

PII: S0031-9422(96)00815-1

CLERODANE DITERPENES OF CROTON HOVARUM

HANS C. KREBS* and HARISOLO RAMIARANTSOA

Chemisches Institut, Tierärztliche Hochschule, Bischofsholer Damm 15, D-30173 Hannover, Germany

(Received in revised form 21 October 1996)

Key Word Index—*Croton hovarum*; Euphorbiaceae; diterpene; clerodane; 3,12-dioxo-15,16-epoxy-cleroda-13(16),14-dien-9-al; 3α , 4β -dihydroxy-15,16-epoxy-19-nor-12-oxo-cleroda-5(10), 13(16),14-triene.

Abstract—A clerodane- and a nor-clerodane-type furano-diterpene were obtained from the methanolic extract of the leaves of *Croton hovarum*. Structural determinations which were made from spectroscopic data led to 3,12-dioxo-15,16-epoxy-cleroda-13(16),14-dien-9-al and 3α , 4β -dihydroxy-15,16-epoxy-19-nor-12-oxo-cleroda-5(10),13(16),14-triene. Furthermore, Vitexin was isolated. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Croton spp. are well-known as toxic plants. Various species are used in Africa as sources of poison for hunting and fishing [1]. Croton hovarum is a toxic tree, endemic to Madagascar [2]. In a previous paper [3] we reported the isolation of two clerodane-type diterpenes of the bark, one of them was an aldehyde. In this paper we describe isolation and structural elucidation of two new diterpenes, 1 and 2, from the leaves.

RESULTS AND DISCUSSION

Chromatographic separation on silica gel of the ethanolic extract of the leaves yielded two crystalline compounds. The IR spectrum of 1 showed absorption at 3136, 1514 and 873 cm⁻¹ suggesting the presence of a furan ring system. A peak at 1658 cm⁻¹ revealed an α,β -unsaturated carbonyl group and three peaks at 1714, 2726 and 2891 cm⁻¹ were assigned to an aldehyde function. There was no signal corresponding to a hydroxyl group. The mass spectrum of 1 supported the β -substituted furan ring by the presence of a strong peak at m/z 95 (C₅H₃O₂), arising from a furanyl-carbonyl group. The molecular formula of C₂₀H₂₆O₄ was deduced from the high-resolution mass spectrum.

The ¹H NMR spectrum of 1 showed three signals at δ 8.09, 7.46 and 6.77 due to a β -substituted furan ring. A singlet at δ 0.70 and two doublets at δ 0.93 and 1.03 demonstrated the presence of three methyl groups, one of them located at a quarternary carbon. The presence of an aldehyde group was significant, and was proved by a signal at $\delta_{\rm H}$ 10.03 in the ¹H NMR

spectrum and at δ_C 205.1 in the ¹³C NMR spectrum. Two keto groups showed signals at δ 193.7 and 211.7. Homo- and heteronuclear COSY experiments led to the assignment of the peaks in the ¹H NMR and ¹³C NMR spectra. The ¹³C NMR signal for the methylene group in position C-11 was shifted to a higher field (δ 38.5), compared with the signal in similar compounds bearing a methyl group at C-9, due to the β -position

^{*}Author to whom correspondence should be addressed.

Table 1. ¹³ C NMR chemical shift data of compounds 1 (in					
CDCl ₃), 2 (in CDCl ₃ /CD ₃ OD), 3 [3] and 4 [4]					

