

PII: S0031-9422(97)00113-1

DIOSPHENOLS FROM SPIROSTACHYS AFRICANA

Namboole Moses Munkombwe,* Titus Maswabi and Neil Arthur Hughes†

Chemistry Department, University of Botswana, Private Bag 0022, Gaborone, Botswana; † Chemistry Department, University of Newcastle Upon Tyne, NE1 7RU, U.K.

(Received in revised form 10 January 1997)

Key Word Index—Spirostachys africana; Euphorbiaceae; heartwood; diterpenes; diosphenols; stachenol.

Abstract—Three new diosphenols, *ent*-2-hydroxy-norbeyer-1,4,15-trien-3-one, *ent*-2,6 β -dihydroxy-norbeyer-1,4,15-trien-3-one, together with stachenol, were isolated and identified spectroscopically from the heartwood of *Spirostachys africana*. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In a previous report [1], we described two diterpenoids and a norditerpenoid from *Spirostachys africana*. We now report on three new diosphenols of the stachene series which are related to the already known *ent*-2-hydroxy-beyer-1,15-dien-3-one [2]. Diosphenols obtained from other species have insect antifeedant activity [3], which is also one of the traditional uses of *S. africana*. Stachenol, previously synthesised from stachenone [2], is also present in the plant.

RESULTS AND DISCUSSION

Chromatography of the carbonate-washed latex from the heartwood of S. africana, gave the three crystalline diosphenols 1-3, in addition to stachenol. The three diosphenols were easily classified as belonging to the beyerane series from the characteristics of the 15(16)-ene system, IR absorption (ca 750 cm⁻¹), ¹H NMR signals (two doublets between δ 5.6 and 6.3) and 13 C NMR signals (two peaks between δ 134 and 138) data [1, 4]. Each compound had four other olefinic carbons indicating extra degrees of unsaturation. The three compounds showed similar UV maxima near 260 nm. Although the UV maxima of diosphenols reduces substantially [5, 6] on acetylation, this was not the case with these compounds, leading to the conclusion that there were at least two moieties absorbing at nearly the same wavelength. IR absorption near 1660 cm⁻¹ was attributed to an α,β -unsaturated keto-enol system.

The HR mass spectrum of diosphenol 1 showed a [M]⁺ at m/z 284.1786 (calculated for $C_{19}H_{24}O_2$ is 284.1776). Its ¹H NMR spectrum, showed only three methyls peaks (δ 1.05, 1.11 and a doublet at 1.99). The absence of the fourth methyl peak at δ less than 1.0, when compared with other beyeranes [1, 4], suggested that ring A was modified. The methyl peak at δ 1.99 belonged to the unsaturated system and this was assigned to the methyl at position 18. The two doublets of the doublets at δ 2.79 and 2.36 were assigned to the C-6 methylene group. Deutrium-exchange and acetylation procedures showed that the hydroxyl proton was a sharp singlet at δ 6.42; this did not shift at different concentrations confirming that the hydroxyl proton was chelated. COSY and NOESY experiments on both 1 and its acetate 1a enabled the unambiguous assignment of all protons. Thus, diosphenol 1 was ent-2-hydroxy-norbeyer-1,4,15-trien-3-

Diosphenols 2 and 3 had an identical m/z of 300 corresponding with the molecular formula, $C_{19}H_{24}O_3$. Both had chelated hydroxyl protons and only one proton at position C-6 when compared with diosphenol 1. In 2, the C-6 proton was equatorially oriented at δ 5.22 as a doublet of doublets (J=3.6 and 2.9 Hz) and, thus, was ent-2,6 β -dihydroxy-norbeyer-1,4,15-trien-3-one. In diosphenol 3, H-6 (δ 4.89, J=12.2 and 4.3) was in the axial position and, therefore, was ent-2,6 α -dihydroxy-norbeyer, 1,4,15-trien-3-one.

