin Institute of Pharmaceutical Research). A voucher specimen has been deposited in the herbarium of Tianjin Institute of Pharmaceutical Research, China and National Institute of Health Sciences, Japan.

Extraction and isolation. CH₂Cl₂-soluble fr. (21.9 g) obtained from MeOH extract (364 g) of the rhizome (3.7 kg) of *S. stoloniferum* was subjected to silica gel column chromatography using a CH₂Cl₂-EtOAc gradient (1:0-0:1) followed by EtOAc-MeOH gradient (9:1-0:1) to give 17 frs (A-Q). Frs L and M (eluted by 50% EtOAc in CH₂Cl₂) were subjected to Sephadex LH-20 column chromatography with a *n*-hexane-CH₂Cl₂-MeOH (4:5:1) solvent system to get 1 and 2. These compounds were further purified by silica gel MPLC with CH₂Cl₂-MeOH (19:1) and *n*-hexane-EtOAc-MeOH (5:3:2) solvent systems.

Compound 1. β -D-(1-O-Acetyl-3,6-O-diferuloyl) fructofuranosyl- α -D-2',6'-O-diacetylglucopyranoside (1) was obtained as an amorphous solid

a.b.c Assignments for values bearing the same superscript may be reversed.

Table 2. ¹³C NMR chemical shifts (ppm) for compounds 1 and 2*

und 2				
Assignment	1	2		
Fructose				
C1	65.4 t	63.9 t		
C2	103.2 s	103.4 s		
C3	78.5 d	77.6 d		
C4	73.7 d	75.3 d		
C5	81.2 d	79.4 d		
C6	65.5 t	63.9 t		
1-OAc; CH ₃	20.6 q	$20.5^{a} q$		
1-OA; C=O	170.3 s	170.8 s		
Glucose				
C1'	90.5 d	89.5 d		
C2′	74.0 d	72.6 d		
C3′	71.9 d	69.6 d		
C4′	71.8 d	70.9 d		
C5′	72.1 d	68.7 d		
C6′	65.0 t	62.5 t		
2'-OAc; CH ₃	$21.0 \ q$	$20.6^{a} q$		
2′-OAc; C=O	170.9 s	171.0s		
4'-OAc; CH ₃		$20.6^{a} q$		
4'-OAc; C=O		171.1 s		
6'-OAc; CH ₃	20.8 q	$20.6^{a} q$		
6'-OAc; C=O	171.0s	171.3 s		
3-Feruloyl				
C1"	126.2 s			
C2"	111.9 d			
C3"	149.0 s			
C4"	151.4 s			
C5"	116.8 d			
C6"	123.0 d			
C7"	147.1 d			
C8"	114.0 d			
C9"	167.0 s			
3"-OMe	55.9 q			
6-Feruloyl	•			
C1‴	126.4 s	126.9 s		
C2"'	111.4 d	109.6 d		
C3"	149.0 s	147.2 s		
C4"'	151.2 s	148.6 s		
C5"	116.8 d	115.0 d		
C6"	123.5 d	123.6 d		
C7"	146.1 d	146.6 d		
C8‴	114.8 d	114.4 <i>d</i>		
C9'''	167.4 s	167.9 s		
3‴-OMe	55.9 q	55.9 g		
	4	4		

^{*}Measurements were performed in C_5D_5N for 1 and CDCl₃ for 2 at 100 MHz.

(16 mg): mp 94–101°; $\alpha_D^{2.5} + 73.4$ °(c 0.06, CHCl₃); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 218 (4.39), 237 (4.34), 302 (4.38), 329 (4.55); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3407, 1746, 1632, 1603, 1516, 1431, 1375, 1240, 1159, 1032; ¹H NMR (400 MHz, CDCl₃) listed in Table 1; ¹³C NMR (100 MHz, CDCl₃) listed in Table 2; positive FAB-MS m/z (rel. int.): [M + Na]⁺ 843 (10), 820 (3), 557 (20), 177 (77); positive FAB-MS (added KI) m/z (rel. int.): [M + K⁺

859 (23), 557 (7), 177 (86); HRFAB-MS m/z: $[M+Na]^+$ 843.2305 (calcd for $C_{38}H_{44}O_{20}Na$, 843.2326), $[M]^+$ 820.2437 (calcd for $C_{38}H_{44}O_{20}$, 820.2423).

Compound 2. β-D-(1-O-Acetyl-6-O-feruloyl)-fructofuranosyl-α-D-2',4',6'-O-triacetylglucopyranoside (2) was obtained as an amorphous solid (11 mg): mp 96–102°; [α]_D²⁵+45.1° (c 0.10, CHCl₃); UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 216 (4.21), 233 (4.12), 296 (4.08), 326 (4.22); IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3455, 1746, 1632, 1601, 1516, 1431, 1373, 1240, 1157, 1034; ¹H NMR (400 MHz, CDCl₃) listed in Table 1; ¹³C NMR (100 MHz, CDCl₃) listed in Table 2; positive FAB-MS m/z (rel. int.): [M+Na]⁺ 709 (15), 686 (2.5), 667 (12), 381 (25), 177 (45); HRFAB-MS m/z: [M+Na]⁺ 709.1949 (calcd for $C_{30}H_{38}O_{18}Na$, 709.1959), [M]⁺686.2061 (clacd for $C_{30}H_{38}O_{18}$, 686.2058).

Alkaline hydrolysis of 1 and 2. Each phenyl-propanoid glycoside (ca 0.1 mg) was dissolved in 3% KOH/MeOH and kept at room temp for 2 hr. The reaction mixt. was neutralized with 1N HCl and was subjected to a Sephadex LH-20 column using MeOH as eluant. Frs containing sugar were compared with standard sugars on silica gel TLC developed with EtOAc-MeOH-H₂O-acetic acid (6:2:1:1) and CHCl₃-MeOH-H₂O (7:3:0.5), and detected by spraying with orcinol reagent (orcinol, FeCl₃ and H₂SO₄).