C-	1	3	4	2
1	23.9	17.6	23.2	21.2
2	38.0	29.7	39.4	29.5
3	211.7	75.1	216.6	75.4
4	56.7	75.6	58.2	77.3
5	41.4	41.2	41.8	127.5
6	41.0	31.5	41.5	30.8
7	27.4	26.5	27.4	28.4
8	35.3	36.3	36.6	34.3
9	55.3	54.7	39.4	44.1
10	49.3	44.5	49.0	138.8
11	38.5	40.8	38.6	41.4
12	193.7	194.4	18.1	194.0
13	129.0	128.9	125.4	131.2
14	108.5	108.3	110.9	108.5
15	144.5	144.3	138.5	144.2
16	147.2	147.4	142.3	147.4
17	17.2	17.5	14.4	20.2
18	7.1	20.7	6.8	22.9
19	15.4	17.9	15.8	
20	205.1	206.3	18.3	19.0

to the aldehyde [3]. Thus, compound 1 was determined to be 3,12-dioxo-15,16-epoxy-cleroda-13(16),14-dien-9-al. The ¹³C NMR data (Table 1) agreed with those of reference compounds 3 [3] and 4 [4].

The IR spectrum of 2 showed only one carbonyl absorption, $1650 \,\mathrm{cm^{-1}}$, for an α , β -unsaturated ketone. Again, three peaks at 3139, $1513 \,\mathrm{and}\,873 \,\mathrm{cm^{-1}}$ pointed to the presence of a furan ring system. Further, the spectrum showed hydroxyl absorptions at 3482 and 3462 cm⁻¹. From the ¹H NMR spectrum it was seen that 2 contained three methyl groups, two of them located at quarternary carbons and one adjacent to a CH. The ¹³C NMR spectrum only showed 19 peaks and suggested that this substance contained one keto group, three double bonds, a tertiary and a secondary hydroxyl function, as well as three methyl groups. Assignment of the peaks has been done by homo- and heteronuclear COSY experiments.

The molecular formula of $C_{19}H_{26}O_4$ was established by both high-resolution mass spectral and ^{13}C NMR methods. The mass spectrum of **2** showed a molecular ion at m/z 318 and a peak at m/z 275 [M-CH₃-CH=CH₂-H]⁺ formed by a retro Diels-Alder reaction in the B-ring. This proved that the double bond must be located in position 5(10). The base peak at m/z 95 again arose from a furanyl-carbonyl group. All this data revealed the structure of **2** as $3\alpha.4\beta$ -dihydroxy-15,16-epoxy-19-nor-12-oxo-cleroda-5(10), 13(16),14-triene.

In addition to 1 and 2, vitexin was isolated from the leaves of *C. hovarum*. Spectroscopic data were in agreement with the literature [5].

EXPERIMENTAL

General. Plant material was collected in October 1991 near Ankazobe (125 km north-west from Antan-

anarivo), Madagascar. NMR spectra (¹H 300 MHz; ¹³C 75 MHz) recorded in CDCl₃ (1) and CDCl₃–CD₃OD (2) soln with TMS as int. standard. MS were measured by direct inlet with 70 eV ionisation. IR: in KBr.

Extraction and isolation. The powdered leaves of C. hovarum were extracted 3× with 80% EtOH in H₂O at room temp. for 48 hr, each. After filtration and evapn of the solvent, the residue was partitioned between CHCl₃ and H₂O. From the H₂O phase vitexin could be obtained after extraction $\times 3$ with *n*-BuOH and chromatograpy on silica gel. The CHCl₃-phase was evapd and partitioned between hexane and MeOH-H₂O (10:9:1). The MeOH extract was conc. under red. pres. and the residue was chromatographed on a silica gel column and eluated with petrol-EtOAc (gradient from pure petrol to pure EtOAc). By further chromatography on silica gel with CHCl₃-hexane (6:4) (for 1) and petrol-EtOAc (1:1) followed by rechromatography on silica gel with hexane-Me₂CO (4:1) (for 2) compounds 1 and 2 were obtained.