Diosphenols 2 and 3 were obtained as a single TLC spot co-crystalline mixture, with 2 as the major component (75%). The mixture of acetates of the two diosphenols, obtained by boiling in acetic anhydride, was resolved by flash chromatography to give acetates 2a and 3a. But a better way of resolving the mixture

^{*} Author to whom correspondence should be addressed.

of diosphenols was through kinetic acetylation with pyridine, as a base, followed by chromatography to give the more mobile monoacetate 2b and the less mobile acetate mixture rich in 3a. Monoacetate 2b had a triplet signal at δ 5.20 for H-6. The difficulty in acylating the axial hydroxyl in 2 is due to 1,3-diaxial hindrance from the 19-methyl group and the 15,16-ene system.

Stachenol was readily identified by comparing its melting point, IR data and chemical reactions with those reported [2]. The proton at δ 3.20 was assigned to the axial proton at H-3, which shifted to δ 4.28 on acetylation. The ¹³C NMR data are shown in Table 3. Stachenol is being reported for the first time as a plant product, having been previously prepared from *ent*-3-beyer-15-enone (stachenone).

EXPERIMENTAL

¹H and ¹³C NMR: 200 and 50 MHz, respectively; COSY and NOESY at 500 MHz; CDCl₃ solns with TMS as int. standard. VLC: silica gel 60 G₂₅₄; visualisation by UV at 254 nm and vanillin–H₂SO₄. Optical rotations were measured in CHCl₃, unless otherwise stated.

A slurry of the latex (60 g) on silica gel (100 g) was chromatographed using vacuum liquid chromatography (VLC) on silica gel (150 g) eluting with hexane (11), 5% EtOAc in hexane, 25% EtOAc in hexane and 40% EtOAc in hexane. A total of 30 frs (200 ml) was collected. Further VLC of pooled frs 3–12, eluted with 2% EtOAc in hexane, led to the isolation of diosphenol 1. Later frs gave stachenol.

ent-2-Hydroxy-norbeyer-1,4,15-trien-3-one (diosphenol 1). Yield 2.05 g, recrystallised from hexane, mp 125–126°. [α]_D+14° (c 0.004). HRMS m/z: 284.1786 [M]+ (calcd. for C₁₉H₂₄O₂, 284.1776). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 262 (4.16). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3402, 3339 (OH); 1678 (CO), 1632, 1621 (C=C), 1578, 746. NMR: Tables 1 and 2.

ent-2-Acetyl-norbeyer-1,4,15-trien-3-one (acetate 1a). Recrystallised from MeOH and H_2O , mp 59–63°. [α]_D – 19° (c 1.250). HRMS m/z: 326.1888 [M]⁺ (calc.d for $C_{19}H_{24}O_2$, 326.1881). UV λ_{max}^{MeOH} nm (log ε): 250 (4.11). IR ν_{max}^{KBr} cm⁻¹: 1769, 1649 (CO); 1674, 1614 (C=C), 750. NMR: Tables 1 and 2.