Acid hydrolysis of 1 and 2. Each phenylpropanoid glycoside (ca 0.1 mg) was dissolved in 1 N HCl and refluxed for 2 hr. The reaction mixt. was neutralized with 3% KOH/MeOH and was subjected to a Sephadex LH-20 column using MeOH as eluant. Sugar identification was performed as described under alkaline hydrolysis above.

Acetylation of 1. Compound 1 (3 mg) was dissolved in pyridine (0.2 ml) and treated with excess Ac₂O (0.2 ml) at room temp for 2 days. The product was subjected to silica gel MPLC using CH₂Cl₂-MeOH (98:2) to give the tetraacetate of 1 (1.6 mg) as an amorphous solid. By comparison of ¹H NMR spectra, purified derivative was identical with tetraacetyl derivatives of three pheylpropanoid glycosides that we had already isolated [3].

Acetylation of 2. Compound 2 (3 mg) was dissolved in pyridine (0.2 ml) and treated with excess Ac_2O (0.2 ml) at room temp. The product was purified as for 1 to give the tetraacetate (2 mg) as an amorphous solid: mp 61–68°; ¹H NMR (400 MHz, CDCl₃): δ 2.01 (3H, s) \times 2, 2.09 (3H, s), 2.11 (3H, s), 2.12 (3H, s) \times 2, 2.20 (3H, s), 2.33 (3H, s), 3.88 (3H, s), 4.16 (1H, br d, J = 11.9 Hz, H-6', 4.19 (2H, br s, H-1), 4.23 (1H, br)d, J = 11.9 Hz, H-6'), 4.28 (1H, m, H-5'), 4.32 (1H, m, H-5), 4.43 (1H, dd, J = 7.1, 12.1 Hz, H-6), 4.51 (1H, dd, J = 4.4, 12.1 Hz, H-6), 4.88 (1H, dd, J = 3.7,10.4 Hz, H-2'), 5.07 (1H, t, J = 9.9 Hz, H-4'), 5.41 (1H, t, J = 5.7 Hz, H-4), 5.45 (1H, br t, J = 9.9 Hz,H-3'), 5.47 (1H, d, J = 9.5 Hz, H-3), 5.69 (1H, d, J = 3.7 Hz, H-1', 6.43 (1H, d, J = 15.9 Hz, H-8'''),7.08 (1H, d, J = 8.4 Hz, H-5"), 7.14 (1H, s, H-2"), 7.15 (1H, br d, J = 8.0 Hz, H-6"); positive FAB-MS

^a Assignments for values bearing the same superscript may be reversed.

698 O. Shirota et al.

m/z (rel. int.): $[M + Na]^+$ 877 (1.5), $[M]^+$ 854 (0.75), 812 (12), 507 (66), 331 (28), 169 (100); positive FAB-MS (added KI) m/z (rel. int.): $[M + K]^+$ 893 (100), 507 (12), 331 (6), 169 (32).

REFERENCES

- 1. Jiang-su New Medical Academy, *Zhong-yao da-ci-dian*, Shang-hai Schience and Technology Publisher, Shang-hai, China, 1977, p. 56.
- Hsu, H.-Y., Oriental Materia Medica: A Concise guide. The Oriental Healing Arts Institute, Long Beach, CA, 1986, p. 485.
- Shirota, O., Sekita, S., Satake, M., Yan, N. and Weiyi, H., Journal of Natural Products, 1996, 59, 242.
- 4. Binkley, W. W., Horton, D. and Bhacca, N. S., Carbohydrate Research, 1969, 10, 245.
- Linscheid, M., Wendisch, D. and Strack, D., Z. Naturforschung., 1969, 35c, 907.
- Strack, D., Sachs, G., Römer, A. and Wiermann, R., Z. Naturforschung., 1981, 36c 721.
- Meurer, B., Strack, D. and Wiermann, R., *Planta Medica*, 1984, 50, 376.

- 8. Shimomura, H., Sashida, Y. and Mimaki, Y., *Phytochemistry*, 1986, **25**, 2897.
- 9. Nakano, K., Murakami, K., Takaishi, Y. and Tomimatsu, T., Chemical Pharmeutical Bulletin, 1986, 34, 5005.
- 10. Syoyama, Y., Hatano, K., Nishioka, I. and Yamagishi, T., *Phytochemistry*, 1987, **26**, 2965.
- 11. Mimaki, Y. and Sashida, Y., *Phytochemistry*, 1991, **30**, 937.
- 12. Ori, K., Mimaki, Y., Mito, K., Sashida, Y., Nikaido, T., Ohmoto, T. and Masuko, A., *Phytochemistry*, 1991, **30**, 937.
- 13. Fukuyama, Y., Sato, T., Miura, I., Asakawa, Y. and Takemoto, T., *Phytochemistry*, 1983, **22**, 549.
- 14. Hamburger, M. and Hostettmann, K., Phytochemistry, 1985, 24, 1793.
- Dubois, M. A., Neszmelyi, A., Heubl, G., Fiebig, M. and Wagner, H., *Phytochemistry*, 1989, 28, 3355.
- Ikeya, Y., Sugama, K., Okada, M. and Mitsuhashi, H., Chemical Pharmeutical Bulletin, 1991, 39, 2600.
- 17. Harrison, L. J., Sia, G.-L., Sim, K.-Y., Tan, H. T.-W., Connolly, J. D., Lavaud, C. and Massiot, G., *Phytochemistry*, 1995, **38**, 1497.