3.12-Dioxo-15.16-epoxy-cleroda-13(16),14-dien-9al (1). Mp 134–135° (MeOH). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3136, 2969, 2945, 2891, 2726, 1714, 1658, 1563, 1514, 1454, 1399, 1374, 1282, 1156, 873, 604. EIMS m/z (rel. int.): 330 (5) ([M⁺] measured 330.18309 C₂₀H₂₆O₄ required 330.18311), 312 (4), 284 (5), 220 (12), 135 (10), 119 (21), 110 (100), 95 (87), 84 (27). H NMR (300 MHz, CDCl₃): 10.03 (1H, s, H-20), 8.09 (1H, s, H-16), 7.46 (1H, s, br, H-15), 6.77 (1H, s, br, H-14), 3.35 (1H, d, $J = 17.5 \text{ Hz}, 1.2 \text{ H}_2\text{-}11), 2.92 (1\text{H}, d, J = 17.5 \text{ Hz}, 1/2)$ H_2 -11), 2.73–2.81 (1H, dd, J = 13/3 Hz, H-10), 2.17– 2.41 (4H, m, H-4 + H₂-6 + H-8), 2.03–2.13 (2H, m, H_2 -1), 1.78–1.87 (1H, m, 1.2 H_2 -2), 1.64–1.78 (2H, m, H_2 -7), 1.45–1.64 (1H, m, 1/2 H_2 -2), 1.03 (3H, d, J = 7.1Hz, H₃-17), 0.93 (3H, d, J = 6.7 Hz, H₃-18), 0.70 (3H, s, H₃-19). ¹³C NMR (75 MHz, CDCl₃): see Table 1.

 $3\alpha,4\beta$ -Dihydroxy-15,16-epoxy-19-nor-12-oxo-cleroda-5(10), 13(16), 14-triene (2). Mp $163-164^{\circ}$ (MeOH-CHCl₃). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3482, 3462, 3139, 2979, 2874, 1650, 1559, 1513, 1455, 1289, 1161, 1080, 1002, 965, 873, 832, 603. EIMS m/z (rel. int.): 318 (13) $([M^+]]$ measured 318.18318 $C_{19}H_{26}O_4$ required 318.18311), 299 (5), 275 (4), 208 (31), 147 (13), 135 (32), 134 (22), 122 (36), 107 (24), 95 (100). ¹H NMR (300 MHz, CDCl₃/CD₃OD): 8.19 (1H, s, H-16), 7.48 (1H, s, br, H-15), 6.79 (1H, s, br, H-14), 3.84 (1H, d, $J = 17.5 \text{ Hz}, 1.2 \text{ H}_2\text{-}11), 3.67 (1\text{H}, d, J = 17.5 \text{ Hz}, 1/2)$ H_2 -11). 3.60 (1H, m, H-3), 2.27–2.42 (1H, m, 1/2 H_2 -1), 1.98-2.10 (3H, m, H-8+1/2 H₂-6+1/2 H₂-1), 1.83-1.98 (1H, m, 1/2 H₂-2), 1.67-1.77 (2H, m, H₂-7), 1.57-1.67 (1H, m, 1/2 H₂-2), 1.36-1.48 (H, m, 1/2 H₂-6), 1.37 (3H, s. H₃-18), 1.26 (3H, s, H₃-20), 0.97 (3H, d, J = 7.0 Hz, H₃-17). ¹³C NMR (75 MHz, CDCl₃): see Table 1.

Acknowledgements—H. Ramiarantsoa thanks the German Academic Exchange Service (DAAD) for a scholarship. The authors are grateful to Prof. G. G. Habermehl, Hannover, and Prof. P. Rasoanaivo,

Antananarivo, for their kind support of this work and for the plant material.

REFERENCES

 Neuwinger, H. D., Afrikanische Arzneipflanzen und Jagdgifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1994, p. 406.

- 2. Boiteau, P., *Précis de Matière Médicale Malgache*. Librairie de Madagascar, 1979.
- 3. Krebs, H. C. and Ramiarantsoa, H., *Phytochemistry*, 1996, **41**, 561.
- 4. Monte, F. J. R., Dante, E. M. G. and Braz, R., *Phytochemistry*, 1988, **27**, 3209.
- 5. Batterham, T. J. and Highet, R. J., Australian Journal of Chemistry, 1964, 17, 428.