VLC of pooled frs 15-21 gave a mixt. of diosphenols 2 and 3, recrystallised from Et₂O and hexane (870 mg), mp 185–193°. Boiling the mixt. in Ac₂O for 2 hr gave a mixt. of acetates. Flash CC of this mixt., using hexane-EtOAc (4:1), gave ent-2,6α-diacetylnorbeyer-1,4,15-trien-3-one(diosphenol diacetate 3a). Recrystallised from hexane, mp 132–133°. $[\alpha]_D + 19^\circ$ (c 0.002). HRMS m/z: 384.1922 [M]⁺ (calcd. for $C_{23}H_{28}O_5$, 384.1937). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 252 (4.10). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1769, 1744 and 1655 (CO), 1683 and 1615 (C=C), 752. H NMR partial: δ 1.06 (3H, s, H-17), 1.12 (1H, d, J = 9.8 Hz, H-14e), 1.30 (3H, s, 20-H), 2.07 (3H, d, J = 0.8 Hz, H-18), 2.14 (3H, s, OAc-6), 2.27 (3H, s, OAc-2), 5.68 (1H, d, J = 5.8 Hz, 16-H), 5.91 (1H, d, J = 5.8 Hz, 15-H), 6.61 (1H, s, H-1). ent-2,6β-Diacetyl-norbeyer-1,4,15-trien-3-one (diosphenol diacetate 2a). $[\alpha]_D + 52^\circ$ (c 0.430). HRMS m/z: 384.1920 [M]⁺ (calcd for $C_{19}H_{24}O_3$, 384.1937). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 267 (4.09). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1772, 1742 and 1658 (CO), 1678 and 1609 (C=C), 768. 1H NMR partial: δ 1.06 (3H, s, H-17), 1.06 (1H, d, J = 9.8 Hz, H-14e), 1.30 (3H, s, 20-H), 2.05 (1H, dt, J = 3.1 Hz, H-7e), 2.09 (3H, s, OAc-6), 2.11 (3H, s, 18-H), 2.27 (3H, s, OAc-2), 5.67 (1H, d, J = 5.8 Hz, 16-H), 6.11(1H, d, J = 5.8 Hz, 15-H), 6.66 (1H, s, H-1).

The mixt. of diosphenols was acetylated using pyridine–Ac₂O overnight. Flash CC of the mixt., eluting with hexane–EtOAc (5:1), gave crystalline monoacetate **2b** and a syrupy diacetate mixt. **2a** and **3a** rich in **3a**.

ent-2-Acetyl-6 β -hydroxy-norbeyer-1,4,15-trien-3-one (monoacetate **2b**). Recrystallised from hexane, mp 205–207°. [α]_D+46 (c 0.001). HRMS m/z: 342.1842 [M]⁺ (calcd for C₂₁H₂₆O₄, 342.1831). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 254 (4.10). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3501 (OH) 1767 and 1642 (CO), 1670 and 1601 (C=C), 758. NMR: Tables 1 and 2.

ent - 2,6 β - Dihydroxy - norbeyer - 1,4,15 - trien - 3 - one (diosphenol 2). Complete deacylation with NaOMe–MeOH of 2a or 2b, gave 2, recrystallised from Et₂O–hexane, mp 194–197° [α]_D + 22° (c 0.009). HRMS m/z: 300.1719 [M]⁺ (calcd for C₁₉H₂₄O₃, 300.1725). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 262.5 (4.10). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1772, 1742 and 1658 (CO), 1678 and 1609 (C=C), 768. NMR: Tables 1 and 2.

ent - 2,6\alpha - Dihydroxy - norbeyer - 1,4,15 - trien - 3 - one

Table 1. ¹H NMR data for diosphenols (δ) in CDCl₃

											!
Proton	_		<u>1</u> a	į	7		2 b		3		1
H-1	6.28.5		6.65 s		6.31 s		8.67 s		6.22 s		
H-6a	2.36 dddd	(14.3, 13.3, 4.3, 0.9)	2.34 dddd	(14.0,m 13.5, 4.3, 0.8)	(8		-	i		(12.3, 4.3, 0.9)	
H-6c	2.79 ddd	(13.3, 4.0, 3.1)	2.78 ddd	(13.5, 3.9, 3.0)		(3.5, 2.9)	5.20 dd	(3.5, 2.9)			
H-7a	1.41 ddd	(14.3, 13.3, 4.0) 1.	1.44 ddd	(14.0, 13.5, 3.9)	1.62 dd	(14.9, 3.5)		(14.9, 3.6)	1.79 dd	(12.3, 12.2)	
H-7e	1.86 ddd	(13.3, 4.3, 3.1)	1.84 ddd	(13.5, 4.3, 3.0)	2.08 dd	(14.9, 2.9)	2.07 dd	(14.8, 2.9)		(12.2, 4.3)	
H-9a	1.24 dd	(12.1, 4.8)	1.38 dd	(12.0, 4.9)	1.33 dd	(12.0, 4.8)		(11.8, 5.0)	1.22 dd	(12.1, 4.8)	
H-11a	1.63 dddd	(13.2, 12.1, 12.0, 6.4)	1.61 dddd	(13.1, 12.0, 11.8, 6.4) 1.71 dddd	(13.1, 11.8, 6.5, 4.8)		(13.0, 11.7, 6.4, 5.0)		(12.9, 12.0, 6.4, 4.8)	
H-11e	1.80 dddd	(13.2, 5.8, 4.8, 1.5)	1.72 dddd	(13.1, 5.7, 4.9, 1.5)	1.83 dddd	(13.1, 5.8, 4.8, 1.8)		(13.0, 5.8, 5.0, 2.0)	1.78 dddd	(12.9, 5.6, 4.8, 2.0)	
H-12a	1.27 ddd	(12.8, 12.0, 5.8)	1.28 ddd	(12.8, 11.8, 5.7)	1.27 ddd	(12.8, 11.8, 5.8)		(13.0, 11.7, 5.8)	1.26 ddd	(12.0, 11.8, 5.6)	
H-12e	1.35 dddd	(12.8, 6.4, 2.8, 1.5)	1.33 dddd	(12.8, 6.4, 2.7, 1.5)	1.37 dddd	(12.8, 6.5, 3.0, 1.8)	1.37 dddd	(13.0, 6.4, 2.7, 2.0)	1.33 dddd	(11.8, 6.4, 2.7, 2.0)	
H-14a	p 66.0	(9.8)	1.02 d	(10.0)	1.00 d	(9.7)		(6.6)	1.06 d	(9.7)	
H-14e	1.57 dd	(9.8, 2.8)	1.57 dd	(10.0, 2.7)	1.63 dd	(9.7, 3.0)	1.62 dd	(9.9, 2.7)	1.64 dd	(9.7, 2.7)	
H-15	5.91 d	(5.8)	5.90 d	(5.8)	6.22 d	(5.8)	6.23 d	(5.8)	5.85 d	(5.8)	
H-16	5.65 d	(5.8)	5.64 d	(5.8)	5.61 d	(5.8)	5.62 d	(5.8)	5.66 d	(5.8)	
Me-17	1.05 s		1.04 s		1.05 s		1.06 s		1.05 s		
Me-18	1.99 d	(0.9)	1.94 d	(0.8)	2.05 s		2.01 s		2.31 d	(0.9)	
Me-20	1.11 s		1.15 s		1.36 s		1.40 s		1.15 s		
OH/OAc-2	6.42 s		2.26 s		6.27 s		2.27 s		6.42 s		

Table 2. ¹³C NMR data of diosphenols (δ) in CDCl₃

Carbon	1	1a	2	2a	2b	3	3a
1	124.3	140.8	126.3	141.8	142.2	124.2	140.5
2	144.7	143.4	144.2	142.8	142.6	144.3	142.9
3	182.0	179.0	182.5	179.3	179.7	182.5	179.4
4	126.0	128.3	128.8	133.2	131.0	126.3	128.1
5	166.8	162.9	162.0	153.9	158.9	164.6	158.1
6	26.4	26.1	69.0	70.7	68.8	70.4	70.7
7	37.5	37.0	43.1	40.4	42.6	51.4	49.6
8	49.0	49.1	47.3	47.3	47.2	47.3	49.6
9	50.3	49.0	49.0	48.1	47.6	49.3	50.5
10	43.5	44.3	43.4	43.8	44.0	44.5	45.5
11	21.3	20.8	23.0	21.3	22.3	21.6	22.3
12	32.3	32.1	32.4	32.1	32.2	32.0	32.2
13	44.5	44.5	43.2	43.4	43.2	44.5	44.7
14	59.6	59.5	60.5	60.2	60.3	59.5	60.3
15	138.3	138.5	138.2	139.0	138.2	138.8	138.2
16	133.1	133.1	133.6	134.4	135.5	133.0	135.5
17	24.6	24.6	32.0	24.4	24.5	24.3	24.5
18	10.4	10.8	11.0	11.2	11.1	11.3	11.1
20	22.8	22.5	22.6	22.4	22.4	23.0	22.4
COCH ₃		169.0		169.7	169.0	_	169.0
CH ₃ CO		20.6		20.6	20.6		20.6
				21.2			

Table 3. ¹³C NMR data of stachenol and acetylstachenol (δ) in CDCl₂

Carbon	Stachenol	Acetyl stachenol	
1	37.2	37.0	
2	27.3	23.7	
3	79.1	81.1	
4	38.8	37.8	
5	55.2	55.3	
6	19.9	21.4	
7	37.4	37.1	
8	48.8	48.8	
9	52.9	55.6	
10	37.1	37.0	
11	20.2	19.8	
12	33.2	33.1	
13	43.7	43.7	
14	61.1	61.0	
15	136.5	136.6	
16	135.1	135.0	
17	25.0	25.0	
18	28.4	28.3	
19	15.7	16.9	
20	15.0	15.1	
CH ₃ CO	Mary Transfer of the Control of the	20.4	
CH ₃ CO	_	171.1	

(diosphenol 3). Deacylation of diacetate 3a gave 3, recrystallised from Et₂O-hexane, mp 172–175°. [α]_D+9.2° (c 0.003). HRMS m/z: 300.1714 [M]⁺ (calcd for C₁₉H₂₄O₃, 300.1725). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ϵ): 262.5 (4.10). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3520 and 3393 (OH), 1676 (CO), 1618 (C=C), 748. NMR: Tables 1 and 2.

ent-3 β -Beyer-15-enol (stachenol). Yield 350 mg, recrystallised from hexane, mp 160–162° (lit. 164° [2]). [α]_D+32°, (c 0.025) (lit. +28° [2]). HRMS m/z: 288.2460 [M]+ (calcd. for C₂₀H₃₂O, 288.2453). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3337 (OH), 748. ¹H NMR partial: δ 0.74 (3H, s, H-20), 0.79 (3H, s, 19-H), 0.99 (6H, s, 17-H and 18-H), 3.20 (1H, dd, J = 4.8 Hz, 11.0 Hz, H-3), 5.46 (1H, d, J = 5.7 Hz, 16-H), 5.68 (1H, d, J = 5.7 Hz, 15-H). ¹³C NMR: Table 3.

 Hz, H-3), 5.46 (1H, d, J = 5.6 Hz, 16-H), 5.67 (1H, d, J = 5.6 Hz, 15-H). ¹³C NMR: Table 3.

Acknowledgements—We thank Mr I. Mckeag for NMR data and Mr S. Addison for MS determinations. We also thank the Research and Publications Committee of the University of Botswana for research funds.

REFERENCES

- Duri, Z. J., Hughes, N. A. and Munkombwe, N. M., *Phytochemistry*, 1992, 31, 699.
- Baarschers, W. H., Horn, D. H. S. and Johnson, L. R. F., Journal of the Chemical Society, 1962, 4066.
- Nielsen, J. K., Larsen, L. M. and Söresen, H., *Phytochemistry*, 1977, 16, 1519.
- 4. von Carstenn-Lichterfelde, C., Pascual, C. and Pons, J., *Tetrahedron Letters*, 1975, **41**, 3569.
- 5. Stojanac, N. and Valenta, Z., Canadian Journal of Chemistry, 1991, 69, 853.
- Lavie, E., Glotter, E. and Shvo, Y., Tetrahedron, 1963, 19, 1377.